We applied and compared two supervised pattern recognition techniques, namely the Multilayer Perceptron (MLP) and Support Vector Machine (SVM), to classify seismic signals recorded on Stromboli volcano. The available data are firstly preprocessed in order to obtain a compact representation of the raw seismic signals. We extract from data spectral and temporal information so that each input vector is made up of 71 components, containing both spectral and temporal information extracted from the early signal. We implemented two classification strategies to discriminate three different seismic events: landslide, explosion-quake, and volcanic microtremor signals. The first method is a two-layer MLP network, with a Cross-Entropy error function and logistic activation function for the output units. The second method is a Support Vector Machine, whose multi-class setting is accomplished through a 1vsAll architecture with gaussian kernel. The experiments show that although the MLP produces very good results, the SVM accuracy is always higher, both in term of best performance, 99.5%, and average performance, 98.8%, obtained with different sampling permutations of training and test sets. © 2009 The authors and IOS Press. All rights reserved.

Support Vector Machines and MLP for automatic classification of seismic signals at Stromboli volcano

GIACCO, FERDINANDO;SCARPETTA, Silvia;MARINARO, Maria
2009-01-01

Abstract

We applied and compared two supervised pattern recognition techniques, namely the Multilayer Perceptron (MLP) and Support Vector Machine (SVM), to classify seismic signals recorded on Stromboli volcano. The available data are firstly preprocessed in order to obtain a compact representation of the raw seismic signals. We extract from data spectral and temporal information so that each input vector is made up of 71 components, containing both spectral and temporal information extracted from the early signal. We implemented two classification strategies to discriminate three different seismic events: landslide, explosion-quake, and volcanic microtremor signals. The first method is a two-layer MLP network, with a Cross-Entropy error function and logistic activation function for the output units. The second method is a Support Vector Machine, whose multi-class setting is accomplished through a 1vsAll architecture with gaussian kernel. The experiments show that although the MLP produces very good results, the SVM accuracy is always higher, both in term of best performance, 99.5%, and average performance, 98.8%, obtained with different sampling permutations of training and test sets. © 2009 The authors and IOS Press. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/3877243
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 27
social impact