One of the most attractive characteristics of poly(lactic acid) (PLA) is the fact that, following the international standards for polymer biodegradation, it can be potentially degraded in soil or compost. The potential of this material, however, requires additional investigations in order to understand the PLA behaviour during composting, including the main factors that affect the biodegradation phenomena. In this work, the degradation of PLA was investigated in both distilled water and controlled composting conditions at a temperature of 58 °C. PLA samples with different morphologies were prepared by injection moulding and successive annealing at high temperature. As expected, the crystallinity was found to decrease the PLA degradation rate, but it was also found that the crystallinity affects only partially the first stages of water diffusion in the polymer matrix, whereas it has a significant effect on the final swelling of the samples and on their biodegradation rate. It could therefore be concluded that the denser structure of the initially crystalline sample was more impermeable to the enzymatic attach and to oligomer diffusion. This was also testified by the fact that if the characteristic dimension of the crystalline sample is reduced, degradation rate becomes much faster and close (although still slower) to that of the amorphous sample.

INFLUENCE OF CRYSTALLINITY ON THE BIO-DEGRADATION RATE OF INJECTION MOLDED POLY(LACTIC ACID) SAMPLES IN CONTROLLED COMPOSTING CONDITIONS

PANTANI, Roberto;SORRENTINO, Andrea
2013-01-01

Abstract

One of the most attractive characteristics of poly(lactic acid) (PLA) is the fact that, following the international standards for polymer biodegradation, it can be potentially degraded in soil or compost. The potential of this material, however, requires additional investigations in order to understand the PLA behaviour during composting, including the main factors that affect the biodegradation phenomena. In this work, the degradation of PLA was investigated in both distilled water and controlled composting conditions at a temperature of 58 °C. PLA samples with different morphologies were prepared by injection moulding and successive annealing at high temperature. As expected, the crystallinity was found to decrease the PLA degradation rate, but it was also found that the crystallinity affects only partially the first stages of water diffusion in the polymer matrix, whereas it has a significant effect on the final swelling of the samples and on their biodegradation rate. It could therefore be concluded that the denser structure of the initially crystalline sample was more impermeable to the enzymatic attach and to oligomer diffusion. This was also testified by the fact that if the characteristic dimension of the crystalline sample is reduced, degradation rate becomes much faster and close (although still slower) to that of the amorphous sample.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4204856
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 202
  • ???jsp.display-item.citation.isi??? 177
social impact