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Relaxed Functional Dependencies—
A Survey of Approaches

Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese, Member, IEEE

Abstract—Recently, there has been a renovated interest in functional dependencies due to the possibility of employing them in several
advanced database operations, such as data cleaning, query relaxation, record matching, and so forth. In particular, the constraints
defined for canonical functional dependencies have been relaxed to capture inconsistencies in real data, patterns of semantically
related data, or semantic relationships in complex data types. In this paper, we have surveyed 35 of such functional dependencies,
providing a classification criteria, motivating examples, and a systematic analysis of them.

Index Terms—Functional dependencies, data quality, axiomatization, approximate match

1 INTRODUCTION

DATA dependencies have been used to define data integ-
rity constraints, aiming to improve the quality of data-
base schemas and reduce manipulation anomalies [1].
There are several types of data dependencies, including
functional [2], multivalued [3], and join dependencies [4].
Among these, functional dependencies (FDs) are the most
commonly known, mainly due to their use in database nor-
malization processes.

As the relational data model evolved in different di-
rections, also FD theory underwent several extensions to
enable the specification of integrity constraints in new appli-
cation domains. For instance, functional dependencies were
defined for fuzzy data [5], XML structured data [6], [7], mul-
timedia data [8], temporal data [9], and so forth. In particu-
lar, fuzzy functional dependencies (FrDs) were based on the
fuzzy resemblance relation in place of the ‘equality” relation
used in the canonical r» [5]. Analogously, similarity func-
tions were used to derive Fps for multimedia data [8], due to
the intrinsic difficulty in performing exact comparisons on
them. Other than rps relaxing on the comparison method,
we also find examples of Fp definitions relaxing on the satis-
fiability constraint, that is, Fps possibly not satisfied for a
subset of data. For this reason, in this paper we will refer to
these imprecise functional dependencies as relaxed functional
dependencies (RFDs), in that they relax one or more constraints
of the canonical Fp.

Rrps are mainly used in alphanumeric databases, but no
longer for schema design purposes, rather to support several
new challenging applications, such as query relaxation [10],
data cleaning [11], and record matching [12]. In the last deca-
des, several rRrDs have been defined, some of which aiming to
solve specific problems. However, many rrp definitions lack
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highlighting similarities and/or advances with respect to
existing ones. This motivates the need for a review of exist-
ing RFDs, since in the literature we can only find analysis on
some specific aspects, such as the types of algorithms for dis-
covering them from data [13]. Thus, we think that a broader
comparison is needed, in order to analyze and classify rRFDs
based on their features and their relationships.

In this paper we survey 35 reDs, providing some criteria
to classify them, and a general semantics to systematically
describe and relate them. The goal of the survey is threefold:
i) to analyze existing rrDs, highlighting both theoretical and
practical issues; ii) to provide a comprehensive and classi-
fied list of them, useful for researchers, database designers,
and database tool vendors; and, iii) to help users select the
RFDs more suitable for their purposes. Although in the litera-
ture there are many other types of data dependencies, such
as inclusion [14], and multivalued dependencies [3], the
paper focuses on relaxations of Fps, and not of other types
of data dependencies.

The remainder of this paper is organized as follows.
Section 2 provides a detailed description of the application
domains motivating the study of rrps. In Section 3 we intro-
duce the criteria we have used to classify the surveyed rrps.
Such a classification is provided throughout Sections 4, 5,
and 6. Section 7 presents a global comparison of the sur-
veyed RrrDs, focusing on both theoretical and practical
aspects. Finally, conclusions and future work are discussed
in Section 8. In order to facilitate the reading of the paper,
in Table 1 we list the notations used in the definition of the
surveyed RFDs.

2 MOTIVATIONS

Let us first introduce an example that we will use in the rest
of the paper to define rRrDs and explain underlying concepts.
It concerns a medical database, whose relational schema is
shown in Fig. 1.

Before discussing motivations for ReDs, let us first recall the
definition of the canonical rp. Consider a relational schema R
defined over a set of attributes attr(R), derived as the union
of attributes from relation schemas of R, assuming w.l.o.g.
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TABLE 1
A Summary of Notations
Symbol Description
R relational database schema
R relation schema
r, s database instance
XY set of attributes
A, B attribute
dom(A) attribute domain
a,b attribute value
Tx partition on a set X
o tuple selection based on a condition ¢
0,9, 1,0, x function
e a,p threshold
Pr probability
c constraint or condition
T, pattern tableau

they all have unique names. For each attribute A € attr(R), its
domain is specified in R, denoted by dom(A). For an instance
rof R and a tuple ¢ € r, we use t[A] to denote the projection of
t onto A; similarly, for a set X of attributes in attr(R), t[X]
denotes the projection of ¢ onto X. An Fp over a relation
schema R of R is a statement X — Y (X implies Y) with
X,Y C attr(R), such that, given an instance r over R, X — Y
is satisfied in 7 if and only if for every pair of tuples (¢, t2) inr,
whenever t1 [ X] = t2[X], then 1 [Y] = to[Y].

Nevertheless, there are situations where the canonical
definition of b is not suitable, because we might need to
relax some of its properties. For instance, for the medical
database in Fig. 1, we can intuitively say that Symptom —
Diagnosis holds, but we can only expect that tuples for two
different patients show “similar” diagnosis when they
show “similar” symptoms. Thus, several new dependencies
have been introduced to cope with approximate compari-
sons, such as the rrp [5], [15]. The latter specifies that for any
two sets of attributes X, Y C attr(R), X implies Y, denoted
with X~Y, in a fuzzy relation r on R, if for all pairs of
tuples ¢; and ¢y of r, that is, those with membership value
w(t;) >0, we have ., (t1[X],t2[X]) < pe,(t1[Y], 12[Y]),
where eq is a fuzzy resemblance relation. Thus, it is
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possible to define a proper eq relation to model an FrD
Symptom ~- Diagnosis.

However, there are many contexts in which it is neces-
sary to capture rps that cannot be simply defined in terms of
a greater similarity on the right-hand side (RHS) with
respect to the left-hand side (LHS). This is particularly true
in the multimedia database context, where it might be nec-
essary to capture dependencies on data by using different
similarity functions on the two sides of the Fp [8]. As an exam-
ple, in the medical database of Fig. 1, ECG — Pulse is a depen-
dency in which the LHS and the RHS are different media
types, hence their similarity needs to be evaluated based on
different similarity functions. This is possible through the fol-
lowing type-M dependency T™FD: ECG racrar,ey — PUIS€(y5 1),
which models the dependency between the electrocardiogra-
phy and the heartbeat multimedia attributes by using the
image similarity function FRACTAL, with threshold ¢, to com-
pare electrocardiograms, and the sound similarity function
Hs, with threshold ¢”, to compare heart pulses [8].

On the other hand, the constraints of the canonical FD
have recently been relaxed also in the context of alphanu-
meric databases. As an example, new RFDs have been
defined for approximate query processing [10] and data
cleaning activities [11]. In query processing, problems might
arise in case the answer set is empty or too narrow. Thus,
the user might be interested in retrieving not only the items
exactly matching the original query (), but also the similar
ones, ranked according to their relevance to Q). This is done
by rewriting @ in order to stretch the result set. One way to
do this is to rewrite the conditions of @) yielding minimal
changes in the characteristics of the matching tuples [10],
i.e., the conditions defined on attributes with little or no
influence on the values of other attributes in a tuple. In [10]
these attributes have been detected through approximate
functional dependencies (arps) [16], which are rps holding on
almost all tuples. Thus, the query rewriting is performed on
the attributes rarely appearing on the LHS of arps [10].
As an example, let us consider the arps in Table 2 holding
on the Medicine relation of the database in Fig. 1, and
the approximate query Q = “Name like Aulin & Cost like5$”.
After retrieving the exactly matching tuple, the approach

Clinical Record
Num Date Patient | Age |#Room | CheckinWard | CheckoutWard | Hospitalization ECG Pulse Diastolic | Systolic Symptom Diet Surgery Diagnosis
1 | 2014-03-01 | 087-34-7789 | 61 189 Neurology Neurology 1 Imagel.jpg | pulsel.wav 83 130 | Tachycardia, breathe shortness | 2 - Panic attack
2 | 2014-03-01 | 087-11-3455 | 84 | 300 | Cardiology | Neurology 10 Image2.jpg | pulse2.wav 90 140 Dizziness 1 - Ictus
3 | 2014-03-01 | 089-65-3325 | 44 | 267 | Cardiology | Cardiology 18 Image3.jpg | pulse3.wav 80 120 Arm ache, nausea 3 Angioplasty | Heart attack
4 | 2014-03-02 | 091-87-9437 | 9 205 | Pediatrician | Pediatrician 4 Image4.jpg | pulsed.wav 77 117 Stomach ache 5 | Gastric lavage | Indigestion
5 | 2014-03-02 | 092-12-1439 | 85 | 151 Neurology Neurology 9 Image5.jpg | pulse5.wav 87 134 Dizziness, speech impairment | 4 Clipping Ictus
6 | 2014-03-20 | 088-52-1314 | 47 | 262 | Cardiology | Cardiology 19 Image6.jpg | pulse6.wav 92 133 Arm ache, breast ache 3 Angioplasty | Heart failure
Patient Doctor
SSN Name Birthdate [Gender Address BloodType IdDoctor Name Specialization Role Experience| Salary [ Level Tax
087-34-7789 | Andrea White | 1953-03-14 F 987 Jefferson AV, NV 0+ 1 George Johnson | Neurology Junior Dr. 1years | $118,000 E $27,140
087-11-3455 | Mary Brown | 1930-08-31 F 555 Fifth AV, NV A+ 2 Joe House Cardiology | Head Physician | 10 years | $314,000 B $94,200
089-65-3325 | Bill Mc Gregor | 1970-12-21 M 100 Canal ST, NJ 0+ 3 Derek Williams | Pediatrician | Specialized Dr. 2 years | $156,000 D $39,000
091-87-9437 John Smith 2005-11-01 M 321 Delaware AV, CA AB 4 Henry Jones Neurology | Specialized Dr. 3 years | $158,000 D $39,500
092-12-1439 Eric Ford 1929-10-19 M 774 Vermont ST, WA A- 5 Victor Sanchez Radiology | Senior Surgeon | 5 years | $225,000 C $63,000
Medicine Check
Producer Name |Category| Symptoms | Weight [Cost| Activelngredient Rx IdCheck Name Patient PrescriptionDate | ExecutionDate | Doctor
Angelini Aulin NSAID | Inflammation | 100mg | $6,5 Nimesulide Yes 1 Cholesterol 087-11-3455 2014-03-03 2014-03-06 1
Angelini Aulin | NSAID | Inflammation | 50mg | $5 Nimesulide Yes 2 HIV 089-65-3325 2014-03-07 2014-03-14 4
Dompé Oki NSAID | Inflammation | 80mg | $4 Ketoprofen Yes 3 HCV 091-87-9437 2014-03-04 2014-03-05 3
Zambon It | Spidifen | NSAID Headache 200mg | $5 Ibuprofen No 4 AIDS 092-12-1439 2014-03-05 2014-03-14 4
Bayer Aspirin | NSAID | Fever status | 400mg | $4 | Acetylsalicyclic acid | No 5 Mammography | 091-87-9437 2014-03-06 2014-03-08 5
Bristol lab. | Panadol | NSAID | Osteoarthritis | 500mg | $5 Paracetamol No 6 Echocardiogram | 088-52-1314 2014-03-21 2014-03-25 2

Fig. 1. A portion of a medical database instance.
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TABLE 2
A Sample of aAFps
AFD Confidence
Name — Producer 97%
Category — Symptoms 86%
Name, Weight — Cost 82%
Name, Cost — Weight 54%

proposed in [10] looks for approximately matching tuples by
first rewriting the query condition involving the attribute
Cost, since it has a reduced impact on other attribute values
with respect to Name, as inferred from the detected arps.

In the context of data cleaning, rRFDs have been used to
detect records referring to the same real world entities [12].
As an example, when building a database of historical clini-
cal activities on patients, by integrating the databases of dif-
ferent hospitals and healthcare services, there might be the
need to detect records referring to same patients. However,
if some of the source databases to be integrated do not have
an unique identifier (e.g., SSN) for distinguishing records
of different patients, then we need to evaluate alternative
attributes to join related records. To this end, matching
dependencies (MDs) can be used [12]. As an example, given
the relations Rq(FN,LN,addr,BD,BT,sex) and Ra(FN,LN,
post, BD, BG, sex), the following mD:

(R1 [LN] = RQ[LND A (R1 [addr] =R [pOStD A (R1 [FN] ~q Ro
[FN]) — R+[BD, BT, sex] = R»[BD, BG, sex]

states that if tuples ¢; € Ry and ¢, € Ro have the same values
in the common attribute last name (LN), and in the attrib-
utes address (addr) of Ry and post of Ry, and have similar
values in the common attribute first name (FN), then they
refer to the same patient. Therefore, the attribute blood
group (BG) of Ry corresponds to the attribute blood type
(BT) of Ry, and the remaining common attributes birthdate
(BD) and sex are equal.

Since these are only few examples of RrFDs, it is not easy
to understand whether there is an RFD in the literature that
is suitable to solve a specific problem, or if a new one is
needed. Moreover, when there is more than one suitable
RFD, one would like to have some criteria to choose the most
effective one. Thus, there is the need to devise a systematic
way to compare the features of different reDs, and to select
the one that is most suitable for a specific problem. These
issues are the focus of the next section.

3 CLASSIFICATION OF RFDS

Since the focus of this survey is on relaxed rps, it is impor-
tant to categorize each rRFD based on its underlying relaxa-
tion criteria. To this end, as said in the previous section, the
type of tuple comparison used on the LHS and RHS of the
RFD is one of such criteria, and we will refer to it by using
the term attribute comparison. Moreover, another relaxation
criteria is based on the satisfiability property, admitting the
possibility that an rRFD might not be satisfied for a subset
of tuples. In the rest of the paper we will use the term extent
to refer to this relaxation criteria, which indicates whether
an RFD is satisfied by a subset or all the tuples.

The attribute comparison and extent relaxation criteria are
further detailed in the diagram shown in Fig. 2, which also

> Confidence
> Disparity
> Error

> Impurity

Coverage > Domain cardinality

measure

»
> Information dependency

> Percentage

> Extent > Probability
—> 1 association
Constraint
—> Condition
Pattern tableau
Relaxation__|
criteria Closeness function
Differential function
X Matching operator
Approximate
match Metric distance
Similarity function
Attribute X
Comparison Tolerance relation
Ordering [: Order relation
criteria Temporal constraint
\ \ \ )
Y Y Y
What How Implementation

Fig. 2. Characteristics of relaxation criteria for RFDs.

provides several parameters to classify the surveyed rrps.
In particular, for the rrDs relaxing on the attribute comparison
two main categories of paradigms are considered: approxi-
mate match and ordering criteria. The former is used to quan-
tify the similarity or the diversity of attribute values,
whereas the second one compares them based on a given
order relation. On the other hand, the rrDs relaxing on the
extent hold for “almost” all tuples or for a subset of them. In
the first case, a coverage measure should be specified to quan-
tify the degree of satisfiability of the rFD, whereas in the
second case a condition should be specified to identify the
subset of tuples.

In the following, we recall some general definitions that
will let us introduce a general semantics for identifying clas-
ses of RFDs and establishing relationships among them.

Database concepts. A relational database schema R is a col-
lection of relation schemas (R, ..., R,), where each R; is
defined over a fixed set of attributes attr(R;). Each attribute
Ay, has associated a domain dom(A},), which can be finite or
infinite. A relation instance (or simply a relation) r; of R; is
a set of tuples such that for each attribute Aj; € attr(R;),
t[Ax] € dom(Ay) Vt € r;. A database instance r of R is a col-
lection of relations (r1, ..., r,), where r; is a relation instance
of R;, fori € [1,n].

An XML database can be defined as a forest of rooted,
ordered, and labeled trees. Each XML tree 7" is composed of
a finite set of nodes V' having associated either an element
label (tag), an attribute name, or an element value. Edges in
T represent either element-subelement, element-attribute,
or element-value relationships. The elements, the attributes,
the data types, and their relationships are specified within
an XML schema definition (XSD). Moreover, a path p in T"is
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a sequence of nodes (I, ...,[,), where [; is the root of 7. A
set P of paths is said to be downward closed if for any path
p € P, if py is a strict prefix of p then p; € P [17].

Constraint. A constraint is defined as a restriction on
some values. In the context of RrDs, it expresses the
“closeness” of two values on a specific domain, and it is rep-
resented by a function ¢. In particular, given two attributes
A and B on a domain D, ¢(A, B) evaluates the similarity/
distance of A and B after a possible update of their values.
As an example, ¢ can be defined in terms of a similarity
metric =, like for instance the edit or Jaro distances (see [18]
for a survey), such that a~xb is true if a and b are “close”
enough w.r.t. a predefined threshold. Alternatively, ¢ could
represent the matching operator = [12], which first updates
a and b, and then compares the derived values through the
equality operator.

Coverage Measure. Given a database instance r of R and
two sets of attributes X,Y C attr(R) representing the LHS
and RHS, resp., of an RFD ¢, a coverage measure ¥V on ¢
quantifies the satisfiability degree of ¢ on r, and can be
defined as a function ¥ : dom(X) x dom(Y) — R measuring
the amount of tuples in r violating or satisfying ¢. As an
example, the confidence measure evaluates the maximum
number of tuples r; C r such that ¢ holds in r; [19].

RED syntax. Consider a relational schema R defined over a
fixed set of attributes, and R; = (Ay,...,A;) and Ry =

(B1,...,B,) two relation schemas of R. An rRFD ¢ on R is
denoted by
v >e
]Dcl X D82 : (X17X2)(1>1 — (}/17 Yv?)(bf (1)
where

o D xD, = {(t,t2) € dom(Ry) x dom(Rz)|( N, 1,
(B [AD) A (AL o (t2[B)])) } - where ¢ = (c1y, -+,
i) and ¢ = (¢2,, .. -, ¢2,), with ¢;; and e, predicates
on dom(A;) and dom(B;), respectively, that filter the
tuples on which ¢ applies;

e X1.Y) Cattr(Ry), and X»,Y> C attr(Ry), with X3 N
Yi=0and XoNY; = (;

o &, (dy, resp.) is a set of constraints ¢[X;, X5
(¢[Y1,Y5], resp.) on attributes X; and X, (¥; and Y5,
resp.). For any pair of tuples (1, t;)€ D,, x D,,, the
constraint ¢[ X, Xs] (¢[Y1, Y2], resp.) indicates true, if
the distance/similarity of ¢; and ¢, on attributes X,
and X, (Y and Y5, resp.) agrees with the constraint
specified by ¢[ X, Xo] (¢[Y1, V2], resp.).

W is a coverage measure defined on D, x D,,.

e is a threshold indicating the lower bound (or upper
bound in case the comparison operator is <) for the
result of the coverage measure.

RFD semantics. Given r; € D, and r, C D, two relation
instances on (R, Rs), (r1,r9) satisfies the RFD ¢, denoted by
(7"1, 7'2) )Z @, if and only if: vV (tl, tQ) S (7'1, 7‘2), if ¢[X1, XQ] indi-
cates true for each constraint ¢ € &, then almost always
¢[Y1, Ys] indicates true for each constraint ¢ € ®y. Here, almost
always means that W(rx, (11)mx, (12), wy, (r1)my, (12)) > €.

In other words, if ¢[X;] and ¢,[X;] agree with the con-
straints specified by ®;, then ¢;[Y;] and ¢,[Y>] agree with the
constraints specified by ®, with a degree of certainty (mea-
sured by V) greater than e.
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For rrDs defined on single relation schemas (i.e.,
Ry = Ry), if X| = X, and Y] = Y5, then we will simplify the
RFD notation given in (1) by using D,, X, and Y to refer to
the Cartesian product D, x D,,, and to the pairs (X, X) and
(Y, Y), respectively. Moreover, if the rFD has to be satisfied
by all tuples in r, then the symbol V., is shown on the
arrow. Such coverage measure corresponds to the expres-
sion ¥(X,Y) =0, where ¥(X,Y) measures the number of
tuples violating the RFD. As an example, the canonical FD can
also be written as:

lI}e'rr(())
Do : XEQ _— }/;ZQ7 (2

where TRUE is a sequence of tautologies, hence Dy =
dom(R,), whereas EQ is the equality constraint.

If the database is modeled through XML instead of the
relational data model, then the definition given in (1)
applies to a set of trees DT’ complying with a given XSD, by
considering D, as the subset of DT satisfying predicates in
¢, X and Y as sets of paths. Given this, an exact functional
dependency for XML (x¥p) can be written as in (2).

In the following sections we will use the proposed
semantics to describe the surveyed reps. In particular, we
will group ReDs based on the two relaxation criteria
described above. Thus, in Section 4 we present RFDs relaxing
on the extent only, in Section 5 those relaxing on the attribute
comparison only, and finally, in Section 6 those relaxing on
both. Moreover, Table 3 provides the abbreviations used in
such sections to refer to the surveyed RrDs.

4 FDS RELAXING ON THE EXTENT

As said above, relaxing on the extent parameter means that
the rp holds on “almost” all tuples or on a subset of them. In
fact, Fps might not hold for some tuples due to errors, miss-
ing values, or different data formats, but also to the possibil-
ity for some application domains to admit outliers.

In this section we review 11 reDs falling in this class. They
mainly differ on the method used to specify the subset of
tuples for which the rrD is satisfied. In particular, those
using a coverage measure can be defined as

V(X,Y)

BQ — TrQs

Digor + X
where ¥ represents the coverage measure. Six out of the 11
reviewed rrDs fall in this category; three of them use the
probability, one uses the domain cardinality, while the other
two are based on the error and the impurity measures,
respectively. On the other hand, the remaining five RrrDs

relying on a condition to identify the subset of tuples can be
defined as

\I}err(O)
D, : XEQ —_— }/;:Q’

where D, is the subset identified by the sequence of predi-
cates in c¢. Two of them use constraints as predicates,
whereas the other three use pattern tableaux.

The 11 rrps reviewed in this section have been defined
for many different application domains, with particular
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TABLE 3

A Summary of rrp Abbreviations
RFD
abbrev. RFD name
ACOD Approximate comparable dependency
ADD Approximate differential dependency
AFD Approximate functional dependency
cob Comparable dependency
CFD Conditional functional dependency
CFD” cFp with built-in predicates
CFD* cFD with cardinality constraints and synonym rules
CMD Conditional matching dependency
CsD Conditional sequential dependency
CD Constrained functional dependency
DD Differential dependency
€CFD Extended conditional functional dependency
FFD Fuzzy functional dependency
MD Matching dependency
MFD Metric functional dependency
ND Neighborhood dependency
NuD Numerical dependency
oD Order dependency
oDy oD satisfied within bound &
ODgA oD satisfied almost everywhere
OFD Ordered functional dependency

PD Partial determination

POD Polarized order dependencies
prerD Preference functional dependency
PAC Probabilistic approximate constraint
PpFD Probabilistic functional dependency
PUD Purity dependency

RUD Roll-up dependency

SD Sequential dependency

SFD Similarity functional dependency
soft FD Soft functional dependency

™D Trend dependency

TMFD Type-M functional dependency
XCFD XML conditional functional dependency
OOXFD XML fp with ¢ and 6 approximation

emphasis on data quality and query related problems, such
as query answering, rewriting, and optimization. Ten of
them have been proposed for the relational data model,
whereas one is defined for XML databases, which are
becoming popular due to the necessity of modeling semi-
structured data, like those available on the web.

4.1 Approximate Functional Dependencies (AFpS)
ArDs are FDs holding on almost every tuple [16], [19]. In
order to quantize how an ArD “almost” holds, several meas-
ures have been proposed, such as the g3 error measure [20],
which corresponds to the minimum number of tuples to be
removed from a relation instance r in order foran > X — Y
to hold. The tuples violating the FD are quantized by means
of the error defined as

; C X — Y holds i
WY :mm{|r1| |11 Crand X — olds in 7"\7'1}.

7]

Formally, given an error threshold ¢, 0 < e <1, an AFD
can be written as

X, Y
XEQl/f( Y)<e

Yia.

Drgee :

As an example, in the medical database of Fig. 1, it is
unlikely to have two patients with the same name that have
been admitted to the hospital. Thus, except for few homon-
ymy cases, the Name of the Patient should imply the
BloodType. Thus, the following AFD might hold:

¥(X,Y) <0.02
Digue : Name,, ——— - BloodType,,,.

4.2 Purity Dependencies (pubps)
Purity dependencies generalize canonical Fps based on the
notion of impurity measure [21]. The latter is primarily
defined as a measure of a subset L of a set S with respect to
a partition Ilg of it. In particular, if L is completely con-
tained in a block of Ilg, then its impurity is 0. Thus, an
impure set intersects more blocks in IIg. This concept can be
generalized to measure the impurity between two partitions
s and IIg of S, which is 0 when each block of IT§ is
included in one block of IT¢, and it increases when the
blocks of IT§ intersect more blocks of IT§.

Since the attribute values of a database relation induce a
partition on the set of tuples, we can observe that a canonical
FD X — Y induces two partitions on attribute sets X and Y/,
respectively, without impurity. On the other hand, when the
impurity induced by the attribute sets X and Y is greater
than 0, but below a given threshold, a Pup can be used.

Formally, let r be a database instance, X and Y be two
sets of attributes, 7x and my be two partitions of the set
of tuples of r induced by the values of X and Y in 7,
respectively (i.e., mx and ny correspond to the groups
returned by SQL clauses group by X and group by Y). A
rup is defined as

O(x,my) <€
Digue : XEQ—> EQ)

where 6 is a concave and subadditive function that com-
putes the largest impurity measure on the blocks in 7 x rela-
tive to my.

As an example, in a real size instance of the relation
Medicine of Fig. 1, the following pup might hold:

e(ﬂActivelngredientﬂTRx) < 0.09

Drgus - ActivelngredientEQ RXgq,

where Rx indicates whether a medical prescription is man-
datory. Notice that, even if the previous pup would reduce
to a canonical Fp on the sample instance of Fig. 1, in a real
size instance there might be medicines with the same
Activelngredient and different Rx values, such as Oki and
Ketodol.

4.3 Numerical Dependencies (Nubps)
Numerical dependencies are FDs relaxing on the extent by
means of a cardinality constraint [22]. The latter specifies a
constraint on the domain cardinality for a given attribute
[23]. In particular, given a relation R, and X,Y C attr(R), a
NuD specifies that each tuple ¢[X] is associated to at most k
different tuples on Y, for some constant &.

NuDs have been mainly used in the context of database
design, when vertical decomposition (projection) needs to
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be augmented by horizontal decomposition (splitting) [22].
Formally, a NuD on a relation R has the form

card(X,Y) <k

Drgog : Xpgg —— YEQa

where card(X,Y) = |my(o(x—yx))(r))|- As an example, in the
medical database of Fig. 1, if a single ward in the hospital
can have at most 10 assigned rooms, then the following Nup
holds on the relation ClinicalRecords:

card(CheckinWard, #Room) < 10

Dygur : CheckinWardy,

4.4 Probability-Based Functional Dependencies
Among the s holding on almost every tuple, it is worth
mentioning probability-based rps, which exploit the proba-
bility to approximate on the extent. In this section, we survey
three probability-based RrFDs, namely partial determinations
(PDs), soft functional dependencies (soft ¥ps), and probabilistic
functional dependencies (prps). In particular, although their
definitions appear to be equivalent, they have been intro-
duced in different periods, for different goals, and use dif-
ferent algorithms for evaluation and discovery purposes.

Partial determinations have been introduced in the late
’80s, aiming to discover functional dependencies from data
even in case of exceptions [24], [25]. Formally, a D is an
expression of the form

oX,)Y)>1—¢

: XEQ YEQ: (3)

DTRUE

where o(X,Y) represents the probability that two randomly
chosen tuples have the same values of Y, provided they
have the same values of X [24].

pDs generalize both the concepts of canonical b and asso-
ciation rule. Nevertheless, their authors show that the meas-
ures used for evaluating the goodness of association rules,
namely support and confidence, are not suitable for evaluat-
ing partial determinations. Thus, they define a compression-
based measure, relying on the Minimum Description
Length principle [25], [26]. Such a measure has also been
used to estimate the data compression degree achievable by
using a given PD.

With respect to pps, soft functional dependencies have
been defined several years later, in the mid noughties
[27]. They have been mainly used for selectivity estima-
tion in query optimization [27], and for recommending
attributes on which to construct secondary indices [28].
Although a soft Fp obeys to the same formal definition of
(3), the values of the function o(X,Y) are computed on a
database instance by means of a different discovery
algorithm.

Probabilistic functional dependencies have been defined in
the late noughties to tackle problems related to data integra-
tion processes from multiple data sources [29], including
web data sources. In this context, it might be necessary to
generate FDs from statistics over the data, due to their uncer-
tainty and poor quality. However, like pps and soft Fps, also
prDs are based on the notion of probability and obey to the
same formal definition of (3). Thus, except for the use of

#Roomy,.
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lower values for ¢, due to the different characteristics of
the application domain they target, there is no difference
between prps and rps.

As an example, in the relation Medicine of Fig. 1, the
canonical Fp Name — Producer might not always be satisfied
due to the presence of dirty data, like in the case of medicines
with similar names (e.g., Daflon versus Deflan or Lanoxin
versus Laroxyl). Thus, the following rRFD might be inferred
from data, by means of one of the discovery algorithms pro-
vided by the probabilistic-based rps described above:

o(Name, Producer) > 0.97

Dyrus : Nameg, Producer,.

4.5 Constrained Dependencies (cps)
Constrained functional dependencies specify the subset of
tuples on which an rp is satisfied by means of a constraint
[30]. They have been mainly used in the context of con-
straint logic programming (CLP), aiming to perform sub-
sumption analysis and performance optimization in top-
down CLP systems.

Formally, a cp on a relation R and class of constraints £,
has the form

\Ifc'r‘r((])
D : Xpq—— Yo,

where XY C attr(R), D. C dom(R) represents the tuples
satisfying the constraint ¢ € £ with variables from attr(R).

As an example, in the medical database of Fig. 1, suppose
that only for Pediatricians the Salary depends on the work
seniority (Experience), the following cp holds on the rela-
tion Doctor:

. q’err(o)
D. : Experience,, . Salary,,,

where D, = {t € dom(Doctor)|¢[Specialization] = ‘Pediatrician’}.

4.6 Conditional Functional Dependencies (cFps)
Conditional functional dependencies were first proposed for
data cleaning purposes [11]. Similar to cps, they use condi-
tions to specify the subset of tuples on which a dependency
holds. However, conditions are less general than cp con-
straints, since they only enable the specification of con-
straints based on the equality operator.
Formally, a crp over a relation R is defined as

q’err(())

DTT : XEQ—> EQ)

where Dy, is the domain of values satisfying a pattern
tableau 7} with attributes in X and Y. In particular, for each
tuple ¢, € T, and each attribute A € X UY, t,[A] is either a
constant ‘a’ in dom(A), or an unnamed variable ‘_’ taking
values from dom(A). Intuitively, the pattern tableau 7,
extracts a subset of tuples from dom(R) by enforcing the
binding of semantically related data values.

Referring to the example given in Section 4.5, also a cFD
holds on the relation Doctor by using the following tableau
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Specialization Experience Salary

Pediatrician

Several studies have been made on crps. Cong et al. used
crps for finding repairs upon database updates in data
cleaning contexts [31]. They compute repairs satisfying a
given set of crps, also providing heuristic-based algorithms.
Fan investigated the problem of ckp propagation [32], which
consists in determining whether a set of crps are still valid
upon the definition of views on a given data source. More-
over, algorithms for estimating the confidence of crps have
also been proposed [33].

Several extensions of crps have also been produced.
Bravo et al. proposed extended conditional functional depen-
dencies (ecFps) extending the conditions with disjunction
and inequality [34]. Golab et al. defined a range tableau for
crps [35], where each value is a range. Finally, Chen et al.
introduced crp’s, which enable the specification of patterns
of data values with <, <, >, >, and # predicates [36].

4.7 Crps for XML Databases

XML conditional ¥ps (xcrps) have been defined to improve
the capability of previously defined xFps in detecting seman-
tic constraints within XML data [37], and hence data incon-
sistencies. This improvement is achieved by defining xrps
capable of capturing conditional semantics that apply to
some fragments rather than the entire XML tree.

Formally, given an XML database DT' complying with an
XSD ST, an xcrp holding on DT is defined as:

\Ifm'r((])

D, : XEQ—> EQ»

where D, = {T' | T is a tree complying with ST and satisfy-
ing condition c}.

As an example, a hospital might keep an XML database
for the emergency room to manage priority based emergency
requests. Among the data stored within such a database, we
can imagine a priority code depending on the urgency of
the request, and a percentage of charge the patient should
pay. Since the latter depends on the health insurance of the
patient, we might define generic x¥ps such as “all patients hav-
ing the same health insurance company and the same contract pay
the same percentage of charge”. However, an xcrd would be
necessary to express constraints applying to XML subtrees,
such as “all the patients having a premium contract with
DoubleCross health insurance company pay no charge”.

5 FDS RELAXING ON THE ATTRIBUTE COMPARISON

Relaxing rps on the attribute comparison means using approx-
imate matching paradigms to compare the attribute values
on the LHS and the implied attribute values on the RHS.
This yields rFDs capable of capturing semantic relations
between groups of values that appear to be “similar” rather
than identical.

In this section we review 16 reDs falling in this class,
which have the following structure:

Werr(o)
Drgee : X‘Dl L Y(D27

where @, and ®; are set of constraints. In particular, eight of
them use approximate matching, whereas the remaining
ones rely on ordering criteria.

Most of the rrDs revised in this section have been defined
for solving data quality problems. Other application
domains include query optimization and knowledge dis-
covery problems. Moreover, the majority of them have been
defined for the relational data model, but the remaining
ones have been proposed for several additional data mod-
els, such as the dataspace, the ordered, the fuzzy, and the
temporal.

5.1 Metric Functional Dependencies (MFDS)

When integrating data from various sources, it might hap-
pen that small variations in the data format and/or in the
interpretation cause canonical rps to be violated, even if an
intrinsic violation of semantics does not occur. Examples
include different formats for addresses, phone numbers,
dates, and currencies. Koudas et al. defined metric functional
dependencies [38], which generalize the canonical Fp by toler-
ating small differences (controlled by a metric) in the values
of the consequent attribute of an Fp.

Formally, let ¢ :dom(Y) x dom(Y) — R be a metric
defined on the domain of attribute Y. Thus, ¢ is symmetric,
and satisfies the triangle inequality as well as the identity of
indiscernibles (¢(a,b) = 0 < a = b). Let A4(V) be the diame-
ter of a set of points V' in a metric space, defined as the
maximum distance between any pair of points:
Ay(V) = max,pevg(a,b). Given a relation r defined over a
relation schema R, a subset of tuples s C 7, two subsets of
attributes X,Y C attr(R), a metric ¢ over Y, and a parame-
ter € > 0, an MrD is defined as

\I,crr(())

]D)TRUE : XEQ — Tmazsen Ag(s[Y])<es

where 7y represents the partition of » with respect to the
values of the attribute X, and s[Y] represents the projection
of s onto the attributes in Y. In other words, the MrD states
that if a group of tuples share a common value for the
attribute X, then their values on the attributes of Y differ no
more than e.

As an example, in the medical database of Fig. 1, if
the Salary gap of doctors with equal Specialization and
Experience is below $5,000, the following mMrD holds on the
relation Doctor:

\IIFZTT
Dy : (Specialization,Experience) _<0>>

Salary”mwsgnx Ay (s[Y])<5000°

5.2 Neighborhood Dependencies (Nps)

Neighborhood dependencies have been introduced to express
regularities within data [39]. Their definition is based on
the association of a closeness function 04 to each attribute
A, which returns a number between 0 and 1 to express
how two attribute values are close. Then, the NDs exploit
the concept of neighborhood predicate, which maps each
attribute A to a threshold « for its closeness function,
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denoted by A% Thus, given two sets of attributes
X, YCattr(R), an ND is denoted as:

\Pcrr’(O)

Drrue : ‘X(@A1 >a1)A- A0, 20n) —— L (0, >B1)A-NA OB, >Bm)

and it is said to be satisfied on a relation instance r of R if,
whenever the closeness function 64 satisfies the threshold o
for each A% € X, then the closeness function 6y satisfies the
threshold g for each B € Y.

As an example, the ND

Doy * (DiagnOSiS’ Age)(9Diagnosis20~85>/\(9Age20~8)

\Per'r(()) .
— CheckinWardyg, . wara>0.9

expresses the hypothesis that patients with similar Age and
Diagnosis are admitted to the same CheckinWard.

5.3 Fuzzy Functional Dependencies (FFps)

The fuzzy relational model has been introduced to represent
real word situations in which the data are ambiguous or
imprecise.

A fuzzy relation schema R is a finite set of attributes
{A;, ..., A,}, each associated to a domain dom(4;) that
can be either a fuzzy set or a set of fuzzy sets. A fuzzy rela-
tion » on R is a fuzzy subset of the Cartesian product
dom(Ay) x -+ x dom(Ay).

In order to capture important semantic relationships in
fuzzy databases, Frps have been defined [5], [15], [40]. They
extend canonical Fps by replacing the equality comparison
on domain values with “approximately equal”, “more or
less equal”, and so forth.

Formally, let us consider two sets of attributes
X, YCattr(R), an FrD

\I,ETT(U)
Digye : X;Lf,q:oz —— Lp>a

holds on a fuzzy relation r of R, if for any pair of tuples t;
and t, of r (i.e., those for which the fuzzy membership func-
tion w,(t;) > 0,fori = 1,2), we have

Meq(tl[XL tZ[XD < Meq(tl[y}v tZ[va

where 1, is a fuzzy resemblance relation. The latter should
be appropriately selected during the database creation, in
order to capture the meaning of equality/approximate equal-
ity of the domain values from the designer point of view.

An example of rrD for the relation ClinicalRecord in Fig. 1
has been given in Section 2.

5.4 Similarity Functional Dependencies (sFps)

Analogously to pups, similarity functional dependencies are
defined in terms of partitions [41], but they relax on the
comparison rather than the extent. They provide a sound
formal characterization of the concept of similarity between
pairs of tuples, based on lattice theory and formal concept
analysis. In particular, starting from a definition of Fp based
on pattern structures [42], they derive a new RFD by intro-
ducing similarity comparisons between pattern structures,
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by means of tolerance relations. The latter is a relation on a
set satisfying the reflexivity and the symmetry properties,
but not the transitivity one.

A tolerance relation 6 induces blocks of tolerance, repre-
senting subsets in which 6 holds between any pairs of ele-
ments, but the property is lost upon adding any external
element (maximality). For an attribute A of a relation R, a
tolerance relation 0,4 is defined as: t;04t; < |t;(A) —t;
(A)| < ¢, with t;,t; tuples of an instance r of R. Analogously,
for a set of attributes X the tolerance relation 0y is defined
as: t;0xt; < VA € X t;04t;. Thus, an srp

\I,FJ‘T(O)

Drge XHX —_— YHy

holds on a relation instance r if and only if Vt;,t; € r: t;0xt;
= t,;@ytj.

As an example, for the medical database in Fig. 1, the fol-
lowing srps might hold:

\Ifer'r([])
Dirue : Salary(,Salary — s Taxy,,,

where 6712 depends on the Tax rates of a country, and on the
maximum percentage gap between two adjacent tax levels.

5.5 Type-M Functional Dependencies (TMFDS)

The type-M functional dependency represents a type of RFD
defined for multimedia data. It is parameterized upon
distance functions used for comparing multimedia attrib-
utes [8].

In order to evaluate the similarity between the multime-
dia objects referred within a pair of tuples, the T™rD
definition introduces the tuple distance function aiming
to summarize the results of several distance functions
computed on single tuple values. More formally, let
R(Ay, ..., A,) be arelation schema of a multimedia database,
r be a database instance of R, and ¢, and ¢, be two tuples of r,
then the tuple distance function x can be defined as

X(t17t2) = 9(¢1(a1>b1)7 SRR ¢n(anabn))7

where each ¢; is a distance function defined on dom(4;),
whereas 6 represents an aggregation function 6 : [0,1]" —
[0,1].
Hence, two tuples ¢; and ¢, are similar within a threshold
¢, denoted by t; 2,  to, if and only if x(t1,%2) < .
If X,Y C attr(R), a TMFD

\I,crr(())

Dirgoe Xxlge’ — Lyo<e

holds on R if and only if for any two tuples ¢; and ¢, in r,
having t1 [X] g(xw’) ty [X], then ¢, [Y} E(Xz«f") to [Y], where X1
and x, belong to the set of distance functions defined on X
and Y, respectively, whereas ¢’ and ¢”€[0, 1] are thresholds.

An example of ™™D for the relation Clinical Record in
Fig. 1 has been introduced in Section 2.

5.6 Matching Dependencies (mps)
Matching dependencies are mainly used in the context of
record matching [12], [32]. The latter refers to the problem
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Insurance

#Policy Insured Bdate Post PremiumBalance|
35677651 [Andrew White| 03-14-1953 987 Jefferson, NV $2,400 | $4500
35677712 | M. Brown | 08-31-1930 55 Fifth AV, NV $2,900 | $250
35677754 B. Gregor 12-21-1970 | 100 Canal Street, NJ $1,000 | $2430
35677788 J. Smith 11-01-2005 | 320 Delawere AV, CA | $750 $150
35677832 Erik Ford 10-19-1929 [774 Vermont Street, WA| $3,220 | $100

Fig. 3. Sample relation from an health Insurance DB.

of identifying records representing the same real-world
entity, even if they differ on some attribute values, due to
errors or different representation formats.

Formally, an MD for a pair of relations (R;, R») is defined
as follows:

‘I’m(o)
Dy x Dy @ (X1, X2), — (Y1, Y2) s

where (1) Xy =A4y,...,4,, Xo=5B,...,B,, Y1 =E,...,
E,,Ys=F,...,F,, D =dom(R;), Dy = dom(Rz), for each
j€[1,n], A; and Bj; are attributes on R, and R,, respec-
tively, sharing the same domain; similarly considerations
apply for E; and F; when i € [1,m]; (2) =; is a similarity pred-
icate defined on the domains of R;[A;] and R,[B;]; and (3) =
is a matching operator indicating that R;[E;] and Ry[F;] are
identified via updates, i.e., Ri[E;] and R,[F;] are updated to
make them identical.

Mbps are quite different from canonical Fps in that they are
defined across different relations, rather than a single one,
and have “dynamic” semantics to accommodate errors and
different data representation formats. Indeed, the concept
of dynamic semantics refers to the fact that attributes on the
RHS of an Mp match as a result of an update operation.
Thus, while attributes on the LHS of an Mp are compared on
an instance r, those on the RHS are made identical on a dif-
ferent instance ' resulting from the updates to 7. On the
contrary, in the canonical D all the attributes are matched in
the same relation instance 7.

As an example, let us consider the relation in Fig. 3 from a
database of health insurance contracts. Clearly, the data con-
cerning people insured are related to those of the relation
Patient from the database schema of Fig. 1, but this might
not appear evident, due to possibly different data formats
and attribute names. In particular, the following mp holds:

Dpatient X Dinsurance :({Name, Birthdate}, {Insured, Bdate}),

—"Y (Addr, Post)_.

Notice that, other than matching tuples from two different
relations, the MD states that upon a match between the pair
of attributes Name and Birthdate of Patient, and the pair
Insured and Bdate of Insurance, respectively, the instance of
the relation Insurance is evolved to make the value of the
attribute Post identical to that of the attribute Addr, since
the matching tuples represent the same person.

In [43], Bertossi et al. face several implementation issues
related to the matching of attribute values, which where left
unexplored in the original formulation of mMps. In particular,
they studied the application of matching functions in
the presence of multiple mps, by providing a formal and

operational semantics for MD enforcement with matching
functions. Moreover, they introduce a class of matching
functions satisfying several axioms, yielding a lattice frame-
work on attribute domains. Such functions produce a value
semantically dominating those of the attributes to be
matched. The semantic domination represents a partial
order that can be lifted to tuples of values and to database
instances. The authors also define the concept of clean data-
base instance, providing computational mechanisms for
deriving it from a given input instance, through the enforce-
ment of MDs in a chase-like procedure.

In [44] mps are extended to make them applicable to
fuzzy attributes. They have been exploited in the context of
product databases, in which they are used as rules to
improve product matching.

5.7 Comparable Dependencies (cops)

Comparable dependencies generalize the concept of rReD to the
context of heterogeneous data in dataspaces [45]. They deal
with situations in which the comparison is performed
between attributes with different names, by means of an
attribute comparison operator. They also cover the seman-
tics of a broad class of dependencies, including Fps, MFDs,
and Mps.

The comparison operator, denoted by «;;, compares two
attributes A;, A; in a dataspace S according to one of the fol-
lowing semantics: equality operator (i.e., A; = A;), metric
operator ~. (evaluated to true if ¢;;(a;,a;) <, that is, the
metric distance is less than a threshold ¢), and matching
operator (4; = A;). Notice that when the comparison oper-
ator corresponds to equality, cob reduces to Fp.

A general comparison function is defined as 6(A;, 4;) :
[A; i Ai, Aj —ij Aj, Aj —5; Aj] and specifies a constraint
on comparable correspondences of values for attributes A;
or A;. Notice that, in order to verify whether two objects t;
and t, satisfy a comparison function 6(A;, A;), it is necessary
that one of the following comparisons be true: (¢;[A4;] <
ta[Ai]), (11[As] =i tal Aj]), (G2l Ai] =i ta[Aj]), (B[A)] < ta[Aj]).-

Formally, a cop with general comparison functions over
a dataspace S can be defined as

lIje'rr(O)

Dy : (X17X2) —>(Yi,}/2)

O(x1,%2) .vy)’
where 0(X;, X)) = AO0(A;, Aj) and 6(Y1,Y2) = AO(Bs, By),
with A4; € X, A/ € Xy, BreY,, B €Ys; O(A“AJ) and
0(By, B;) are comparison functions in the dataspace S.

For instance, in a medical dataspace containing clinical
records from several hospitals, the following cop might hold:

q’e r(0)
Digue : (#Rooma#Bedroom)9(#Room,#Bedroom) ;

(Sex, Gender)e(SexﬁGender)

since each patient room of an hospital univocally identifies
the gender of the patients occupying it.

5.8 Differential Dependencies (pbbs)
Song and Chen [46] introduced differential dependencies to
express constraints on attribute value differences by means
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of a metric distance [18]. In particular, a differential function
¢[B] on an attribute B specifies a constraint on the difference
that tuples ¢; and ¢, have on B, and when it is satisfied it is
denoted by (t1,t2)= ¢[B]. The constraints are specified
by operators {=, <, >,<,>}, and are associated to a
threshold. As an example, given the following differential
function ¢[name] = [name(<6)], we have that (ty,%s) =

[name(<6)] if the difference between tuples ¢; and ¢, on the
attribute name is less or equal than 6. The concept of differ-
ential function can also be applied to sets of attributes by
means of a disjunction on the constraints defined for the sin-
gle attributes.

Formally, a pD over a relation R has the form

\I}CTT(O)
Drgue : X¢L s Y¢R7

where X, Y C attr(R), ¢; and ¢ are differential functions
on attribute sets X and Y, respectively. It states that for any
pair of tuples for which the difference on attributes X satis-
fies the constraints specified by ¢;[X], then also the differ-
ence on attributes Y must satisfy the constraints specified
by ¢p[Y].

As an example, to detect anomalies in the execution of
medical checks with respect to the PrescriptionDate, the fol-
lowing DD can be used:

\If(’,’r"!‘
Diroe PrescriptionDate¢L ﬁ@, ExecutionDatey,,,

where ¢; [PrescriptionDate] = [PrescriptionDate(= 0)] and
¢r[ExecutionDate] = [ExecutionDate(<5)]. In particular, the
pp says that medical checks prescribed on the same
day should not be executed at more than five days of
distance.

It is worth to notice that when the differential function on
the LHS corresponds to the equality function, i.e,
¢[X] : X(=0), and the one on the RHS is ¢z[V]: V(< a),
then the DD reduces to an MFD.

5.9 Order Dependencies (ops)

Order dependencies have been introduced to express semantic
information concerning the orderings on the attribute
domains of a relation [47]. Thus, their definition is based on
the concept of order relation over attribute domains.

In order to formally define ops, we need to first introduce
the marked differential functions (p_[A], ¢-[A], ¢~[A]) of an
attribute A, which indicate the order relation holding
between two tuples ¢,%, on A. In particular, ¢_[A] means
t1[A] = t3[A4], ¢-[A] means t[A] < ty[A], whereas ¢ [A]
means t;[A] > t[A]. Therefore, given a relation R and two
sets of attributes X, Y C attr(R), an ob

\Per'r([])
Digye : Xd)L —— Y¢R

is satisfied by an instance r of R if, for all tuples ¢; and ¢, in
r, (t1,t2)= ¢ [X] implies (t1,t2)= ¢p[Y], where ¢, and ¢ are
marked differential functions on the attribute sets X and Y/,
respectively.

JANUARY 2016

As an example, in the relation ClinicalRecord in Fig. 1,
the op

\Pcr'r(())
Drgos - Numg — Datey -

might hold, since it is expected that clinical records num-
bers are issued in a chronological order.

Finally, obs have been generalized to introduce relaxa-
tion principles [48]. In particular, the relaxed op is said to be
satisfied within a bound k>0 (oD, for short) if there exists
a monotonically non-decreasing function 6 :dom(X)—
dom(Y'), such that, 0(¢t[X]) — k < ¢[Y] < 0(¢[X]) + k for each
tuple ¢ in the database instance.

5.10 Ordered Functional Dependencies (oFps)
Ordered functional dependencies extend ops by relaxing on the
classification of domain ordering types [49], [50], enabling
the possibility to capture the lexicographical ordering. The
semantics of an orp is specified through the definition of
two possible extensions of the domain ordering: pointwise-
ordering and lexicographical ordering.

Formally, let Z = Z, x- - -x Z,, be the Cartesian product of
n ordered sets, a pointwise-ordering on Z, denoted by <,
indicates that given t,t,€Z, then ¢;<Ut, if for all 1<i<n,
t1[i] <z, t2[i] holds. In other words, a pointwise-ordering
requires that each component of a data value be greater
than its predecessor, and it can be defined through a
marked differential function denoted by b Instead, a

lexicographical ordering on Z, denoted by </, indicates that
given ti,t,€Z, then #; ngtQ if either (1) there exists a k in
the range 1<k<n, such that #,[k]<z {2[k], and t,[i] = 1]
holds for all 1<i < k, or (2) t[i] =t2[i] holds for all
1<i<n. In other words, a lexicographical ordering resembles
the way in which the words are listed in a dictionary, and
it can be defined through a marked differential function
denoted by quzZ .

On the basis of these ordering semantics, two types of
orDs have been defined: oFps arising from pointwise-order-
ings (PorDs), and OFDs arising from lexicographical orderings
(LOFDS).

Formally, a porD

q’eﬂ'(O)
Dirus - X¢<p —— Y¢<p
<% <5

holds on a database instance r on R, if V ti,ts€r,
t1 [ X] <K t2[X] entails ¢ [Y] <} t5[Y7]; instead, a LOFD

q’err(())
Drge : X¢<, — Ty,
<l <

is satisfied in a database instance r on R, if for all the tuples
t1, t2€r, 1 [ X] <L t2[ X] entails ¢, [V] <\t [Y].

As an example, if in the medical database of Fig. 1 there
is the following semantic ordering on the attribute Role
of the relation Doctor: {“Junior Dr.” < “Specialized Dr.” <
“Senior Surgeon” < “Head Physician”}, and if the Salary
of a doctor must be greater than that of other doctors with a
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lower Role and less Experience, according to a pointwise-
ordering, then the following PoFD is satisfied:

V0
~"% salary,
SSalaly

(Role, Experience), |

<
~{Role,Experience}

Drgee :

Notice that, also a LorD holds on the same attributes.

The application of LoFDs in the context of preference data-
bases yields the definition of preference functional dependency
(prerp) [51], which is a LoFD using a preference relation as a
lexicographical ordering. They have been mainly used to
maintain the consistency of preference semantics embedded
in preference databases.

5.11 Polarized Order Dependencies (pops)
A further extension of obs for describing relationships
among lexicographical orderings of sets of tuples are the
polarized order dependencies [52], [53]. As opposed to LoFDs,
poDs rely on the lexicographical ordering of the SQL order-by
operator, so enabling both ascending and descending orders.

Formally, let ¢_rr = [¢y|¢,] be a list of marked differ-
ential functions on an attribute set L. C R, with ¢, head of
¢ rr and ¢, tail of it. Given a pair of tuples ¢; and ¢, in a
relation instance r on R, they are said to satisfy ¢_r.[L] in
r, denoted with (#1,%)= P [L], if one of the following
three conditions holds: (1) ¢ is of the form ¢_[A] and
t1[A] < t5[A], (2) ¢y is of the form ¢ [A] and t,[A] > t2[A],
(3) ¢y is of the form ¢_[A], (h[A] = t2[4]) and (Z =[] or
(tl, Ifg)x ¢<PL [Z])

Thus, given a relation R and two sets of attributes
X,Y C attr(R), a PoD

\Pm'r([])
Dy : X¢<PL —— im

is satisfied on an instance r of R, if and only if for each pair
(tl, t2) in T, (tlv tg) X ¢<1’L [X] 1mp11es (th tg) X ¢)<1’L [Y}

As an example, in the medical database of Fig. 1, the fol-
lowing rop holds:

\Pcrr(())
Drgue : Salary¢<pL - (LeveI,Tax)¢<

pPL’
<

where ¢_r. = [p-[Salary], ¢ [Level], ¢ [Tax]]. This rop says
that when the Salary of medical doctors increases, the tax
bracket (Level) decreases, and correspondingly, the Tax
amount increases.

5.12 Sequential Dependencies (sbs)

Sequential dependencies generalize obs by enabling the spe-
cification of additional relationships between ordered
attributes, such as the range of gaps between consecutive
sequence numbers. Formally, given a range of values gand a
relation R, an sp on attribute sets X, Y C attr(R), written as

\Pe'r’r((l)

Drgye : X¢L — Top,

is satisfied on an instance r of R if, for all pairs of consecutive
tuples ¢ and &5 in 7, (t1,t2) = ¢.[X] implies (t1,12)= ¢p (Y),

where ¢; is a marked differential function on the attribute
set X, which specifies the order relation of dom(X), and ¢p,

is a differential function on the attribute set Y, which is satis-
fied when the distance between the values of Y are in the
range g [54]. When such range cannot be determined,
we have classical ops. For instance, when g = [0,00] the sp
(saying that Y is strictly increasing with respect to X) corre-
sponds to an op.

Sps enable the definition of semantics that is useful both
to improve the data quality, and to provide a statistical sup-
port in specific application areas like data mining. For
instance, in a data mining application on the medical data-
base in Fig. 1, it might be useful to ensure that the
ExecutionDate of medical checks grows with respect to the
PrescriptionDates.

5.13 Trend Dependencies (Tps)

Trend dependencies [55], [56] extend the canonical Fp with a
temporal dimension, and allow attributes with linearly
ordered domains be compared over the time by means of
an operator from the set OP = { <, =, >, <, > #}.

A temporal relation can be viewed as a temporal series of
“snapshots” of relations defined on the same attribute set.
Therefore, temporal constraints can be controlled by check-
ing the validity of the tuples in different time points.
For example, to check that “Salaries of doctors should never
decrease”, it is necessary to compare the doctor records at the
time 7 and ¢ + 1, for all temporal points i.

The 1D definition is based on the concepts of directed
attribute set (DAS) and of time accessibility relation (TAR).
The former represents a total function from a set of attrib-
utes U to the set of possible operators OF, and is denoted
with a Greek uppercase letter. A TAR indicates the tuples
belonging to different snapshots that have to be compared.
Formally, let ¢;, ¢, be two tuples on U, and ® be a DAS over
X C U, the couple (ty,t2) is said to satisfy @, denoted with
@7, (t1,t9) if and only if ¢1(A)f4t2(A), YA€ X, where 64 corre-
sponds to ®(A). Moreover, a TAR is a computable subset of
the following set of pairs: (¢, j) with ¢ < j. For instance, the
Next TAR represents the tuples of the next time-slice, i.e.,
Next ={(i,i+1)|7 € N}.

Formally, a T on the attribute sets X and Y can be
defined by a statement

; ) ‘Perr(())
D XD‘Z‘RUE : (X,X)@)L—)(Y,Y)@R,

TRUE

where (7, j) belongs to a TAR, whereas O and ®3 are DASs
over X and Y/, respectively.

As an example, to express the constraint “an increasing
diastolic blood pressure implies an increasing systolic blood pres-
sure” in the medical database of Fig. 1, the following TD can
be used:

Di x Dt

TRUE TRUE

:((Patient, Diastolic), (Patient, Diastolic))q
\I,er'r([]) . .
— (Systolic, Systolic)g ,

where 0, (Patient) is “=", ® (Diastolic) and ® p(Systolic) are
" < //-
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5.14 Roll-Up Dependencies (Rups)

Roll-up dependencies extend the canonical Fp based on gener-
alization hierarchies [57], which are widely used in OLAP
and data mining applications. A generalization hierarchy
contains several levels, on which an order relation < can be
defined, yielding an ordered set named roll-up schema. For-
mally, given a set U of attributes, a set £ of levels, and a set D
of constants, a roll-up schema is a pair (L, <), where L is a
finite subset of £, and < is a partial order on L. Given
ll, el liy <l if and Ol'lly if I <1y and I 7é ls.

A roll-up instance assigns an extension to each level and
“instantiates” the generalization hierarchy. Formally, a roll-
up instance over a roll-up schema (L, <) is a pair (ext, 6),
where ext maps every I € L to a disjoint set of constants,

and 0 is a set of functions containing a total function 9;? :

ext(ly) — ext(ly), for each Iy, Iy € L such thatl; < I,.

Given the layered structure of a generalization hierarchy,
a relation schema is defined as a set of attribute-level pairs,
from which a “generalization” schema (genschema) can be
built by replacing a level [ with a level I/, with I < I, and/or
by entirely omitting certain attributes.

Let G be a genschema of a relation schema R, two tuples
t1, t, over R are said to be G-equivalent, denoted with
ty ~q lo, if and only if, for each pair (A,l;) of R, and for
each pair (A, 1») of G, 07 (t1(A)) = 63 (t2(A)). In other words,
t; and t, become equal after rolling up their attribute values
to the levels specified by G.

Formally, given X and Y genschemas of a relation
schema R, a RUD

\PCI'T‘(O)
Drrus : X~X —— Iy

holds on an instance r of R, if and only if for all tuples t;, t»
of r, if t1 ~x o then t1 ~y to.

As an example, in the medical database of Fig. 1, let us
suppose that an administrator builds a report table by
aggregating the attribute Hospitalization per room. More-
over, let us suppose that each ward has a fixed number of
beds per room. The property that the total number of days
of Hospitalization in a month does not change for rooms
within the same ward can be expressed by the following
RUD:

Dyrue :((Date, MoNTH), (#R0OM, WARD))

~~((Date,MonTH),(#Room,WARD))

\I,ew(O) s .
— }(Hospitalization, PERWARD) .

™ (Hospitalization,PERWARD)

However, this Rup might not be satisfied throughout the
hospital if there are significant differences in terms of
Hospitalization among different wards.

6 FbDS wiTH HYBRID RELAXATION ON EXTENT
AND ATTRIBUTE COMPARISON

In this section we describe hybrid reps, that is, Fbs relaxing
on both the extent and the attribute comparison. Most of them
extend some of the rRFDs described in Section 5, by introduc-
ing the relaxation on the extent, in order to capture addi-
tional semantics on the data, and suites the RFDs to new
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application contexts. In particular, we describe a native
hybrid reD, namely pac [58], and extensions of the following
rRFDs introduced in the previous sections: cFDs, DDs, MDs,
cops, 0Ds, and sps. Moreover, we describe a hybrid rrp for
the XML database model, which extends the one defined in
Section 4.7.

Most of the rRFDs revised in this section have been defined
for solving data quality problems, but their application
domains also include query optimization and knowledge
discovery. Moreover, the majority of them have been defined
for the relational data model, but the remaining ones instan-
tiate several additional data models, such as the dataspace,
the ordered, the fuzzy, and the temporal data models.

6.1 Pac Functional Dependencies

In data management there are specific aspects for which the-
oretical principles are not generally applicable. For instance,
in network databases specific problems might arise concern-
ing data quality checking, e.g., missing poll, irregular poll,
and repeated values. To this end, Korn et al. [58] have
defined the probabilistic approximate constraints (PAcs) to indi-
cate the probability of correctness for a given value. They
allow to manage the constraints on the data in a flexible
manner, enabling the specification of the user vision in the
structural properties of the data.

Formally, given a legal ordered domain dom(A) of an
attribute A, a domain rAc specifies that all the attribute val-
ues a € A fall within e of dom(A) with at least probability «,
denoted as Pr(a € [dom(A) £ €]) > a. Based on this defini-
tion, a pAC functional dependency can be formally defined as

o(X)Y) >«
Digor + X f—>}/¢‘R:

[

where ¢’€ and ¢, are differential functions, and o(X,Y)
represents the probability that the dependency holds.
In particular, it specifies that for each pair of tuples (¢;,t;) of
a database instance, if (t;,t;)= @5 [X], i.e., |t;[A)] — t;[A)]| <
,31 VA[ c X, then P’I‘((?fi,l‘,j)x ¢§2[Y]) >, i.e., PF(|tl[Bl] — t]‘
[BIH < 61) >aVB eY.

Although this type of RFD has been created for a specific
context, it can be applied to any type of database. As an
example, for the health Insurance relation of Fig. 3, accord-
ing to typical health insurance policies, we can assume that
if the Birthdates of two insured are close, there is a high
probability that their Premium are also close. This can be
expressed through the following dependency:

o(X,Y) > 0.9

Diyr - Birthdate ; ————— Premium gso0.
L R

6.2 Crps with Cardinality Constraints
and Synonym Rules

A further extension of crps, denoted by crp‘s, has been pro-
posed for capturing inconsistencies commonly found in real-
life data [59]. In particular, this rFD relies on the concepts of
cardinality constraint, introduced for Nups [22] (see Section
4.3), and those of synonym rules and patterns of semantically
related values. The latter enables the possibility of specifying
abbreviations for some attribute values, or values related to
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them, so as to match values that are apparently different. As
an example, it is possible to specify that the value “ECG” is
an abbreviation of the value “Electrocardiogram”.

In order to extend the equality concept, the authors
defined a binary operator = on constant values, by using a
finite binary relation syN to capture synonymous rules upon
generic values a and b. In particular, for any pair of values a
and b, a = b if and only if (1) syN(a,b) or a =b, (2) b = a, or
(3) there exists a value c such that a = ¢ and b =c. As an
example, “Electrocardiogram” = “ECG”.

Formally, a cFp® defined on a relational schema R has the
form

Dy : X cardpp(X,Y) <n

r SYN——————————————— Y;Ym

where syN is the binary relation capturing synonymous
rules, cardir(X,Y) = |(wy(0x=x))| represents the number
of distinct values for attribute Y that can be associated to a
given value of X, and is upper bounded by the constant n;
D7, is the domain of R satisfying the pattern tableau 7;.

As an example, in the medical database of Fig. 1, there
might be specific checks for which a single doctor per day is
available. Moreover, there might be checks stored with dif-
ferent synonymous and/or abbreviations. Thus, if for HIV
and Mammography checks there is one doctor available per
day, the following crp® holds

D, :(Name, ExecutionDate).,

cardyp({Name, ExecutionDate}, Doctor) < 1
(Doctor)

SYN?

where sy~ consists of (“Electrocardiogram”,”“ECG”) and
(“AIDS”, “HIV”), T is the following tableau

Name ExecutionDate Doctor

HIV
Mammography

It is worth to notice that the canonical FD is a special case
of the cFp, in which n is 1, syN is empty, and the pattern
tuple consists of ' only.

6.3 Approximate Differential Dependencies (Abbs)
As a further example of rRrD extended to hold for “almost”
every tuple, it is worth to mention approximate differential
dependencies [60]. They are pps whose specification is associ-
ated either to a g3 error measure [20], or equivalently to a
confidence measure [35], [61].

As an example, the relation Clinical Record in Fig. 1
might contain more than one record for some patients that
have undergone several hospital admissions. For every
checkin, a new clinical record is created and a Diet code is
assigned based on the patient conditions and pathologies. It
is expected that for checkin Dates closer than one year the
Diet code does not change, or that changes slightly, unless
the patient conditions have considerably changed. This situ-
ation can be modeled through the following App

¥({SSN, Date}, Diet) < e

Drroe : (SSN, Date) oL Diety,,,

where ¢; = SSN(= 0) A\ Date( < 365) and ¢, = Diet(<1).

6.4 Conditional Matching Dependencies (cmps)
Conditional matching dependencies bind MDs on a subset
of tuples specified by conditions [62]. In particular, given a
relation R, a cMD has the form

\PCI'T‘(O)

DC:X’;‘*% =

where X, Y C attr(R), ~ and = denote the corresponding
similarity /matching operators on attributes of X and Y,
respectively, D, = {t € dom(R) | t{Xq] =~ 1 A ... AN[X,] =~
zn A Y1) =y ... t[Y;m] = ym}, and represents the domain
tuples satisfying the similarity and the matching conditions.
The value z; (y;, resp.) is either a constant ‘a’ from dom(X;)
(dom(Y}), resp.), or a virtual value * in dom(X;) (dom(Y}),
resp.) which is similar/identical to all the values in dom(X,)
(dom(Y;), resp.). A cMmD states that for any two tuples from
an instance r of R, if they are similar on attributes X and
their values are close to « = (z1, ..., z,), then they are iden-
tical on attributes Y, and their values match y = (y,...,ym)-
As an example, the following cMD

. \Perr(o)
D. : (Name, Birthdate) ., SSN_.

with D, = {t € dom(Doctor) | (¢{{Name] ~ “Mary Brown”) A
(t[Birthdate] =~ x) A (t[SSN] = )} holds on an instance of
the medical database in Fig. 1, if there are no two patients
whose Name is similar to Mary Brown and whose Birthdates
are close.

6.5 Approximate Comparable Dependencies
(Acobs)

As for pps, also cobs have been extended to cope with situa-
tions in which few records violate the dependency. In par-
ticular, approximate cobs have been defined in [45] by using
the g3 error [20], or the confidence [35], [61], to approximate
the extent of the dependency. Thus, an acop with general
comparison functions over a dataspace S is in the form:

P(X,Y)<e

X1,X2)

Drgue : (X17X2)9( (1/17}/2)

Ovi.yva)’

where 0(X1, Xo) = AO0(A;, 4;), and 6(Y1,Y2) = \O(Bs, B)),
with 4; € X3, Aj € Xy, B.€Y,, B €Y, Q(Aj,Aj) and Q(Bk,,
B;) are comparison functions in the dataspace S, V(X,Y) is
a measure evaluating how the dependency almost/approxi-
mately holds in a data instance, and ¢ is a threshold.

As an example, if we consider the cop mentioned in
Section 5.7, it might not be satisfied for some data integrated
from hospital wards using bed numbering only, instead
of room numbering. Such a situation can be modeled with
the following Acop:

Dirgue (#Room7#Bedroom)0(#Room,#Bedroom)
Y(X,Y) <0.93

(Sex, Gender)e(SexAGender) ’

where the g3 error measure v evaluates the number of
tuples not obeying to a room numbering system.
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6.6 Opbs Satisfied Almost Everywhere
In Section 5.9 we have described an extension of ops to
include approximate comparisons within a bound £ [48].
The authors provide a further extension of obs to capture
semantics applying to a subset of tuples.

Formally, given a relation R, X.,Y C atir(R), and
« € [0,1], an op satisfied almost everywhere with disparity «
(0D g, for short) has the form

W(X7 Y) <a

Drgoe : qu Y;DIW

L

where the coverage measure is defined as

\I,C'V"”
{Ir1||r1 €7 and X, —<U>>Y¢R holds in r\r;}

/
W (X ’ Y) |7.|
with r database instance of R.

For example, referring to the medical database of Fig. 1,
we might assume that diagnostic checks are performed by
following the order in which they have been prescribed by
doctors. If the hospital adopts the policy to accept up to 20
percent of urgent requests to raise the priority of prescribed
checks, then the following op 4 holds:

VXY <!

Dyyue : PrescriptionDate,, ExecutionDate,_.

6.7 Conditional Sequential Dependencies (csps)
Also for sps there might be the necessary to capture their
semantics in situations where they do not hold for all the
tuples. Thus, in such domains we might want to capture the
degree of satisfaction of an sp by accompanying the depen-
dency with a confidence measure. In [54] the authors intro-
duce the conditional sequential dependency, representing an sp
valid for a subset of data satisfying a specific condition.
Formally, a csp has the form

\I,err(())
Dy : Xg; ——— Yoy »

where 7, represents the pattern tableau defining the tuples
on which the dependency holds.

As an example, in the health insurance relation of Fig. 3,
for insured under age of 35, the Premium grows proportion-
ally to Age, since in this age range the order of magnitude
of health costs is the same, whereas for older people it
depends on the diseases that arise. For instance, if a diabetes
arises, the Cost of Insulin might be considerably high, which
might heavily affect the insurance Premium.

6.8 Hybrid rrps for XML Databases

When dealing with XML databases it might not be suffi-
cient relaxing on the extent, because there can be XML sub-
trees describing the same entity, but having different
structures. Thus, in such cases it might be necessary to
base the dependency detection on similarity comparisons
between trees. To this end, in [63] authors define an xFD
approximating both the attribute comparison and the extent.
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In particular, they define the o — approrimation for evalu-
ating structural and content similarity between trees, and
the 6 — approximation concerning the percentage of the
whole database o-approximately satisfying the xrp.

As an example, referring to the XML medical database
mentioned in Section 4.7, the law might force hospitals to
take care of people without health insurance, provided that
they have a welfare card. Moreover, suppose that in these
cases the law prescribes no charge for high priority emer-
gency codes, like in case of risk to life, whereas for the
remaining ones the lower the risk to life the higher the
charge. If a manager wants to check the integrity of the pri-
ority code assignment process, s/he might want to use the
following xrp embedding both a o and a 6 — approximation:
“patients with the welfare card and with similar symptoms should
have similar priority codes”.

7 DISCUSSION

We have surveyed Rrrps, and have mainly characterized
them based on the relaxation criteria, yielding three main
categories of them. In what follows we compare the sur-
veyed RFDs based on the supported data model and the
potential application domains.

7.1 Comparison of rFDS

Table 4 synthesizes the main features of surveyed rrps. As it
can be noticed, the majority of rRrDs relaxing on the extent
use a coverage measure to define the bound of satisfiability.
Moreover, among the most commonly used coverage meas-
ures there are the confidence, the g; error, and the probabil-
ity. Concerning the type of attribute comparison, it is worth to
notice that among the 35 surveyed rrps, about 31 percent of
them use the exact match, 26 percent base the comparison
on an order relation, whereas most of the remaining ones
use an approximate matching paradigm based on similarity
or distance functions. Finally, eight RFDs use an hybrid com-
bination of two or more of such criteria.

As expected, most of the rRrDs have been defined for the
relational data model (over 70 percent), mainly due to its
popularity in both industries and academia. Among the
other data models, we find the fuzzy, the temporal, and the
ordered data models, together with a number of data mod-
els used in the context of emerging applications. Among
these, we find the XML, mainly used in the context of semi-
structured data, and the dataspace, mainly used in data
integration and personal information management systems
to deal with data heterogeneity issues.

The column Application Domains lists either the domains
in which the rRrp has been used, or those for which it is
potentially suitable. This information can be considerably
useful, especially if analyzed in combination with the other
features examined above. In fact, when facing a specific
problem involving the detection of dependencies among
data, one can easily verify whether there already exists an
RFD suitable for that purpose, or whether it is necessary to
define a new specific one. This can also contribute to limit
the proliferation of rFD definitions as experienced in the last
decades, since some of them could be easily defined in
terms of existing ones. Moreover, by analyzing last column
(Analyzed Problems), it is also possible to analyze additional
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TABLE 4
Main Features of Surveyed RrRrFDs
Attribute Supported icati 4 ’
RFD Name Extent comparison Data Model Application Domains Analyzed Problems
g3 error [19], Error/Outlier admitting [19],
Confidence [64], Query answering [64],
AFD [19] T association [65], Query rewriting [66], [67], DD
Inf. dependency [68] Horizontal decomposition [69]
PuD [21] Impurity Approximate classification [21] -
oH Exact match Relational
N Probability [24], - i
PD [24] Compression [25] DB compression [26]
NuD [22] Domain cardinality Schema design [22] Jigd
e Query optimization [27], [28], [70]-[72],
soft FD [27] Probability Table compression [73] DD
pFD [29] Probability Pay-as-you-go data integration [29] VP, DD
CD [30] Constraint Exact match Relational Query optimization [30] i
Data cleaning [74]-[77],
[78]-[83],
Data quality [32], [84]-[86],
[871-[91], All
CFD [74] Error detection [92],
Materialization of data cube [93],
Exact match Relational Conlflict resolution [94]
Pattern tableau Data cleaning [11], [79], [82]-[84], Data
eCrD [11] quality [32], [86], [87], [90] Ir, €C, bv
CFD? [36] Data quality [36] 1P, CC, DV
CFDE [59] Synonym Relational Data quality [59] P, CC
relation
_ Metric . Source merging [38],
MED [38] distance Relational Data quality [84] v
PAC [58] Probability lefere.ntlal Relational Data quality in network DBs [58] -
function
ND [39] - Closer.\ess Relational Data mining [39] DD
function
- _ Similarity Imprecise Data [5], [15], [95],
FFD [5], [15] Hunction Fuzzy Data quality [84] 1P, CC, DD
SFD [41] - Tolerzlmce Relational Behaviour analysis [41] -
relation
TMED [8] - S!mlla.rlty Relational Multimedia DB normalization [8] -
function
Record matching [12], [32], [44],
ni Data cleaning [43], [80]-[82],
MD [12] - Matching 4 Data quality [86], [87], [90], [91], IP, DV, DD
opgraﬁor an Relational Linked dataspaces [96],
similarity Entity resolution [83]
function
CMD [62] Constraint Record linkage [62] DV, DD
Query optimization, data partition,
DD [46] - Differential . record linkage [46] All
Confidence or function Relational Query optimization, data partition,
ADD [60] unctio yop son, data p ’ IP, VP, DD
g3 error record linkage [60]
Cob [45] - Maﬁihi_r;g OPé Dataspace Consistent query answering, bV, vp
- similarity an - L) S
ACoD [45] Confidence or metric functions object identication [45] DV, VP, DD
g3 error
Index space reduction,
oD [47] - query optimization [47], 1P, CC
Ord Data quality [86], [90]
oDr [48] - lr er Relational Index space reduction, -
K relation query optimization [48]
o Index space reduction,
Obar [48] Disparity query optimization [48] -
OFD [49], [50] - Semantic orderings [50]
Ord Ordered
prerD [51] - rel; tif)rn Consistency of preference semantics [51] P
POD [52], [53] - Relational Query optimization [52], [53]
Knowledge di 54
sD [54] - Order relation [(;Z\;ae gel' e oby -
" quality [86], [90]
and distance Ordered )
CsD [54] Pattern tableau functi Knowledge discovery [54], -
unction Data quality [89], [90]
_ Temporal Knowledge discovery [55], [56],
TD [55], [56] constraint Temporal Temporal trends [97] 1P, CC, DD
RUD [57] - Ordgr Relational Data cube reduction, DB design [57] DD
relation
XCFD [37] Constraint Exact match XML data consistency [37] DD
— XML
o OXFD [63] Percentage Slmﬂalnty XML semantic correlation [63] DD
function

P = implication problem, CC = consistency checking, DV = detecting violation, VP = validation problem, DD = discovery from data

useful issues, such as whether a dependency can be effi-
ciently discovered from data, or if it holds on a given data-

base instance, as detailed in the following section.

7.2 Theoretical and Computational Aspects
In what follows we describe the main theoretical and
computational issues characterizing reps, based on which
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we will perform a further comparison of the surveyed RrrDs.
In particular, we will focus on problems like Axiomatization,
Consistency Checking, Detecting Violation, Validation, and Dis-
covery from Data. The first two problems refer to intrinsic
characteristics and properties of the rRrDs themselves, which
are verifiable without a database instance, whereas the
remaining ones also require a database instance. In what fol-
lows we refer to the formers as theoretical problems, and to
the other ones as practical problems.

Axiomatization. As for canonical rps, also for RrDs it is
important to have the possibility of automatically deriving
new dependencies from existing ones through Inference
Rules, also known as Axioms. The identification of a finite,
sound, and complete set of axioms, like for example the
Armstrong’s inference rules, is named the Axiomatization
problem [98], which is related to the more general problem
of Implication, i.e., deciding whether a set of dependencies
logically implies a given one. This also allows us to deter-
mine whether two sets of dependencies are equivalent, or if
a given set of dependencies is redundant [99]. We know
that for the canonical Fp the implication problem is decid-
able in linear time [3]. In what follows, we analyze the sur-
veyed RFDs and their classes based on the Axiomability
property, highlighting the differences with respect to
Armstrong’s rules defined for the canonical Fp.

In general, most of the surveyed rRrDs introduce new sets
of inference rules, either by extending Armstrong’s rules, or
by defining completely new ones when a simple extension
would not guarantee the completeness property. Moreover,
although some rrps do not explicitly provide inference
rules, in most cases it has been sufficient using Armstrong’s
rules (e.g., AFDs), or those provided by an rRFD with similar
characteristics. As an example, the inference rules defined
for pps [46] can also be used for their hybrid extension Apps,
as demonstrated in [60].

For reDs relaxing on the extent by means of a coverage mea-
sure it is possible to apply Armstrong’s rules by simply
proving the bound of satisfiability of the used measure, on
each rule from the Armstrong’s set, as done for the g3 error
coverage measure [20]. In particular, for such measure it
has been proved that the error of an rrb inferred through
the application of an Armstrong’s rule should be no larger
than the ones of premise dependencies [60]. Such a proof
can be used for all the rRFDs using a coverage measure that can
be reduced to the g3 error, that is, all the rRFDs expect Pups
and Nups, whose coverage measures require the extension
of the Armstrong’s rules.

For rrDs relaxing on the extent by means of a condition the
scenario is completely different. In fact, as stated by the
authors of the two main RreDs in this class, namely cps, and
CFDs, a simple extension of Armstrong’s axioms is not suffi-
cient to guarantee the completeness property [30], [74].
Thus, for them it has been necessary to define new inference
rules, and prove that they were sound and complete. How-
ever, it has also been proven that the Implication Problem for
these rRFDs has NP time complexity, hence it is solvable in
polynomial time by a non-deterministic machine, but in
special cases it reduces to deterministic polynomial one
[30], [74]. Moreover, the set of axioms defined for crps also
apply to reDs derived from them, namely ecrps [11] and
crDs [36], even though the implication analysis for them is
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co — NP complete, as shown by the authors [11], [36]. Thus,
a non-deterministic machine can only determine what rRFD
cannot be implied, in polynomial time. Similar arguments
apply to the hybrid extension crp‘ [59].

Concerning rrDs relaxing on the attribute comparison by
means of an approximate match, only in few cases it has been
possible to merely extend Armstrong’s rules, like in the case
of Frps and T™rDs [5], [8]. In most cases, it has been necessary
to define new inference rules to account for the greater com-
plexity induced by the method used to quantify the similar-
ity or the diversity of attribute values, like for mps [12], DDs
[46], and cops [45] (even though in the last case it has not
been proven the completeness of the defined set of axioms).
Moreover, for hybrid extensions of these rrDs, those relaxing
on the extent through a coverage measure simply use the set of
axioms of the RrrD they extend [45], [60], whereas in the case
of cMps, which relax on the extent through a condition, it has
been necessary to redefine the inference rules in order to
capture the specific semantics of the dependency [62]. The
authors of this RFD explicitly state that the new inference
rules might not be complete, referring such investigation to
future works. For most of the reDs relaxing on the attribute
comparison by means of an ordering criteria, new inference
rules have been defined to capture the greater expressive-
ness power, like in the case of obs [47], orps [50], rops [52],
prerps [51], and TDs [55]. For the remaining RrDs surveyed in
this paper, to the best of our knowledge, the Axiomatization
problem has not been addressed.

Consistency checking. As far as the Consistency Checking
problem is concerned, it consists in the determining whether
a set of axioms is consistent. In other words, checking the
consistency means determining whether there can exist a
non-empty database instance satisfying the given set of Fps
[74]. However, in the context of rRFDs the consistency checking
problem is not a recurrent one, since for some of them it is not
possible to define dependencies that are inconsistent.

Among the surveyed rrDs, eight of them explicitly address
the consistency checking problem. In particular, for pps, Tbs,
CFDs, CFD“s, eCFDs, and CFD”s the problem has turned out to be
NP — complete, even though for the first four of them it
reduces to polynomial complexity in special cases. For the
FFDs the complexity is constant, whereas for ops it is linear.

Detecting violation. Another property that is interesting to
verify for an reD is the Detecting Violation, which consists in
verifying whether a database instance violates a given set of
RFDs. This problem has been investigated for the following
seven RFDS: CFDS, e€CFDS, MDs, CMDS, DDs, CODs, and ACODs.
For crps and ecrps there exist exact algorithms solving
the problem in polynomial time, whereas for the remain-
ing five, all relaxing on the attribute comparison, the prob-
lem is NP — complete. However, for cmps and pps there
exist approximate algorithms with polynomial complexity
[46], [62].

Validation problem. This problem consists in verifying
whether an rrD is satisfied on a database instance, and has
been investigated for the following seven RFDs: pFDs, CFDs,
MFDS, DDs, ADDsS, cops, and Aacops. We can observe that for
the two rrDs relaxing only on the extent, namely prps and
CFDs, a solution can be found in polynomial time. Similar
considerations apply to pbs which can be validated in
quadratic time. For the remaining ones the problem is
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NP — complete, even though approximate algorithms have
been proposed for MFDs, ADDs, and Acops, in order to achieve
a quadratic complexity.

Discovery from data. A critical property for an RFD to be
used in practice is the possibility to discover it from data. In
fact, although the canonical Fp was introduced for data-
base design activities, many efforts have been devoted to
their discovery from data, which is an NP — complete
problem. Thus, the availability of efficient and/or approx-
imate algorithms capable of reducing the execution time
represents a valuable information for choosing the right
RFD. Approximate algorithms solving this problem in
polynomial time have been proposed for NDs, FFDs, MDs
[100], Tps, and rups. A survey on discovery methods for
REDS is provided in [13].

From the results described above, we can observe that
older rrDs (e.g., CDs, NuDs, FFDs, ODs, OFDs) are usually ana-
lyzed more from a theoretical point of view, but they often
lack solutions for solving practical problems. On the con-
trary, more recent RFDS (e.g., AFDS, SOftFDs, PFDs, CFDS, NDs,
cops, RUDs) have been introduced for solving specific prob-
lems, for which it would also be necessary to have algo-
rithms for discovering them from data. Thus, most of them
are equipped with discovery algorithms, and only few of
them tackle theoretical issues. Among these, it is worth to
mention crps, among the RrDs relaxing on the extent, and
pDs, among those relaxing on the attribute comparison, since
they address both theoretical and practical aspects.

8 CoNcLUSIONS AND FUTURE WORK

In this work we have analyzed the different types of rRFDs in
a systematic way, highlighting commonalities and differen-
ces. In addition, we also carried out a detailed analysis of
how the several types of rrDs tackle main issues and prob-
lems related to data dependency.

Our analysis has also outlined the main issues that
should be addressed in future research in this area. In par-
ticular, it is necessary to apply RFDs to more application con-
texts, in order to improve the quality of data, or to check
compliance of processes to existing standards.

In the future, further research is needed on algorithms
for discovering RFDs from data, or to improve their perform-
ances, which entails investigating advanced pruning meth-
ods, so that uninteresting dependencies can be discarded.
Finally, concerning RrrDs based on approximate matching
functions, it will be necessary to investigate sound and com-
plete inference rules taking into account the different kind
of operators, and the possible thresholds. Moreover, the
application of reDs to different application domains requires
the capability of inferring suitable approximate comparison
functions from examples, since general purpose functions
might not work properly.
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