The recent concept of inherent safety uses the properties of a material or process to eliminate or reduce the risk thus removing or minimizing the hazard at the source as opposed to accept the hazard and looking to mitigate the effects. In this framework the control of particle size in dust explosion prevention and mitigation is recognized as a major inherent safety methodology. Indeed, the increase of particle size may allow significant reduction of particle reaction rate eventually reducing the risk. In this paper a novel model is developed to quantify the effect of particle size on dust reactivity in an explosion phenomenon. The model takes into account all of the steps involved in a dust explosion: internal and external heating, devolatilization reaction and volatiles combustion. Varying the dust size can establish different regimes depending on the values of the characteristic time of each step and of several dimensionless numbers (Damköhler number, Da; Biot number, Bi; thermal Thiele number, Th). Results from the model are reported in terms of the deflagration index (KSt) as a function of dust diameter in all regimes and at varying Da, Th and Bi. Comparison with experimental data from polyethylene explosion tests shows promising results. Finally, the results of the model are presented in the form of a dust explosion regime diagram, which is helpful to make a draft evaluation of the role of dust size on explosion behavior and severity.

Modelling the effect of particle size on dust explosions

RUSSO, Paola;
2010-01-01

Abstract

The recent concept of inherent safety uses the properties of a material or process to eliminate or reduce the risk thus removing or minimizing the hazard at the source as opposed to accept the hazard and looking to mitigate the effects. In this framework the control of particle size in dust explosion prevention and mitigation is recognized as a major inherent safety methodology. Indeed, the increase of particle size may allow significant reduction of particle reaction rate eventually reducing the risk. In this paper a novel model is developed to quantify the effect of particle size on dust reactivity in an explosion phenomenon. The model takes into account all of the steps involved in a dust explosion: internal and external heating, devolatilization reaction and volatiles combustion. Varying the dust size can establish different regimes depending on the values of the characteristic time of each step and of several dimensionless numbers (Damköhler number, Da; Biot number, Bi; thermal Thiele number, Th). Results from the model are reported in terms of the deflagration index (KSt) as a function of dust diameter in all regimes and at varying Da, Th and Bi. Comparison with experimental data from polyethylene explosion tests shows promising results. Finally, the results of the model are presented in the form of a dust explosion regime diagram, which is helpful to make a draft evaluation of the role of dust size on explosion behavior and severity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3018242
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact