The superconducting properties of mm-sized Fe1.02Se crystals grown by a flux method are investigated. The structural and morphological features are studied by x-ray diffraction (XRD) and by scanning electron microscopy-energy dispersive x-ray spectroscopy SEM-EDX analysis, which identified a co-growth of a dominant superconducting tetragonal phase, with the minority of a non-superconducting hexagonal phase. The ac magnetic response is analyzed using a combined method of the fundamental and the 3rd harmonic ac magnetic susceptibility as a function of the temperature at different ac magnetic field amplitudes and frequencies and with various superimposed dc fields. The variation of the ac magnetic field and frequency in different ranges especially affects the 3rd harmonic components, which are more sensitive to the changes in the flux dynamic regimes. This allows a fine observation of the evolution of the different linear and non-linear processes responsible for the ac magnetic response of the Fe1.02Se crystals. At low enough ac amplitudes and frequencies, and even in high imposed dc magnetic fields, the Fe1.02Se crystals show a typical critical state behavior, marking a high stability of the pinning, with very small influence of the vortex dynamical processes. With the change of ac field amplitude and frequency a gradual crossover is observed from the initial stable pinning state through the domination of the intermediate regimes as flux creep and finally to the complete dominance of flux flow. The ac magnetic response is also influenced by geometric edge barrier effects arising from the plate-like geometry of the Fe1.02Se crystals. The changes of the dominant irreversible (non-linear) mechanism from surface pinning to bulk pinning or to prevailing dynamical regimes is also identified by analyzing the behavior of the 3rd harmonic components.

Investigation of the vortex dynamics of Fe(1.02)Se crystals by fundamental and 3-rd harmonic AC magnetic susceptibility analysis

POLICHETTI, Massimiliano;MANCUSI, DAVIDE;PACE, Sandro
2015-01-01

Abstract

The superconducting properties of mm-sized Fe1.02Se crystals grown by a flux method are investigated. The structural and morphological features are studied by x-ray diffraction (XRD) and by scanning electron microscopy-energy dispersive x-ray spectroscopy SEM-EDX analysis, which identified a co-growth of a dominant superconducting tetragonal phase, with the minority of a non-superconducting hexagonal phase. The ac magnetic response is analyzed using a combined method of the fundamental and the 3rd harmonic ac magnetic susceptibility as a function of the temperature at different ac magnetic field amplitudes and frequencies and with various superimposed dc fields. The variation of the ac magnetic field and frequency in different ranges especially affects the 3rd harmonic components, which are more sensitive to the changes in the flux dynamic regimes. This allows a fine observation of the evolution of the different linear and non-linear processes responsible for the ac magnetic response of the Fe1.02Se crystals. At low enough ac amplitudes and frequencies, and even in high imposed dc magnetic fields, the Fe1.02Se crystals show a typical critical state behavior, marking a high stability of the pinning, with very small influence of the vortex dynamical processes. With the change of ac field amplitude and frequency a gradual crossover is observed from the initial stable pinning state through the domination of the intermediate regimes as flux creep and finally to the complete dominance of flux flow. The ac magnetic response is also influenced by geometric edge barrier effects arising from the plate-like geometry of the Fe1.02Se crystals. The changes of the dominant irreversible (non-linear) mechanism from surface pinning to bulk pinning or to prevailing dynamical regimes is also identified by analyzing the behavior of the 3rd harmonic components.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4521669
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact