This article presents an efficient framework and a sustainable pilot project on the effective use of spaceborne synthetic aperture radar (SAR) in low-income countries and semi-arid climatic contexts. The technical efficiency was pursued by integrating SAR models and hydrological assessment methods; the socio-economical sustainability was guaranteed by the joint work of scientists, technicians, and volunteers. The pilot project was developed in the Yatenga region, a Sahelian area in northern Burkina Faso. In particular, an original development of SAR interferometry algorithms was tailored to the peculiar climate, the soil characteristics, and the land cover of the semi-arid regions. A digital elevation model (DEM) was derived, and an original approach based on the use of SAR amplitude images is proposed for its validation. The achieved resolution (9 m) is significantly better than that of the previously available DEMs in the study area (30 m). Based on the DEM, the soil sedimentation rate of small reservoirs was estimated together with the average soil loss in the contributing catchments due to the erosion process. A multi-temporal filter was implemented on the SAR images for monitoring of water intake volume in small reservoirs, and its seasonal evolution. The developed tools provide an innovative contribution for the improvement of water resource management in the study area. This approach is repeatable and scalable to suit situations with similar economic and climatic conditions

Effectiveness of high-resolution SAR for water resource management in low-income semi-arid countries

CIERVO, FABIO;PAPA, Maria Nicolina;
2014-01-01

Abstract

This article presents an efficient framework and a sustainable pilot project on the effective use of spaceborne synthetic aperture radar (SAR) in low-income countries and semi-arid climatic contexts. The technical efficiency was pursued by integrating SAR models and hydrological assessment methods; the socio-economical sustainability was guaranteed by the joint work of scientists, technicians, and volunteers. The pilot project was developed in the Yatenga region, a Sahelian area in northern Burkina Faso. In particular, an original development of SAR interferometry algorithms was tailored to the peculiar climate, the soil characteristics, and the land cover of the semi-arid regions. A digital elevation model (DEM) was derived, and an original approach based on the use of SAR amplitude images is proposed for its validation. The achieved resolution (9 m) is significantly better than that of the previously available DEMs in the study area (30 m). Based on the DEM, the soil sedimentation rate of small reservoirs was estimated together with the average soil loss in the contributing catchments due to the erosion process. A multi-temporal filter was implemented on the SAR images for monitoring of water intake volume in small reservoirs, and its seasonal evolution. The developed tools provide an innovative contribution for the improvement of water resource management in the study area. This approach is repeatable and scalable to suit situations with similar economic and climatic conditions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4524879
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 27
social impact