The aim of this study was to produce a hydro-alcoholic safe antioxidant Malus pumila Miller cv Annurca peel extract (APE) useful as functional ingredient in an oil-in-water emulsion. Results showed that APE contains a hydroxycinnamic acid (chlorogenic acid), flavonol glycosides (quercetin derivatives) and a dihydrochalcone, phloridzin (phloretin-2-O-glucoside). The isoquercitrin (quercetin-3-O-glucoside) content was quantified in 0.3% w/w of extract. APE showed a significant and concentration-dependent free-radical scavenging activity correlated to its polyphenols content. No cytotoxic effect was observed in primary human epidermal keratinocyte adults and dermal fibroblast cell lines. The formulative approach led to produce a stable emulsion able to load a high amount of APE, up to 6.0% w/w. The homogenous distribution of APE in the emulsion was clearly demonstrated by fluorescence microscopy analysis. The emulsion resulted able to enhance the in vitro release rate of APE through synthetic membranes with respect to the raw material.

Annurca peel extract: from the chemical composition, through the functional activity, to the formulation and characterisation of a topical oil-in-water emulsion

SANSONE, FRANCESCA;ESPOSITO, TIZIANA;MENCHERINI, TERESA;PICCINELLI, ANNA LISA;GAZZERRO, Patrizia;PICERNO, PATRIZIA;RUSSO, Paola;DEL GAUDIO, Pasquale;CAMPIGLIA, Pietro;AQUINO, Rita Patrizia
2016-01-01

Abstract

The aim of this study was to produce a hydro-alcoholic safe antioxidant Malus pumila Miller cv Annurca peel extract (APE) useful as functional ingredient in an oil-in-water emulsion. Results showed that APE contains a hydroxycinnamic acid (chlorogenic acid), flavonol glycosides (quercetin derivatives) and a dihydrochalcone, phloridzin (phloretin-2-O-glucoside). The isoquercitrin (quercetin-3-O-glucoside) content was quantified in 0.3% w/w of extract. APE showed a significant and concentration-dependent free-radical scavenging activity correlated to its polyphenols content. No cytotoxic effect was observed in primary human epidermal keratinocyte adults and dermal fibroblast cell lines. The formulative approach led to produce a stable emulsion able to load a high amount of APE, up to 6.0% w/w. The homogenous distribution of APE in the emulsion was clearly demonstrated by fluorescence microscopy analysis. The emulsion resulted able to enhance the in vitro release rate of APE through synthetic membranes with respect to the raw material.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4650164
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact