Adenosine is a potent endogenous regulator of airway inflammation that acts through specific receptor subtypes that can either cause constriction (A1R, A2BR, and A3R) or relaxation (A2AR) of the airways. We therefore examined the effects of key inflammatory mediators on the expression of the A2AR in a lung epithelial cell line (A549). IL-1beta and TNF-alpha increased the expression of the A2AR gene at the mRNA and protein levels. In contrast, LPS had no effect on A2AR gene expression. IL-1beta and TNF-alpha rapidly activated p50 and p65, but not C-Rel, RelB, or p52, and both IL-1beta- and TNF-alpha-stimulated A2AR expression was inhibited by the IkappaB kinase 2 inhibitor AS602868 in a concentration-dependent manner. Using chromatin immunoprecipitation assays, we demonstrate that IL-1beta can enhance p65 association with putative kappaB binding sites in the A2AR promoter in a temporal manner. In contrast, TNF-alpha failed to enhance p65 binding to these putative sites. Functionally, the two most 5' kappaB sites were important for IL-1beta-, but not TNF-alpha-, induced A2AR promoter reporter gene activity. Finally, neither TNF-alpha nor Il-1beta had any effect on A2AR mRNA transcript degradation. These results directly implicate a major role for NF-kappaB in the regulation of A2AR gene transcription by IL-1beta and TNF-alpha but suggest that the effects of TNF-alpha on A2AR gene transcription are not mediated through the proximal promoter.

IL-1beta and TNF-{alpha} Regulation of the Adenosine Receptor (A2A) Expression: Differential Requirement for NF-{kappa}B Binding to the Proximal Promoter

MORELLO, SILVANA;
2006-01-01

Abstract

Adenosine is a potent endogenous regulator of airway inflammation that acts through specific receptor subtypes that can either cause constriction (A1R, A2BR, and A3R) or relaxation (A2AR) of the airways. We therefore examined the effects of key inflammatory mediators on the expression of the A2AR in a lung epithelial cell line (A549). IL-1beta and TNF-alpha increased the expression of the A2AR gene at the mRNA and protein levels. In contrast, LPS had no effect on A2AR gene expression. IL-1beta and TNF-alpha rapidly activated p50 and p65, but not C-Rel, RelB, or p52, and both IL-1beta- and TNF-alpha-stimulated A2AR expression was inhibited by the IkappaB kinase 2 inhibitor AS602868 in a concentration-dependent manner. Using chromatin immunoprecipitation assays, we demonstrate that IL-1beta can enhance p65 association with putative kappaB binding sites in the A2AR promoter in a temporal manner. In contrast, TNF-alpha failed to enhance p65 binding to these putative sites. Functionally, the two most 5' kappaB sites were important for IL-1beta-, but not TNF-alpha-, induced A2AR promoter reporter gene activity. Finally, neither TNF-alpha nor Il-1beta had any effect on A2AR mRNA transcript degradation. These results directly implicate a major role for NF-kappaB in the regulation of A2AR gene transcription by IL-1beta and TNF-alpha but suggest that the effects of TNF-alpha on A2AR gene transcription are not mediated through the proximal promoter.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1657858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 66
social impact