The magnetic response of three-dimensional Josephson junction networks to constant or slowly varying external magnetic fields is studied. General equations are written for complex networks made of n elementary cubic cells, each cell containing 12 resistively shunted ideal Josephson junctions. The magnetic-flux distribution in the network is calculated numerically as a function of the external magnetic field for different values of superconducting quantum interference device parameter, network size, and external magnetic-field direction. The magnetic-flux distribution in the network is graphically shown, first for increasing and then for decreasing values of the external magnetic flux.

Magnetic flux distribution in a three-dimensional inductive network of Josephson junctions

DE LUCA, Roberto
2000-01-01

Abstract

The magnetic response of three-dimensional Josephson junction networks to constant or slowly varying external magnetic fields is studied. General equations are written for complex networks made of n elementary cubic cells, each cell containing 12 resistively shunted ideal Josephson junctions. The magnetic-flux distribution in the network is calculated numerically as a function of the external magnetic field for different values of superconducting quantum interference device parameter, network size, and external magnetic-field direction. The magnetic-flux distribution in the network is graphically shown, first for increasing and then for decreasing values of the external magnetic flux.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1059937
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact