Various techniques have been reported in the literature for the fabrication of biodegradable scaffolds; but, it is very difficult to obtain in the same structure macro, micro and nanostructural characteristics. In this work we developed a supercritical freeze extraction process (SFEP) for the formation of poly(l-lactic acid) (PLLA) scaffolds, that combines the advantages of thermally induced phase separation with those of supercritical drying. We processed solutions in chloroform of two PLLA molecular weights and at different polymer concentrations ranging between 5 and 20 % w/w. Supercritical drying was performed at 35 A degrees Cand pressures ranging between 100 and 250 bar. 3-D scaffolds characterized by high porosity (between 88 and 97.5 %), with coexisting micro and nanometric morphology were obtained. Structures generated were characterized by pores ranging between 10 and 30 mu m and with a wrinkled nanostructure of about 200 nm, superimposed on the internal pore surface, that could be useful for biomedical applications. A solvent residue lower than 5 ppm was also measured.

3-D PLLA scaffolds formation by a supercritical freeze extraction assisted process

CARDEA, STEFANO
;
BALDINO, LUCIA;PISANTI, PAOLA;REVERCHON, Ernesto
2014-01-01

Abstract

Various techniques have been reported in the literature for the fabrication of biodegradable scaffolds; but, it is very difficult to obtain in the same structure macro, micro and nanostructural characteristics. In this work we developed a supercritical freeze extraction process (SFEP) for the formation of poly(l-lactic acid) (PLLA) scaffolds, that combines the advantages of thermally induced phase separation with those of supercritical drying. We processed solutions in chloroform of two PLLA molecular weights and at different polymer concentrations ranging between 5 and 20 % w/w. Supercritical drying was performed at 35 A degrees Cand pressures ranging between 100 and 250 bar. 3-D scaffolds characterized by high porosity (between 88 and 97.5 %), with coexisting micro and nanometric morphology were obtained. Structures generated were characterized by pores ranging between 10 and 30 mu m and with a wrinkled nanostructure of about 200 nm, superimposed on the internal pore surface, that could be useful for biomedical applications. A solvent residue lower than 5 ppm was also measured.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4091658
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact