The Gran Sasso massif is a carbonate fractured aquifer with a spring discharge of more than 18 m3 s-1. The water table has been partially drained by two motorway tunnels and an underground laboratory (UL), located into the core aquifer. Karst features have limited role below the water table, where groundwater flow is mainly regulated by the fracture network. Two paired laser extensometers (BA and BC) recorded ground deformation in the UL. Changes in deformation correlate with the seasonal recharge/discharge cycle of groundwater flow and its long-term changes. Hydrostatic conditions prevail during the recharge phases because of the low permeability of local fractures, favoring compression, and hydraulic gradient increase above the UL. Fast groundwater flow through the high-permeability fault outcropping in the UL can enhance local dilatation for short periods. Spring discharge during exhaustion periods is fed by the low-permeability fracture network, fostering hydrodynamic conditions by hydraulic gradient decrease, diminishing compression and consequently favoring dilatation. Independent support to this conceptual model comes from local tests and a numerical model which highlights the hydromechanical strain effects induced by the hydrological cycle on the jointed rock mass along BA and the role of the hydraulic gradient on the rock mass deformation.

Correlation between groundwater flow and deformation in the fractured carbonate Gran Sasso aquifer (INFN underground laboratories, central Italy).

AMORUSO, ANTONELLA;CRESCENTINI, LUCA;
2014-01-01

Abstract

The Gran Sasso massif is a carbonate fractured aquifer with a spring discharge of more than 18 m3 s-1. The water table has been partially drained by two motorway tunnels and an underground laboratory (UL), located into the core aquifer. Karst features have limited role below the water table, where groundwater flow is mainly regulated by the fracture network. Two paired laser extensometers (BA and BC) recorded ground deformation in the UL. Changes in deformation correlate with the seasonal recharge/discharge cycle of groundwater flow and its long-term changes. Hydrostatic conditions prevail during the recharge phases because of the low permeability of local fractures, favoring compression, and hydraulic gradient increase above the UL. Fast groundwater flow through the high-permeability fault outcropping in the UL can enhance local dilatation for short periods. Spring discharge during exhaustion periods is fed by the low-permeability fracture network, fostering hydrodynamic conditions by hydraulic gradient decrease, diminishing compression and consequently favoring dilatation. Independent support to this conceptual model comes from local tests and a numerical model which highlights the hydromechanical strain effects induced by the hydrological cycle on the jointed rock mass along BA and the role of the hydraulic gradient on the rock mass deformation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4469057
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact