An analytical tool to design 4H-SiC power vertical Double-diffused Metal-Oxide-Semiconductor Field-Effect-Transistor is proposed. The model optimizes, in terms of the doping concentration in the Drift–region, the trade–off between the ON–resistance, RON, and the maximum blocking voltage, VBL, that is the Drain-Source voltage for which the avalanche breakdown appears at the p+–well/n-DRIFT junction together with the breakdown of the Gate oxide. Finding such trade-off means to maximize, Figure-Of-Merit. Our results are based on a novel full–analytical model of the electric field in the Gate oxide, EOX, whose generality is ensured by the absence of fitting and empirical parameters. Model results are successfully compared with 2D–simulations covering a wide range of device performances.

Novel Advanced Analytical Design Tool for 4H-SiC VDMOSFET Devices

DI BENEDETTO, LUIGI;LICCIARDO, GIAN DOMENICO;RUBINO, Alfredo
2017-01-01

Abstract

An analytical tool to design 4H-SiC power vertical Double-diffused Metal-Oxide-Semiconductor Field-Effect-Transistor is proposed. The model optimizes, in terms of the doping concentration in the Drift–region, the trade–off between the ON–resistance, RON, and the maximum blocking voltage, VBL, that is the Drain-Source voltage for which the avalanche breakdown appears at the p+–well/n-DRIFT junction together with the breakdown of the Gate oxide. Finding such trade-off means to maximize, Figure-Of-Merit. Our results are based on a novel full–analytical model of the electric field in the Gate oxide, EOX, whose generality is ensured by the absence of fitting and empirical parameters. Model results are successfully compared with 2D–simulations covering a wide range of device performances.
2017
978-303571043-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4684175
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact