Abstract The effect of multiple extrusions on nanostructure and properties of nylon 6 nanocomposites was investigated. Nanocomposites at different silicate loadings were produced by melt compounding and submitted to further reprocessing by using single and twin screw extruders. Rheological, morphological and mechanical analyses were carried out on as-produced and reprocessed samples in order to explore the influence of the number and the type of extrusion cycles on silicate nanodispersion. Rheological measurements, correlated to TEM analyses, were used to probe the nanoscale arrangement developed with the reprocessing as well as the thermo-mechanical degradation involving both the neat matrix and the organoclay. The results have shown that the reprocessing by single screw extruder can modify the initial morphology since the re-agglomeration of the silicate layers can occur. On the other hand, a better nanodispersion was observed in the hybrids reprocessed by twin screw extruder. This was attributed to the additional mechanical stresses able to realizing a dispersive mixing that contributes to avoid re-agglomeration phenomena. The high shear stresses produced with twin screw geometry determined also a significant degradation of neat matrix, principally based on chain scission mechanism. A strong correlation between the rheological behaviour and mechanical properties was observed and all as-produced and reprocessed hybrids showed a substantial enhancement in tensile modulus with the adding of silicate. However, the entity of performance enhancements displayed by the reprocessed hybrids was found to be highly dependent on the degradation of both organoclay and polymer matrix as well as the silicate amount, the number and the type reprocessing.

Rheological and mechanical properties of Nylon 6 nanocomposites submitted to reprocessing with single and twin extruders

DI MAIO, Luciano;INCARNATO, Loredana
2007-01-01

Abstract

Abstract The effect of multiple extrusions on nanostructure and properties of nylon 6 nanocomposites was investigated. Nanocomposites at different silicate loadings were produced by melt compounding and submitted to further reprocessing by using single and twin screw extruders. Rheological, morphological and mechanical analyses were carried out on as-produced and reprocessed samples in order to explore the influence of the number and the type of extrusion cycles on silicate nanodispersion. Rheological measurements, correlated to TEM analyses, were used to probe the nanoscale arrangement developed with the reprocessing as well as the thermo-mechanical degradation involving both the neat matrix and the organoclay. The results have shown that the reprocessing by single screw extruder can modify the initial morphology since the re-agglomeration of the silicate layers can occur. On the other hand, a better nanodispersion was observed in the hybrids reprocessed by twin screw extruder. This was attributed to the additional mechanical stresses able to realizing a dispersive mixing that contributes to avoid re-agglomeration phenomena. The high shear stresses produced with twin screw geometry determined also a significant degradation of neat matrix, principally based on chain scission mechanism. A strong correlation between the rheological behaviour and mechanical properties was observed and all as-produced and reprocessed hybrids showed a substantial enhancement in tensile modulus with the adding of silicate. However, the entity of performance enhancements displayed by the reprocessed hybrids was found to be highly dependent on the degradation of both organoclay and polymer matrix as well as the silicate amount, the number and the type reprocessing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3018745
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 50
social impact