We have recently demonstrated that endothelial beta(2) adrenergic receptors (beta(2)AR) regulate eNOS activity and consequently vascular tone, through means of PKB/AKT. In this work we explored the signal transduction pathway leading to AKT/eNOS activation in endothelial cells (EC). Using pharmacological and molecular inhibitors both in cultured EC cells and in ex vivo rat carotid preparations, we found that G(i) coupling of the beta(2)AR is needed for AKT activation and vasorelaxation. Since endothelial activation is sensitive to pertussis toxin but not to G(ibetagamma) inhibition by betaARKct, we conclude that G(alphai) mediates betaAR induced AKT activation. Downstream, betaAR signalling requires the soluble tyrosine kinase SRC, as both in cultured EC and rat carotid, the mutant dominant negative of SRC prevent beta(2)AR induced endothelial activation and vasodilation. In EC, G(alphai) directly interacts with SRC and this interaction leads to SRC activation and phosphorylation in a manner that is regulated by beta(2)AR stimulation. We propose a novel signal transduction pathway for beta(2)AR stimulation trough G(alphai) and SRC, leading to activation of AKT.

Endothelial beta2 adrenergic signaling to AKT: role of Gi and SRC.

CICCARELLI, Michele;IACCARINO, Guido
2007-01-01

Abstract

We have recently demonstrated that endothelial beta(2) adrenergic receptors (beta(2)AR) regulate eNOS activity and consequently vascular tone, through means of PKB/AKT. In this work we explored the signal transduction pathway leading to AKT/eNOS activation in endothelial cells (EC). Using pharmacological and molecular inhibitors both in cultured EC cells and in ex vivo rat carotid preparations, we found that G(i) coupling of the beta(2)AR is needed for AKT activation and vasorelaxation. Since endothelial activation is sensitive to pertussis toxin but not to G(ibetagamma) inhibition by betaARKct, we conclude that G(alphai) mediates betaAR induced AKT activation. Downstream, betaAR signalling requires the soluble tyrosine kinase SRC, as both in cultured EC and rat carotid, the mutant dominant negative of SRC prevent beta(2)AR induced endothelial activation and vasodilation. In EC, G(alphai) directly interacts with SRC and this interaction leads to SRC activation and phosphorylation in a manner that is regulated by beta(2)AR stimulation. We propose a novel signal transduction pathway for beta(2)AR stimulation trough G(alphai) and SRC, leading to activation of AKT.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3023579
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 48
social impact