The production of hydrogen through the low temperature-ethanol steam reforming (LT-ESR) reaction requires the development of an efficient catalyst. A bimetallic formulation, based on Pt and Ni and supported on CeO2 was investigated, in terms of activity, selectivity, stability. Very interesting results were obtained, with a complete ethanol conversion and a perfect agreement between the experimental and equilibrium products distributions, yet at T ≥ 300 °C, contact time=240 ms and stoichiometric water/ethanol molar ratio. Furthermore, the selectivity towards the desired compounds was very high, with low coke selectivity and appreciable stability, especially with higher water/ethanol ratio. A mechanistic study of the reaction was carried out through the detailed analysis of the experimental evolution of the products distribution as a function of contact time (3 - 600 ms) and temperature (340 - 480 °C). The most significant result was the formulation of a possible Pt/Ni/CeO2 catalysed reaction pathway, that includes the following steps: ethanol adsorption followed by dehydrogenation to acetaldehyde; intermediate decomposition and reforming to CH4, CO, H2 and CO2; CO-WGS and CO2 methanation reaction. These outcomes were validated by specified characterizations of the exhaust sample, as temperature programmed desorption (TPD) experiments. Copyright © 2013, AIDIC Servizi S.r.l.

Bimetallic catalysts for hydrogen generation by low temperature ethanol steam reforming

PALMA, Vincenzo;CASTALDO, FILOMENA;CIAMBELLI, Paolo;
2013-01-01

Abstract

The production of hydrogen through the low temperature-ethanol steam reforming (LT-ESR) reaction requires the development of an efficient catalyst. A bimetallic formulation, based on Pt and Ni and supported on CeO2 was investigated, in terms of activity, selectivity, stability. Very interesting results were obtained, with a complete ethanol conversion and a perfect agreement between the experimental and equilibrium products distributions, yet at T ≥ 300 °C, contact time=240 ms and stoichiometric water/ethanol molar ratio. Furthermore, the selectivity towards the desired compounds was very high, with low coke selectivity and appreciable stability, especially with higher water/ethanol ratio. A mechanistic study of the reaction was carried out through the detailed analysis of the experimental evolution of the products distribution as a function of contact time (3 - 600 ms) and temperature (340 - 480 °C). The most significant result was the formulation of a possible Pt/Ni/CeO2 catalysed reaction pathway, that includes the following steps: ethanol adsorption followed by dehydrogenation to acetaldehyde; intermediate decomposition and reforming to CH4, CO, H2 and CO2; CO-WGS and CO2 methanation reaction. These outcomes were validated by specified characterizations of the exhaust sample, as temperature programmed desorption (TPD) experiments. Copyright © 2013, AIDIC Servizi S.r.l.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4677948
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact