The emerging next generation of engineered tissues is based on the development of loaded scaffolds containing bioactive molecules in order to control the cellular function or to interact on the surrounding tissues. Indeed, implantation of engineered biomaterials might cause local inflammation because of the host's immune response; thereby, the use of anti-inflammatory agents, whether steroidal or nonsteroidal is required. One of the most important stages of tissue engineering is the design and the generation of a porous 3D structure, with high porosity, high interconnectivity and homogenous morphology. Various techniques have been reported in the literature for the fabrication of biodegradable scaffolds, but they suffer several limitations. In this study, for the first time, the possibility of generating 3D polymeric scaffolds loaded with an active compound by supercritical freeze extraction process is evaluated; this innovative process combines the advantages of the thermally induced phase separation process and of the supercritical carbon dioxide drying. Poly-L-lactid acid/ibuprofen composite scaffolds characterized by a 3D geometry, micrometric cellular structures and wrinkled pores walls have been obtained; moreover, homogeneous drug distribution and controlled release of the active principle have been assured.

3D PLLA/ibuprofen composite scaffolds obtained by a supercritical fluids assisted process

CARDEA, STEFANO
;
BALDINO, LUCIA;SCOGNAMIGLIO, MARIAROSA;REVERCHON, Ernesto
2014-01-01

Abstract

The emerging next generation of engineered tissues is based on the development of loaded scaffolds containing bioactive molecules in order to control the cellular function or to interact on the surrounding tissues. Indeed, implantation of engineered biomaterials might cause local inflammation because of the host's immune response; thereby, the use of anti-inflammatory agents, whether steroidal or nonsteroidal is required. One of the most important stages of tissue engineering is the design and the generation of a porous 3D structure, with high porosity, high interconnectivity and homogenous morphology. Various techniques have been reported in the literature for the fabrication of biodegradable scaffolds, but they suffer several limitations. In this study, for the first time, the possibility of generating 3D polymeric scaffolds loaded with an active compound by supercritical freeze extraction process is evaluated; this innovative process combines the advantages of the thermally induced phase separation process and of the supercritical carbon dioxide drying. Poly-L-lactid acid/ibuprofen composite scaffolds characterized by a 3D geometry, micrometric cellular structures and wrinkled pores walls have been obtained; moreover, homogeneous drug distribution and controlled release of the active principle have been assured.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4643653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact