We address the problem of the dynamical foundation of noncanonical equilibrium. We consider, as a source of divergence from ordinary statistical mechanics, the breakdown of the condition of time scale separation between microscopic and macroscopic dynamics. We show that this breakdown has the effect of producing a significant deviation from the canonical prescription. We also show that, while the canonical equilibrium can be reached with no apparent dependence on dynamics, the specific form of noncanonical equilibrium is, in fact, determined by dynamics. We consider the special case where the thermal reservoir driving the system of interest to equilibrium is a generator of intermittent fluctuations. We assess the form of the noncanonical equilibrium reached by the system in this case. Using both theoretical and numerical arguments we demonstrate that Lévy statistics are the best description of the dynamics and that the Lévy distribution is the correct basin of attraction. We also show that the correct path to noncanonical equilibrium by means of strictly thermodynamic arguments has not yet been found, and that further research has to be done to establish a connection between dynamics and thermodynamics.

Canonical and noncanonical equilibrium distribution

ANNUNZIATO, Mario;
2001-01-01

Abstract

We address the problem of the dynamical foundation of noncanonical equilibrium. We consider, as a source of divergence from ordinary statistical mechanics, the breakdown of the condition of time scale separation between microscopic and macroscopic dynamics. We show that this breakdown has the effect of producing a significant deviation from the canonical prescription. We also show that, while the canonical equilibrium can be reached with no apparent dependence on dynamics, the specific form of noncanonical equilibrium is, in fact, determined by dynamics. We consider the special case where the thermal reservoir driving the system of interest to equilibrium is a generator of intermittent fluctuations. We assess the form of the noncanonical equilibrium reached by the system in this case. Using both theoretical and numerical arguments we demonstrate that Lévy statistics are the best description of the dynamics and that the Lévy distribution is the correct basin of attraction. We also show that the correct path to noncanonical equilibrium by means of strictly thermodynamic arguments has not yet been found, and that further research has to be done to establish a connection between dynamics and thermodynamics.
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3304483
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact