In this work we report on the functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure and on its use as nanofiller in melt compounding of polyethylene nanocomposites. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and higher thermal stability with respect to most of commercial organoclays modified with alkylammonium salts. Its addition (at 5wt%) to two different polyethylene matrices (a low density polyethylene, LDPE, and a high density polyethylene, HDPE), processed in a pilot-scale twin-screw extruder, allowed to produce hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction. Thermogravimetric and differential scanning thermal analyses point out that the obtained nanocomposites do not show noticeable changes in the thermal behavior of both LDPE and HDPE, even if a slight reduction in the overall bulk crystallinity was observed in presence of the nanofillers.

Nanostructure and thermal properties of melt compounded PE/clay nanocomposites filled with an organosilylated montmorillonite

SCARFATO, Paola;INCARNATO, Loredana;DI MAIO, Luciano;
2015-01-01

Abstract

In this work we report on the functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure and on its use as nanofiller in melt compounding of polyethylene nanocomposites. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and higher thermal stability with respect to most of commercial organoclays modified with alkylammonium salts. Its addition (at 5wt%) to two different polyethylene matrices (a low density polyethylene, LDPE, and a high density polyethylene, HDPE), processed in a pilot-scale twin-screw extruder, allowed to produce hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction. Thermogravimetric and differential scanning thermal analyses point out that the obtained nanocomposites do not show noticeable changes in the thermal behavior of both LDPE and HDPE, even if a slight reduction in the overall bulk crystallinity was observed in presence of the nanofillers.
2015
978-0-7354-1342-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4663445
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact