This paper presents a preliminary investigation of thermal behaviour of epoxy nanocomposites containing different types of nanofillers, such as 1-D Multiwall Carbon Nanotubes (MWCNTs) and 2-D predominant shape of Exfoliated Graphite nanoparticles (EG). The cure behavior of the different epoxy formulations (filled and unfilled) was studied by Differential Scanning Calorimetry (DSC). The DSC technique is particularly advantageous for studying the cure of reactive epoxy systems because the curing process is accompanied by the liberation of heat. For all the epoxy nanocomposites analyzed in this work, Differential Scanning Calorimetry (DSC) investigation shows curing degree (DC) values higher than 92% for the curing cycle up to 200°C, reaching up to 100% for the samples filled with Exfoliated Graphite nanoparticles (EG). The calorimetric results also show that Exfoliated Graphite nanoparticles accelerate the curing process of the epoxy resin of about 20°C. Transient Plane Source measurements of thermal conductivity show that this acceleration is directly related to the better heat conduction obtained through the incorporation in the epoxy matrix of carbonaceous nanostructures with predominantly two-dimensional shape (Exfoliated Graphite nanoparticles). The experimental results clearly demonstrate that the use of graphene sheets is very hopeful for obtaining nanocomposites characterized by high performance that are able to meet the ambitious requirements in the aeronautical field.

Thermal investigation of tetrafunctional epoxy resin filled with different carbonaceous nanostructures

ROMANO, Vittorio Raffaele A.;NADDEO, Carlo;VERTUCCIO, LUIGI;GUADAGNO, Liberata
2016-01-01

Abstract

This paper presents a preliminary investigation of thermal behaviour of epoxy nanocomposites containing different types of nanofillers, such as 1-D Multiwall Carbon Nanotubes (MWCNTs) and 2-D predominant shape of Exfoliated Graphite nanoparticles (EG). The cure behavior of the different epoxy formulations (filled and unfilled) was studied by Differential Scanning Calorimetry (DSC). The DSC technique is particularly advantageous for studying the cure of reactive epoxy systems because the curing process is accompanied by the liberation of heat. For all the epoxy nanocomposites analyzed in this work, Differential Scanning Calorimetry (DSC) investigation shows curing degree (DC) values higher than 92% for the curing cycle up to 200°C, reaching up to 100% for the samples filled with Exfoliated Graphite nanoparticles (EG). The calorimetric results also show that Exfoliated Graphite nanoparticles accelerate the curing process of the epoxy resin of about 20°C. Transient Plane Source measurements of thermal conductivity show that this acceleration is directly related to the better heat conduction obtained through the incorporation in the epoxy matrix of carbonaceous nanostructures with predominantly two-dimensional shape (Exfoliated Graphite nanoparticles). The experimental results clearly demonstrate that the use of graphene sheets is very hopeful for obtaining nanocomposites characterized by high performance that are able to meet the ambitious requirements in the aeronautical field.
2016
9780735413900
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4671497
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact