Scope: Morus alba is a promising phytomedicine cultivated in oriental countries that is extensively used to prevent and treat various cardiovascular problems. To date, despite its beneficial effects, the molecular mechanisms involved remain unclear. Thus, we investigate the vascular and haemodynamic effects of Morus alba extract in an experimental model focusing our attention on the molecular mechanisms involved. Methods and results: Through vascular reactivity studies, we demonstrate that Morus alba extract evokes endothelial vasorelaxation through a nitric oxide-dependent pathway. Our molecular analysis highlights an increase in endothelial nitric oxide synthase (eNOS) phosphorylation. In vivo administration of Morus alba extract reduces blood pressure levels exclusively in wild-type mice, whereas it fails to evoke any haemodynamic effects in eNOS-deficient mice. Molecular analyses revealed that its beneficial action on vasculature is mediated by the activation of two important proteins that act as stress sensors and chaperones: PERK and heat shock protein 90. Finally, Morus alba extract exerts antihypertensive action in an experimental model of arterial hypertension. Conclusion: Through its action on eNOS signaling, Morus alba extract could act as a food supplement for the regulation of cardiovascular system, mainly in clinical conditions characterized by eNOS dysfunction, such as arterial hypertension.

Morus alba extract modulates blood pressure homeostasis through eNOS signaling

CARRIZZO, ALBINO;CAMPIGLIA, Pietro;SOMMELLA, EDUARDO MARIA;PUCA, Annibale Alessandro;VECCHIONE, Carmine
2016-01-01

Abstract

Scope: Morus alba is a promising phytomedicine cultivated in oriental countries that is extensively used to prevent and treat various cardiovascular problems. To date, despite its beneficial effects, the molecular mechanisms involved remain unclear. Thus, we investigate the vascular and haemodynamic effects of Morus alba extract in an experimental model focusing our attention on the molecular mechanisms involved. Methods and results: Through vascular reactivity studies, we demonstrate that Morus alba extract evokes endothelial vasorelaxation through a nitric oxide-dependent pathway. Our molecular analysis highlights an increase in endothelial nitric oxide synthase (eNOS) phosphorylation. In vivo administration of Morus alba extract reduces blood pressure levels exclusively in wild-type mice, whereas it fails to evoke any haemodynamic effects in eNOS-deficient mice. Molecular analyses revealed that its beneficial action on vasculature is mediated by the activation of two important proteins that act as stress sensors and chaperones: PERK and heat shock protein 90. Finally, Morus alba extract exerts antihypertensive action in an experimental model of arterial hypertension. Conclusion: Through its action on eNOS signaling, Morus alba extract could act as a food supplement for the regulation of cardiovascular system, mainly in clinical conditions characterized by eNOS dysfunction, such as arterial hypertension.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4671692
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 31
social impact