In recent years, considerable attention has been given to chitosan-based materials and their applications in the field of tissue engineering. However, the techniques proposed until now for the formation of chitosan scaffolds present some limitations such as: they are very time-consuming, use organic solvents, have difficulties in the obtainment and preservation of various levels of porosity and the 3-D structure. In this work, a new SC-CO2 assisted process for the production of chitosan scaffolds is proposed; it consists of three steps: formation of a chitosan hydrogel by thermally induced phase separation; substitution of water with a suitable solvent; drying of the gel using SC-CO2. Using this process, we produced chitosan nanostructured networks with filaments diameters around 50 nm, without any collapse of the gel nanostructure, characterized by a high porosity (>91%) and high compressive modulus (150 kPa).

Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process

Cardea, Stefano
;
Pisanti, Paola;Reverchon, Ernesto
2010-01-01

Abstract

In recent years, considerable attention has been given to chitosan-based materials and their applications in the field of tissue engineering. However, the techniques proposed until now for the formation of chitosan scaffolds present some limitations such as: they are very time-consuming, use organic solvents, have difficulties in the obtainment and preservation of various levels of porosity and the 3-D structure. In this work, a new SC-CO2 assisted process for the production of chitosan scaffolds is proposed; it consists of three steps: formation of a chitosan hydrogel by thermally induced phase separation; substitution of water with a suitable solvent; drying of the gel using SC-CO2. Using this process, we produced chitosan nanostructured networks with filaments diameters around 50 nm, without any collapse of the gel nanostructure, characterized by a high porosity (>91%) and high compressive modulus (150 kPa).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3016120
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? ND
social impact