Experimental and theoretical studies on Au- and Pt-catalyzed cyclo- ACHTUNGTRENUNGisomerization of a branched dienyne with an acetate group at the propargylic position are presented. The peculiar architecture of the dienyne precursor, which has both a 1,6- and a 1,5-enyne skeleton, leads, in the presence of alkynophilic gold catalysts, to mixtures of bicyclic compounds 3, 4, and 5. Formation of unprecedented bicyclo- ACHTUNGTRENUNG[3.1.0]hexene 5 is the main focus of this study. The effect of the ancillary ligand on the gold center was examined and found to be crucial for formation of 5. Further mechanistic studies, involving cyclization of an enantioenriched dienyne precursor, 18O-labeling experiments, and DFT calculations, allowed an unprecedented reaction pathway to be proposed. We show that bicyclo- ACHTUNGTRENUNG[3.1.0]hexene 5 is likely formed by a 1,3-OAc shift/allene–ene cyclization/ 1,2-OAc shift sequence, as calculated by DFT and supported by Au-catalyzed cyclization of isolated allenenyl acetate 7, which leads to improved selectivity in the formation of 5. Additionally, the possibility of OAc migration from allenyl acetates was supported by a trapping experiment with styrene that afforded the corresponding cyclopropane derivative. This unprecedented generation of a vinyl metal carbene from an allenyl ester supports a facile enynyl ester/allenenyl ester equilibrium. Further examination of the difference in reactivity between enynyl acetates and their corresponding [3,3]-rearranged allenenyl acetates toward Au- and Pt-catalyzed cycloisomerization is also presented.

Gold- and Platinum-Catalyzed Cycloisomerization of Enynyl Esters versus Allenenyl Esters: An Experimental and Theoretical Study

COSTABILE, Chiara;CAVALLO, LUIGI;
2009-01-01

Abstract

Experimental and theoretical studies on Au- and Pt-catalyzed cyclo- ACHTUNGTRENUNGisomerization of a branched dienyne with an acetate group at the propargylic position are presented. The peculiar architecture of the dienyne precursor, which has both a 1,6- and a 1,5-enyne skeleton, leads, in the presence of alkynophilic gold catalysts, to mixtures of bicyclic compounds 3, 4, and 5. Formation of unprecedented bicyclo- ACHTUNGTRENUNG[3.1.0]hexene 5 is the main focus of this study. The effect of the ancillary ligand on the gold center was examined and found to be crucial for formation of 5. Further mechanistic studies, involving cyclization of an enantioenriched dienyne precursor, 18O-labeling experiments, and DFT calculations, allowed an unprecedented reaction pathway to be proposed. We show that bicyclo- ACHTUNGTRENUNG[3.1.0]hexene 5 is likely formed by a 1,3-OAc shift/allene–ene cyclization/ 1,2-OAc shift sequence, as calculated by DFT and supported by Au-catalyzed cyclization of isolated allenenyl acetate 7, which leads to improved selectivity in the formation of 5. Additionally, the possibility of OAc migration from allenyl acetates was supported by a trapping experiment with styrene that afforded the corresponding cyclopropane derivative. This unprecedented generation of a vinyl metal carbene from an allenyl ester supports a facile enynyl ester/allenenyl ester equilibrium. Further examination of the difference in reactivity between enynyl acetates and their corresponding [3,3]-rearranged allenenyl acetates toward Au- and Pt-catalyzed cycloisomerization is also presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/2292219
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 121
  • ???jsp.display-item.citation.isi??? 121
social impact