The ring-opening reactions of epoxides with amines were efficiently and regioselectively catalyzed by high-surface-area graphite and graphene oxide under metal-free and solvent-free conditions. For epoxides without aryl groups, catalytic activity was observed only for graphene oxide, and hence, the activity must have been due to its acidic groups. For styrene oxide, instead, graphite and graphene oxide exhibited rather similar catalytic activities, and hence, the activity was mainly due to activation of the electrophilic epoxide by π-stacking interactions with the graphitic π system. The described aminolysis procedure is green and cheap because the catalyst can be recovered and recycled without loss of efficiency. Moreover, these heterogeneous catalysts exert high stereoselective control in the presence of nonracemic epoxides and provide chiral β-amino alcohols with enantiomeric excess values up to 99 %.

Green Regio- and Enantioselective Aminolysis Catalyzed by Graphite and Graphene Oxide under Solvent-Free Conditions

ACOCELLA, MARIA ROSARIA;D'URSO, LUCIANA;MAGGIO, MARIO;GUERRA, Gaetano
2016-01-01

Abstract

The ring-opening reactions of epoxides with amines were efficiently and regioselectively catalyzed by high-surface-area graphite and graphene oxide under metal-free and solvent-free conditions. For epoxides without aryl groups, catalytic activity was observed only for graphene oxide, and hence, the activity must have been due to its acidic groups. For styrene oxide, instead, graphite and graphene oxide exhibited rather similar catalytic activities, and hence, the activity was mainly due to activation of the electrophilic epoxide by π-stacking interactions with the graphitic π system. The described aminolysis procedure is green and cheap because the catalyst can be recovered and recycled without loss of efficiency. Moreover, these heterogeneous catalysts exert high stereoselective control in the presence of nonracemic epoxides and provide chiral β-amino alcohols with enantiomeric excess values up to 99 %.
2016
File in questo prodotto:
File Dimensione Formato  
manuscriptchemCatchem _preprint_watermark.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: DRM non definito
Dimensione 898.55 kB
Formato Adobe PDF
898.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4682493
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 18
social impact