Chiral compounds, bearing closely positioned Bronsted base and Bronsted acid groups, are usefully exploited as bifunctional organocatalysts in a wide array of asymmetric processes. These compounds operate via the generation of a more active nucleophilic species through general base catalysis, whereas the electrophile is activated via hydrogen bonding by the Bronsted acidic group. In this review, we illustrate the achievements appeared in the literature after 2001 up to early 2010, with a focus on reactions mediated by organocatalysts bearing the β-amino alcohol core as their catalitically active site. 1,2-Additions, ring-closure reactions, conjugate additions, α- functionalization of carbonyl compounds are efficiently accomplished by β-amino alcohols as catalysts. Most of the processes described are promoted by cinchona alkaloids, whereas some examples include the use of L-proline derivatives such as α,α-diaryl prolinols. The ready availability of β-amino alcohols from the chiral pool, makes them an appealing class of versatile promoters to exploit in modern organic synthesis.

Noncovalent Bifunctional Organocatalysis Mediated by beta-Amino Alcohols

DELLA SALA, Giorgio;RUSSO, ALESSIO;LATTANZI, Alessandra
2011-01-01

Abstract

Chiral compounds, bearing closely positioned Bronsted base and Bronsted acid groups, are usefully exploited as bifunctional organocatalysts in a wide array of asymmetric processes. These compounds operate via the generation of a more active nucleophilic species through general base catalysis, whereas the electrophile is activated via hydrogen bonding by the Bronsted acidic group. In this review, we illustrate the achievements appeared in the literature after 2001 up to early 2010, with a focus on reactions mediated by organocatalysts bearing the β-amino alcohol core as their catalitically active site. 1,2-Additions, ring-closure reactions, conjugate additions, α- functionalization of carbonyl compounds are efficiently accomplished by β-amino alcohols as catalysts. Most of the processes described are promoted by cinchona alkaloids, whereas some examples include the use of L-proline derivatives such as α,α-diaryl prolinols. The ready availability of β-amino alcohols from the chiral pool, makes them an appealing class of versatile promoters to exploit in modern organic synthesis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3035704
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact