The category of “extremal materials” has been introduced in the literature to define materials that simultaneously show very soft and very stiff deformation modes (unimode, bimode, trimode, quadramode and pentamode materials, depending on the number of soft modes). This definition applies to a special class of mechanical metamaterials – composite materials, structural foams, cellular materials, etc. – which feature special mechanical properties. Pentamode materials have been proposed for transformation acoustics and elasto-mechanical cloak, but their potential in dif-ferent engineering fields is still only partially explored. We here present novel versions of pen-tamode materials: artificial structural crystals showing shear moduli markedly smaller than the bulk modulus. Novel pentamode lattices with tensegrity architecture are designed, through the insertion of actuated struts and/or prestressed cables within basic pentamode lattices. Such sys-tems are proposed as tunable seismic base-isolation devices, profiting from their low and adjusta-ble shear moduli, which can be easily adapted to the dynamic properties of the structure to be iso-lated.

Seismic isolation devices based on tensegrity lattices

AMENDOLA, ADA;FRATERNALI, Fernando;CARPENTIERI, GERARDO;MONTUORI, Rosario;
2015-01-01

Abstract

The category of “extremal materials” has been introduced in the literature to define materials that simultaneously show very soft and very stiff deformation modes (unimode, bimode, trimode, quadramode and pentamode materials, depending on the number of soft modes). This definition applies to a special class of mechanical metamaterials – composite materials, structural foams, cellular materials, etc. – which feature special mechanical properties. Pentamode materials have been proposed for transformation acoustics and elasto-mechanical cloak, but their potential in dif-ferent engineering fields is still only partially explored. We here present novel versions of pen-tamode materials: artificial structural crystals showing shear moduli markedly smaller than the bulk modulus. Novel pentamode lattices with tensegrity architecture are designed, through the insertion of actuated struts and/or prestressed cables within basic pentamode lattices. Such sys-tems are proposed as tunable seismic base-isolation devices, profiting from their low and adjusta-ble shear moduli, which can be easily adapted to the dynamic properties of the structure to be iso-lated.
2015
978-88-940089-4-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4649725
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact