In this work, the naturally occurring antimicrobial peptides temporin A (TA) and L (TL) are studied by spectroscopic (CD and NMR) techniques and molecular dynamics simulation. We analyzed the interactions of TA and TL with sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelles, which mimic bacterial and mammalian membranes, respectively. In SDS, the peptides prefer a location at the micelle−water interface; in DPC, they prefer a location perpendicular to the micelle surface, with the N-terminus imbedded in the hydrophobic core. TL shows higher propensity, with respect to TA, in forming α-helical structures in both membrane mimetic systems and the highest propensity to penetrate the micelles. Hence, we have proposed a different molecular mechanism underlying the antimicrobial and hemolytic activities of the two peptides. We also designed new analogues of TA and TL and found interesting differences in their efficacy against microbial species and human erythrocytes.

A Different Molecular Mechanism Underlying Antimicrobial and Hemolytic Actions of Temporins A and L

CAMPIGLIA, Pietro;
2008-01-01

Abstract

In this work, the naturally occurring antimicrobial peptides temporin A (TA) and L (TL) are studied by spectroscopic (CD and NMR) techniques and molecular dynamics simulation. We analyzed the interactions of TA and TL with sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelles, which mimic bacterial and mammalian membranes, respectively. In SDS, the peptides prefer a location at the micelle−water interface; in DPC, they prefer a location perpendicular to the micelle surface, with the N-terminus imbedded in the hydrophobic core. TL shows higher propensity, with respect to TA, in forming α-helical structures in both membrane mimetic systems and the highest propensity to penetrate the micelles. Hence, we have proposed a different molecular mechanism underlying the antimicrobial and hemolytic activities of the two peptides. We also designed new analogues of TA and TL and found interesting differences in their efficacy against microbial species and human erythrocytes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/1855307
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 72
social impact