This paper investigates the optimization of power converters using ferrite inductors in Sustainable Saturation Operation (SSO), performed by means of an Evolutionary Algorithm (EA). The EA is adopted to identify viable optimal solutions providing a trade-off among efficiency, inductor volume, reliability and electromagnetic emissions. Three non-isolated low-power converters of different voltage and current ratings and based on buck, boost and buck-boost topologies, have been considered for the investigation. The results show that the EA is able to identify design solutions achieving best efficiency, volume, reliability and emissions performances with inductors in SSO.

Optimizing power converters with partially saturated inductors by evolutionary algorithms

STOYKA, KATERYNA;FEMIA, Nicola;DI CAPUA, Giulia
2017-01-01

Abstract

This paper investigates the optimization of power converters using ferrite inductors in Sustainable Saturation Operation (SSO), performed by means of an Evolutionary Algorithm (EA). The EA is adopted to identify viable optimal solutions providing a trade-off among efficiency, inductor volume, reliability and electromagnetic emissions. Three non-isolated low-power converters of different voltage and current ratings and based on buck, boost and buck-boost topologies, have been considered for the investigation. The results show that the EA is able to identify design solutions achieving best efficiency, volume, reliability and emissions performances with inductors in SSO.
2017
9781509050529
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4694185
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 0
social impact