Objective: Elucidate properties of raft-forming alginates in vitro with varying composition, a system in which the raft was formed (HCl solution; tomato soup; protein-rich beverage), and pH levels for a more accurate representation of postprandial gastric conditions. Significance: Knowledge of the impact of the food system and pH on properties of raft-forming alginates may aid in formulation optimization. Recommendations may be made on food that is consumed prior to their consumption to optimize efficacy as a therapeutic agent. Methods: Dispersions of sodium alginate, calcium carbonate, and sodium bicarbonate were prepared with levels similar to commercial formulations. Rafts were formed in HCl solution, tomato soup, and a protein-rich beverage at pH 1–4 to assess raft properties. Results: Significant differences (p < 0.05) in raft mass, strength, resilience, and ability to buffer acid were observed depending on the system in which the rafts were formed. The highest mass was obtained in tomato soup (48.5 ± 9.8 g) compared to the protein-rich beverage and HCl solution (32.5 ± 4.5 g and 23.4 ± 4.8 g, respectively) at pH 1. Rafts formed in the protein-rich beverage exhibited the highest strength. Rafts formed in both food systems had a greater ability to buffer added acid compared to rafts formed in HCl solution. Conclusions: In vitro testing of raft forming alginates in HCl solution at low pH may not be sufficient to describe in vivo events, as a strong matrix effect was observed when rafts were formed in model meal systems at representative postprandial pH levels.

Characterization of raft-forming alginate suspensions formed in HCl or model food systems at varying pH levels to better simulate gastric postprandial conditions

Marra F.
Writing – Review & Editing
;
2021-01-01

Abstract

Objective: Elucidate properties of raft-forming alginates in vitro with varying composition, a system in which the raft was formed (HCl solution; tomato soup; protein-rich beverage), and pH levels for a more accurate representation of postprandial gastric conditions. Significance: Knowledge of the impact of the food system and pH on properties of raft-forming alginates may aid in formulation optimization. Recommendations may be made on food that is consumed prior to their consumption to optimize efficacy as a therapeutic agent. Methods: Dispersions of sodium alginate, calcium carbonate, and sodium bicarbonate were prepared with levels similar to commercial formulations. Rafts were formed in HCl solution, tomato soup, and a protein-rich beverage at pH 1–4 to assess raft properties. Results: Significant differences (p < 0.05) in raft mass, strength, resilience, and ability to buffer acid were observed depending on the system in which the rafts were formed. The highest mass was obtained in tomato soup (48.5 ± 9.8 g) compared to the protein-rich beverage and HCl solution (32.5 ± 4.5 g and 23.4 ± 4.8 g, respectively) at pH 1. Rafts formed in the protein-rich beverage exhibited the highest strength. Rafts formed in both food systems had a greater ability to buffer added acid compared to rafts formed in HCl solution. Conclusions: In vitro testing of raft forming alginates in HCl solution at low pH may not be sufficient to describe in vivo events, as a strong matrix effect was observed when rafts were formed in model meal systems at representative postprandial pH levels.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4772368
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact