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Many experimental results, both in vivo and in vitro, support the idea that the brain cortex operates near a critical
point and at the same time works as a reservoir of precise spatiotemporal patterns. However, the mechanism at
the basis of these observations is still not clear. In this paper we introduce a model which combines both these
features, showing that scale-free avalanches are the signature of a system posed near the spinodal line of a
first-order transition, with many spatiotemporal patterns stored as dynamical metastable attractors. Specifically,
we studied a network of leaky integrate-and-fire neurons whose connections are the result of the learning of
multiple spatiotemporal dynamical patterns, each with a randomly chosen ordering of the neurons. We found that
the network shows a first-order transition between a low-spiking-rate disordered state (down), and a high-rate
state characterized by the emergence of collective activity and the replay of one of the stored patterns (up). The
transition is characterized by hysteresis, or alternation of up and down states, depending on the lifetime of the
metastable states. In both cases, critical features and neural avalanches are observed. Notably, critical phenomena
occur at the edge of a discontinuous phase transition, as recently observed in a network of glow lamps.
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I. INTRODUCTION

Recently, many experimental results have supported the
idea that the brain operates near a critical point [1–8], as
reflected by power-law distributions of avalanche sizes and
durations. The maximization of fluctuations near a critical
point is believed to play an important role in the ability of
the brain to respond to a wide range of inputs, to process the
information in an optimal way [9–13], and to enhance stimulus
discriminability [14]. The theoretical framework commonly
used to explain this behavior is the branching process, which
undergoes a second-order transition when the branching pa-
rameter becomes greater than 1. The order parameter, that
is, the probability to observe an infinite avalanche, indeed
continuously grows above the transition.

On the other hand, metastability and hysteresis are ubiqui-
tous in the brain. They are related to the ability of the brain
to sustain stimulus-selective persistent activity for working
memory [15]. The brain rapidly switches from one state to
another in response to a stimulus, and it may remain in the same
state for a long time after the end of the stimulus, suggesting the
existence of a repertoire of metastable states. The presence of
metastability and criticality could be reconciled if the system is
posed near the edge of instability (spinodal line) of a first-order
transition.

Recently it has been shown that a simple network of
glow lamps (nonlinear devices that share some similar-
ity with leaky neurons) show a critical behavior near the
edge of a first-order (discontinuous) phase transition [16].

Critical phenomena and avalanches indeed emerge, not only
in second-order transitions, but also in discontinuous ones, as
one enters the metastability region and approaches the spinodal
curve [17,18]. Close to the spinodal, which for long range
interactions denotes the limit of existence of the metastabil-
ity region, transition precursors are observed which follow
power-law scaling having a cutoff diverging to infinity on the
spinodal itself; examples are found, for instance, in geophysical
phenomena, breakdown of solids, and spontaneous network
recovery [19–22]. Bistability with critical features is observed
also in nonequilibrium phase transitions [23].

In the present paper, our goal is to understand if a first-
order transition with spinodal instabilities may be a correct
scenario in neural cortical experiments. We study a simple
stochastic leaky spiking model, whose quenched disordered
connectivity is the result of learning multiple spatiotemporal
patterns, and simulate the spontaneous activity of the network
applying a Poissonian noise to individual neurons, related to the
spontaneous neurotransmitter release at individual synapses, as
well as other sources of inhomogeneity and randomness that
determine an irregular background synaptic noise.

We observe that there is a parameter region characterized
by a first-order transition which notably shows hysteresis and
metastability. The phase transition is between a low activity
state, with uncorrelated firing and low rate, and a state char-
acterized by collective activity with high firing rate and high
spatiotemporal order, where one of the stored patterns emerges.
At higher values of the noise, or smaller network sizes,
lifetimes of the states become smaller then the observation
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time, so that instead of hysteresis we observe an alternation of
the two phases.

Scale-invariant spatiotemporal avalanches occur at the edge
of the transition, both inside the hysteresis region (lifetimes of
the metastable states longer than the observation time) and near
the alternating region (lifetimes smaller than the observation
time). Notably, we find that the average avalanche size as a
function of the avalanche duration s(T ) collapses on a universal
power law with an exponent close to the experimental one
[24,25].

Another important characteristic of avalanches in the brain
is that they contain highly repeatable patterns, both in vitro
[26] and in vivo [27], supporting the hypothesis that scale-free
neural avalanches are the signature of a critical behavior in
a system that has stored multiple dynamical spatiotemporal
patterns. Notably, it has been shown [27] that spike avalanches,
recorded from freely behaving rats, form repertoires that
emerge in waking, recur during sleep, are diversified by novelty
and contribute to object representation. They constitute distinct
families of recursive spatiotemporal patterns, and a significant
number of those patterns were specific to a behavioral state.

Storing precise spatiotemporal patterns as dynamical attrac-
tors of the network is a useful strategy for brain functioning,
coding and memory, and many experimental results on the
replay of precise spatiotemporal patterns of spikes suggest this
possibility [28–33].

Our model captures such additional features of neuronal
avalanches, such as the underlying first-order transition be-
tween attractor dynamics and quiescence, the stable recurrence
of particular spatiotemporal patterns, and the conditions under
which these precise and diverse patterns can be retrieved.

Critical avalanches were observed in a leaky integrate-and-
fire model of neurons [34,35], but for a single value of the
noise and of the size of the system, where no hysteresis was
observed, and the type of underlying phase transition was not
thoroughly investigated. The role of first-order phase transition
for criticality in cortical networks was first pointed out by
Ref. [36] and successively elaborated in a leaky integrate-and-
fire model [37]. However, as shown in [38], in such models
criticality emerges only with a definition of avalanches that
takes into account the causality of different firings. Our model
exhibits neural avalanches at the edge of a first-order transition,
that are identified with the same temporal proximity criterion
used in experiments.

II. RESULTS

We study a model of leaky integrate-and-fire neurons,
whose connectivity is the result of the learning of multiple
spatiotemporal patterns, using a learning rule inspired by spike-
time-dependent plasticity (STDP). The emerging spontaneous
dynamics is simulated in the presence of noise, with fixed
sparse connections, and a small fraction of leader neurons (see
Appendix). Two parameters characterize the dynamics. The
first is the parameter H0 that sets the average strength of the
connections; the second is the parameter α that is the coupling
of each neuron to the noise. The number of neurons goes from
N = 3000 to N = 12 000, with a number of encoded patterns
from P = 2 to P = 10.

We simulate the spontaneous dynamics of the model in
absence of external stimuli as a function of the parameters
H0 and α. Depending on the value of the parameters, two dif-
ferent dynamical states are distinguishable: a quiescence state
(“down” state), characterized by uncorrelated spiking with low
firing rate, and an active state (“up” state), characterized by a
high rate and high spatiotemporal order, and by a long-lasting
collective replay of stored patterns.

To characterize the dynamics, we define the instantaneous
rate r and the normalized variance F (also called the Fano
factor or index of dispersion) as follows:

r = Ntot

N�
, (1a)

F = N�
〈r2〉 − 〈r〉2

〈r〉 , (1b)

where Ntot is the total number of spikes over all the network
in the time interval �, N is the number of neurons of the
network, and the average 〈· · · 〉 is evaluated over a sliding
window [t − T ,t + T ]. We use a time interval � = 1 ms to
compute the firing rate and a half-width of T = 100 ms for
the sliding window. The normalized variance (1b) can also be
written as

F =
〈
N2

tot

〉 − 〈Ntot〉2

〈Ntot〉 , (2)

showing that, if neurons are uncorrelated and Poissonian, then
F = 1. If F > 1 the spiking activity is overdispersed; this
corresponds to the existence of clustered activity, with some
intervals having a much higher activity than the mean and
others a very low activity compared to a Poisson distribution.
If on the other hand F < 1, activity is underdispersed, with
many intervals having spike counts close to the mean.

In Fig. 1, we show the dynamics of the network at fixed
noise α = 0.033, while we increase the parameter H0 from
0.1 to 0.3 in 50 s. [Note that throughout the paper the time is
always measured as the “physical” time appearing in Eq. (A1),
not the CPU time needed to simulate the system.] At low values
of H0, the spiking rate is low, less than 1 Hz, and normalized
variance is near to 1, signaling uncorrelated Poissonian activity
(down state). At time t = 36 s, whenH0 reaches the valueH0 =
0.244, we observe an abrupt transition to a state corresponding
to the sustained collective replay of one of the stored patterns
with high firing rate (up state). In Figs. 1(a) and 1(b) we show
the raster plots of the dynamics in the same interval of time,
with neurons ordered on the vertical axis by the two patterns
encoded in the network. It can be seen that the transition to the
up state corresponds to the replay of one of the stored patterns.

Note that Figs. 1(a) and 1(b) refer to the same spike train.
The different ordering on the vertical axis makes the spikes
appear in a sawtooth shape when the pattern corresponding
to the order is replayed, while they appear as completely
random (and deceitfully denser) when another pattern (not
corresponding to the ordering of the vertical axis) is replayed.
In Fig. 1(c) we show the rate corresponding to the dynamics
shown in both raster plots 1(a) and 1(b). It can be seen
that, at time t = 36 s, when the collective replay of the first
patterns starts, the rate sharply increases from a very low
value to an average value of 13 Hz, fluctuating between 5 and
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FIG. 1. Spontaneous dynamics for N = 3000 at noise α = 0.033,
showing a transition while we increase parameter H0 from 0.1 to 0.3
in 50 s. A transition between a quiescence state (down) and a state
with emerging of collective replay of stored patterns (up) is shown to
occur at time t = 36 s, corresponding to a value H0 = 0.244. Raster
plots (a) and (b) show the same spontaneous spiking activity with
two different sortings of neurons on the vertical axis. In (a) neurons
are sorted by the spiking time in pattern 1, while in (b) they are
sorted by the spiking time in pattern 2. The replay of the pattern
corresponding to the sorting on the vertical axis is apparent by the
sawtooth ordering of the spikes: from time t = 36 s to time 36.75 s
stored pattern number 2 is replayed, while from t = 36.75 s stored
pattern number 1 is replayed. Note that when a pattern is replayed,
there seems to be a lower density of dots due to the fact that the
dots overlap. In (c) we show the average instantaneous firing rate,
corresponding to both raster plots (a) and (b). The rate is measured
as the total number of spikes in a time interval of � = 1 ms divided
by N�. In (d) we show the normalized variance of the firing rate (see
text). In the down state normalized variance is equal to 1, while in the
up state it goes to values σ > 3, signaling a non-Poissonian dynamics,
with temporal clustering. When the system has a transition to the up
state, the firing rate abruptly increases and normalized variance has a
peak. Inset: Value of H0 as a function of time.

30 Hz. Correspondingly, normalized variance F jumps from 1
(Poissonian dynamics) to a value between 2 and 5 (temporally
clustered). Note that values of normalized variance greater than
1 are found experimentally in persistent activity in cortical
circuits [39]. Exactly at the transition, the normalized variance
has a high peak.

A. Hysteresis and first-order transition

The observed discontinuous behavior of the rate and vari-
ance suggests that the transition is of a first-order kind. An
important characteristic of first-order transitions is hysteresis,
so here we investigate if our model actually shows hysteresis
while varying parameters H0 and α. At a fixed value of α,
we start with the system in the down state and H0 = 0.1, and
cycle H0 from 0.1 to 0.4 in the first 50 s, and back from 0.4 to
0.1 in the last 50 s. In Fig. 2 we show the instantaneous rate
and variance as a function of H0 in the first half of the run
(increasing H0, red lines) and in the second half (decreasing
H0, blue lines). Both rate and variance are averaged over four
different runs, with different realizations of stochastic noise.

For low values of the noise, we observe a strong hysteretic
behavior of the dynamics. Looking, for example, at Fig. 2(a),
where α = 0.015, we observe that when H0 is increased, down
→ up transitions take place between H0 = 0.31 and 0.32. As
the rate and variance are averaged over four runs, there are
actually four different transitions at slightly different values of
H0, depending on the realization of the stochastic noise.

On the other hand, when H0 is decreased, up → down
transitions take place at lower values of H0, in this case
around H0 = 0.2. In Figs. 2(b), 2(c) and 2(d), we show the
same experiment for higher values of the noise parameter α.
When α � 0.45, the value of the rate and variance does not
depend anymore on the history and is equal within fluctuations
when H0 is increased or decreased. Moreover, one can observe
multiple back-and-forth transitions up → down and down →
up, during the same run, giving rise to a large peak in the
variance. In Fig. 3 we show the behavior of the system for a
higher value of the number of neurons and number of patterns.

Hysteresis is a hallmark of first-order transitions, charac-
terized by the presence of two (or more) possible states of
the system, separated by barriers difficult to overcome. If the
systems stays in one state, it will tend to remain in that state also
when external parameters would favor another one. Therefore
the state of the system depends on the past history, for example,
if H0 is being increased or decreased. The nucleation time,
i.e., the lifetime of metastable states, depends critically on
the range of the connections. If the model is characterized by
long range connections, one could expect a “mean-field-like”
behavior, with the transitions from the metastable to stable
states happening on the spinodal lines. However, in our case,
albeit the connections do not depend on distance (that is, they
are long range), the number of units is not very large, so we
expect that at any point in the space of parameters there will be
a nucleation time sufficient to switch the system from one state
to the other that can also be interpreted as a typical lifetime of
the state. Transitions down → up will be observed when the
lifetime of the down state becomes comparable to or smaller
than the experimental time, taken as the inverse rate of change
of H0, while on the contrary, transitions up → down will be
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FIG. 2. Firing rate and normalized variance during spontaneous
dynamics while sweeping H0 at fixed α for N = 3000 and P = 2, and
for values of the noise (a) α = 0.015, (b) α = 0.03, (c) α = 0.045, and
(d) α = 0.1, showing a hysteretic behavior at low values of the noise.
The strength of connections H0 is increased from H0 = 0.1 to H0 =
0.4 during the first 50 s of the simulation (red line) and then decreases
back toH0 = 0.1 during the last 50 s (blue line), with a linear schedule.
Transitions between two dynamical states, a “down” state with low
rate and normalized variance equal to 1 and an “up state” with a
much higher rate and normalized variance F > 3 are observed at
different values of H0 while ramping up or down, showing hysteresis
at low values of the noise. Peaks in the normalized variance signal
the transitions. At high values of the noise, α � 0.045, there is an
interval of H0, around H0 = 0.22 ≈ 0.24, where multiple transitions
down → up and up → down are observed.

observed when the lifetime of the up state becomes smaller than
the experimental time. At high values of the noise or at small
system sizes, the lifetime of both up and down states becomes
smaller than the experimental time, so that an alternation of up
and down states can be observed.

In Fig. 4, the phase space of the system for N = 3000 (a)
and N = 12 000 (b) is shown. A red line marks the boundary
where the dynamics switches from down to the up state when
H0 increases, at a fixed value of α, while a blue line marks
the boundary from up state to down state when H0 decreases.

FIG. 3. Firing rate and normalized variance while sweeping H0

as in Fig. 2 for N = 12 000 and P = 10, and noise α = 0.01. The
hysteretic behavior is robust with respect to increasing size and
number of patterns.

Bars indicate the width of the region where the transition may
happen, namely, the lowest and highest values of H0 where the
transition was observed, for several realizations of the patterns
and of the stochastic noise. Inside the strip defined by the bars,
one may observe multiple back and forth transitions, i.e., an
alternation of down and up states.

Red and blue lines can be interpreted as “pseudospinodal”
lines that mark the point where the lifetime of the state
(or nucleation time) becomes smaller than the observation
time. While in systems with short range connections the
nucleation time is independent from the size of the system,
when connections are long range, as in our case, we expect
that the nucleation times grow with the size of the system.
Indeed, as shown in Fig. 4(b), by increasing the number of
neurons from N = 3000 to N = 12 000, the hysteresis region
broadens, showing that lifetime of the states increases.

This means that the convergence of the “pseudospinodal”
lines at α = 0.045, for N = 3000, is actually a finite size
effect, but the transition is still first order at these values
of the parameters. As shown in the inset of Fig. 4(b), for
N = 12 000 lines meet at a much higher value of the noise,
and a higher value of H0. It is reasonable to expect that,
in the thermodynamic limit N → ∞, the point where lines
meet will tend to a definite value of α and H0, corresponding
to a second-order transition point, terminating the first-order
transition line.

To check the behavior of the nucleation time with network
size, in Fig. 5 we investigate the nucleation time for network
size N = 12 000,7500,3000 at loading parameter P/N =
1/1500 and noise α = 0.03. Notably, the nucleation time
grows with the size of the system, supporting the hypothesis
that metastable states have infinite lifetimes in the thermo-
dynamic limit, as is expected for a system with long range
interactions undergoing a first-order transition.

B. Critical behavior at the edge of instability

The presence of metastability and hysteresis indicates that
the transition is a nonequilibrium first-order one. We here show
that when one enters the metastable region from below, precur-
sor phenomena in the form of scale-invariant spatiotemporal
activity bursts can be observed that are distributed following
power laws both in size and in duration.

Indeed, when approaching the down → up transition from
below, before falling in the persistent up state, the network may
have high fluctuations with transient periods of high activity.
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FIG. 4. (a) Hysteresis region and “pseudospinodal” lines for N =
3000 and P = 2. The red line marks the (average) value of H0 where
the dynamics switches from down to up state when H0 increases, at a
fixed value of α. The blue line the (average) value where the dynamics
switches from up to down state when H0 decreases. Bars indicate the
lowest and highest values of H0 where a transition was observed (with
several different realizations of the stochastic noise). At high value of
the noise, α > 0.04, we observe no hysteresis, and bars indicate the
interval in which multiple down → up and up → down transitions are
observed. (b) Same plot for N = 12 000 and P = 2. Lifetimes of the
states increase with respect to the N = 3000 case, so that the up and
down alternating region at these values of the noise disappears and the
hysteresis region broadens. In the inset a larger range of parameters is
investigated, showing that “pseudospinodal” lines merge at a higher
value of noise and H0.

One can observe that inside this short period of high firing rate,
at a finer level, the activity is made of a series of cascades or
“avalanches,” separated by short drops in the rate, distributed
with high diversity in spatiotemporal scale, resulting in power-
law distributions.

We perform the following experiment: we fix a value of
the noise α and connection strength H0, and simulate the
spontaneous dynamics of the network. At low values of the
noise, as the system is in a metastable state that has a finite
lifetime, after some unpredictable time it will fall in the state
of persistent replay of one of the stored patterns. We identify
this event by looking when the average firing rate of the neurons
stays above 10 Hz for an interval of time longer than 10 s. When
the network falls in this “persistent up” state, we terminate the
simulation and start the dynamics again from the beginning
with a different realization of the noise. During the run before
falling in the state of persistent replay, we measure the rate of

FIG. 5. Average nucleation times are shown for network sizes
N = 12 000, 7500, 3000 at a loading parameter P/N = 1/1500 and
noise α = 0.03, as a function of H0. Notably, the nucleation time
grows with system size, as expected in a system with long range
connections undergoing a first-order transition.

the network and identify the bursts of activity or avalanches.
In Fig. 6(a), we show the rate during a run with α = 0.03,
N = 3000, and H0 = 0.22. Note that in the last seconds of the
simulation the rate remained above 10 Hz for 10 s, so the run
was terminated. In the first 25 s, three bursts of activity can be
seen, which were identified as a series of avalanches.

In contrast, for higher values of the noise, α � 0.045
for N = 3000, the lifetime of the metastable states becomes
smaller and one observes an interval of values of H0 where
the system shows bursts of activity, with short up and down
alternation, without ever falling into the state of persistent
replay, as shown in Fig. 6(b). Indeed, in this model with
structured connectivity and replay of stored patterns, the noise
has a twofold effect: on one hand it stimulates the start of a
burst of activity, i.e., initiates a short collective replay of one
of the stored patterns, but on the other hand, it can also stop its
propagation and therefore hinder its persistent replay.

Note that up and down alternations, with bursts of general-
ized spiking that last for many seconds, have been observed to
occur spontaneously in a variety of systems and conditions,
both in vitro [40,41] and in vivo [42,43]. These bursts are
composed by many avalanches.

As recently pointed out in Ref. [38], two different methods
have been used to define avalanches. The first is based on
the temporal proximity of neural activity, so that if activity
happens in contiguous time bins, it is considered as belonging
to the same avalanche. The second takes into account the
causality of firing so that the activity of two neurons belong to
the same avalanche if the spike of the first neuron directly
causes the second neuron to fire. A novel tool for detect
cascades of causally related events experimentally has been
found, and it shows that indeed, neuronal avalanches are
not merely composed of causally related events [44]. We
define avalanches according to first method, that is, the one
used in experiments, where causal information is not usually
accessible. In particular, we use the methods implemented
by Refs. [10,45,46], which altered the original method used
by Ref. [1], to make it more suitable when the activity of
a large number of neurons is measured. In Ref. [46], both
methods were used, finding consistent results. Avalanches are
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FIG. 6. Firing rate at fixed values of the noise and connection
strength for (a) α = 0.03, H0 = 0.22 and (b) α = 0.045, H0 = 0.22,
at N = 3000. At lower values of the noise, the system eventually
falls into a state of “persistent up.” We identify this as an interval
of 10 s where the rate is always larger than 10 Hz (last seconds of
simulation in A) and stop the simulation. Avalanches are identified as
consecutive time bins of �t = 1 ms, with a rate higher than a threshold
Rmin = 7 Hz. Three or four intervals [in (a) and (b), respectively] in
which the system is in an up state are shown that are in turn composed
of many avalanches.

therefore defined as periods of time where the population
firing rate exceeds a threshold. As the population firing rate
distribution is bimodal, reflecting the existence of the two
phases, we set the threshold slightly higher then the minimum
of the bimodal rate distribution, to minimize the probability
of concatenating different avalanches. The minimum slightly
changes with system size; therefore we use a threshold of
Rmin = 7 Hz at N = 3000, and Rmin = 10 Hz at N = 6000
and 12 000, using a time bin of �t = 1 ms to measure the
population firing rate. Note that the rate is defined in terms of
average spiking rate of single neurons; therefore a rate R in Hz
corresponds to RN/1000 spikes per milliseconds, where N is
the number of neurons. We define the size of an avalanche as
the total number of spikes, that is, the integral of the rates over
the avalanche duration.

In Figs. 7(a) and 7(b), we show the distribution of the sizes
and durations of the avalanches for α = 0.06 and N = 3000
near the pseudospinodal line, H0 = 0.22, and both above and
below it. We find a clear subcritical behavior at H0 = 0.19,
where the system mostly remains in the down state with
very low activity, a scale-free behavior at H0 = 0.22 where
up-down alternation emerges, and a supercritical behavior with

FIG. 7. (a) Size and (b) duration distribution of the avalanches
at N = 3000, P = 2, and α = 0.06 (curves are shifted for clarity).
For H0 = 0.19 a subcritical behavior is observed. Power laws are
observed near the pseudospinodal at H0 = 22, where the system
shows alternation of up and down states. Increasing the value of H0

above the pseudospinodal, the distribution shows a peak signaling a
supercritical behavior. The exponents of power laws are τ = 1.47 ±
0.1 for the sizes, and β = 1.55 ± 0.1 for the durations. (c) Average
size of the avalanche as a function of the duration. The dependence is
always a power law, with an exponent k = 1.12 ± 0.01, in agreement
with Eq. (3) within errors.

an excess of large avalanches above the pseudospinodal line
at H0 = 0.27. At H0 = 0.22, near the pseudospinodal line,
the distributions are well described by power laws, with an
exponent τ = 1.47 ± 0.1 for the sizes and β = 1.55 ± 0.1 for
the durations.

We used the “powerlaw” PYTHON package [47] to compute
the log-likelihood ratio of the power-law fit with respect to an
exponential fit, finding R = 76 for the size and R = 14 for the
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duration (positive values mean that power law is more likely),
with a significance p < 10−40 in both cases, indicating that the
power-law fit is much better than the exponential fit.

While the exponent τ of the sizes is compatible with the
largest part of the experimentally measured values, the value
of β found originally (and predicted by models based on a
branching process) was β = 2 [1]. However, values similar to
the one found here have been observed in some experiments,
for example, β = 1.7 ± 0.2 in Ref. [25].

In Fig. 7(c), we show the average size of the avalanche
as a function of its duration, that follows a power law with
an exponent k = 1.12 ± 0.01, which is in agreement, within
errors, with the value predicted by the relation

k = β − 1

τ − 1
. (3)

This relation was derived in Ref. [48] in relation to crackling
noise.

It can also be derived by this simple reasoning: For values
of the duration T ′ lower than the power-law cutoff T ∗, the
probability that an avalanche has a duration T > T ′ goes as
P (T > T ′) ≈ (T ′)1−β , and analogously, P (s > s ′) ≈ (s ′)1−τ

if s ′ is lower than the cutoff s∗. Now if s ′ is the average size of an
avalanche of duration T ′, and fluctuations in the size fixed the
duration and can be neglected, then P (s > s ′) ≈ P (T > T ′).
It follows that (T ′)k(1−τ ) ≈ (T ′)1−β and therefore k satisfies
Eq. (3), at least for sizes and durations below the cutoff.
Notably, the relation s(T ) ≈ T k holds also quite far from
critical regime, both experimentally [25] and in our model [see
Fig. 7(c)].

Note that the branching process, which is usually connected
with the critical behavior in cortical networks, predicts values
of τ = 1.5 and β = 2, so that k = 2, substantially greater
than the one that we observe. On the other hand, different
experiments reported values of the exponent lower than 2, and
more similar to the value that we have measured [24,25], with
τ and β satisfying the relation (3).

A value of k slightly larger than 1 is in agreement with the
fact that avalanches are segments of collective spatiotemporal
patterns, having a constant average rate of spikes, so that the
total size of the avalanche is almost proportional to its duration,
except for the beginning and end of the burst. The shape
of avalanches in the branching process, on the other hand,
corresponds to a rate of spikes having a maximum proportional
to the duration T of the avalanche, giving rise to a total size
proportional to T 2.

It is interesting that relation (3) between the critical ex-
ponents is verified in our model and experimentally [24,25],
while it is not verified in models where power law is not a
manifestation of a critical point [49].

In Fig. 8, we show the avalanche distribution at N = 3000,
6000, 12 000, P = 2, α = 0.06 and respectively for H0 =
0.22, 0.23, and 0.265. The parameters for N = 12 000 are
inside the hysteresis region of Fig. 4, where lifetime of the
metastable state is longer then experimental time, and near the
spinodal instability. The distributions follow power laws with
exponents compatible within errors for different sizes, and with
experimental results [6,25]. For N = 12 000 the exponents
found are τ = 1.52 ± 0.05 for the sizes, and β = 1.58 ± 0.05
for the durations. Also, in this case we compared the power-law

FIG. 8. (a) Size and (b) duration distribution of the avalanches
at N = 3000, 6000, and 12 000, P = 2, α = 0.06, and near the
spinodal instability at H0 = 0.22, 0.23, and 0.265, respectively. For
N = 12 000 the exponents are τ = 1.52 ± 0.05 for the sizes and
β = 1.58 ± 0.05 for the durations. (c) Average size of the avalanche
as a function of the duration for the same values of α and H0. For
N = 12 000 the exponent of the power law is k = 1.09 ± 0.05, in
agreement with Eq. (3) within errors, taking points with duration
T < 50. Note that for higher values of the duration the exponent
seems to decrease and tend to 1, as observed in Ref. [25].

fits with the exponential ones, finding a log-likelihood ratio
R = 6.2 for the sizes and R = 7.2 for the durations, with a
significance p < 10−10 in both cases. Notably, as reported in
Figs. 8(a) and 8(b), the cutoff of the avalanche distributions
scales with system size, supporting the scale-free behavior of
the model near the pseudospinodal line. As shown in Fig. 8(c),
the average size as a function of the duration follows a power
law also at large sizes, with an exponent k = 1.09 ± 0.05 at
N = 12 000, which is again in agreement within errors with the
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FIG. 9. Data collapse of the size (a) and duration (b) distributions
of the avalanches. The exponent 1/σν describes the dependence of
the cutoff of the sizes as a function of the system size at the critical
point smax ∝ N 1/σν , while for the durations Tmax ∝ N 1/σνk .

value predicted by relation (3) and with experimental results
[24,25]. In Figs. 9(a) and 9(b), we show the finite size data
collapse of the avalanche size and duration distribution. It is
expected that the cutoff of the sizes and durations respectively
scale as s∗ ∝ N1/σν and T ∗ ∝ N1/σνk at the critical point, and
their distributions are given by

P (s) = N− τ
σν P̃s

(
s/s∗),

P (t) = N− β

σνk P̃T

(
T/T ∗),

where P̃s(x) and P̃s(T ) are master curves that go as P̃s(x) ∝
x−τ and P̃T (x) ∝ x−β at small values of x. The best data
collapse is given by a value 1/σν = 2.2 of the exponent.

Note that due to the heterogeneity and quenched disorder in
the network connectivity, the region with scale-free avalanches
of activity in the model is not limited to a single point or a single
line in the phase space but is an extended region, similar to a
Griffiths phase [50]. A broad region of hysteresis is observed,
and at high noise or small size where there is no hysteresis a
broad region of up-down alternation with burst composed of
scale-free avalanches is observed.

III. DISCUSSION

Scale-free avalanches and critical behavior in cortical
dynamics are frequently associated with second-order (con-
tinuous) phase transitions. However, power-law and critical
phenomena also emerge in first-order phase transitions as one

enters the metastability region and approaches the spinodal line
in systems with long range interactions [17,18].

A nonequilibrium first-order phase transition can be in-
duced by additive noise [23,51] in spatially extended systems
where coupling favors coherent behavior. By varying the
parameters of the systems, or the noise, the order of the phase
transition may change. A first-order phase transition with a
coexistence region where the system displays hysteresis and a
crossover to a second-order transition for large values of the
noise has been studied in a variety of systems such as surface
growth [52]. Hysteresis in a stochastic nonleaky integrate-and-
fire model has been studied in [53], but scale-free avalanches
were not investigated. A pioneer model that has hypothesized a
new scenario for cortical dynamics, combining self-organized
criticality with a first-order transition, is the one studied in
Refs. [36,54,55]. More recently [56] it has been suggested
that cortical networks are not self-organized to a critical point
(SOC), as usually considered, but to a region of bistability
(SOB) near a first-order transition. A most referenced model
that displays criticality in a network of leaky integrate-and-fire
neurons has been studied in Ref. [37]. In that model, however,
criticality emerges only with a definition of avalanches that
takes into account the causality of different firings. If one uses
a criterion based only on temporal binning and proximity, as
done usually in experiments where causality is not observable,
one finds an exponential distributions of avalanches and no
critical behavior is observed [38].

In this paper, we studied a model of leaky integrate-and-fire
neurons, characterized by structured long range connectivity,
corresponding to the encoding of spatiotemporal patterns.
We showed that the model exhibits a first-order transition
between a down state characterized by low activity and an
up state characterized by the collective replay of one of the
spatiotemporal patterns encoded in the network. Notably, the
role of noise is crucial. Indeed, depending on the noise and
size of the system, one observes hysteresis (low noise or large
size) or up-down alternation (high noise or small size) at the
transition.

Increasing the size of the system, the lifetimes of states
increase, and one observes hysteresis also for values of the
noise that showed alternation of states at smaller sizes, showing
that the alternating behavior is a finite size effect and the
underlying transition is of a first-order kind. Both in the
region of hysteresis, approaching the spinodal instability, and
in the region of alternation, we observe scale-free bursts of
activity (avalanches). Notably, this was found by identifying
avalanches using the same criterion of temporal proximity used
in experiments.

While scale-free avalanches alone are not sufficient to
assess criticality [49,57,58], we have independently identified
a (first-order) transition by the discontinuity in the rate and the
hysteretic behavior. Power-law distributions, and a peak in the
normalized variance, are then observed near the edge of the
spinodal instability, as is expected for a first-order transition in
a model with long range connections.

The model therefore incorporates both criticality and the
functioning of the network as a memory, or reservoir of
dynamical patterns. When the system is posed at the edge of the
instability, it shows spontaneous ongoing activity with critical
scale-free behavior. However the state is a metastable one. If a
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cue stimulation (a short train of input spikes, with order similar
that of the stored patterns) is given, then the system switches
in the persistent up state and responds with a (noncritical)
sustained replay of the pattern stimulated. This behavior is
similar to that observed experimentally in Ref. [24], where a
transient state characterized by large noncritical avalanches is
observed in response to an external stimulus.

The exponents of the size and duration distribution, and the
exponent k giving the dependence of the size on the duration
of the avalanche, s(T ) ≈ T k , are compatible with the range of
values found experimentally [6,24,25]. The value of k near to
1 is due to the mechanism of avalanche propagation. Indeed, in
our case avalanches are segments of patterns having an almost
constant average spiking rate so that the total size is almost
proportional to the duration.

In a branching process model [59] it was shown that
exponents of size and duration distributions are not universal
but vary depending on a small external driving of the system.
The effect of the driving, in the class of branching processes
that they consider, is to merge smaller avalanches to form
larger ones; therefore the relative weight of larger avalanches
increases and exponents decrease with the driving, while the
exponent k remains equal to 2 independent of the driving.
In our model, on the other hand, avalanches are related to
the emergence of a collective coordinated activity. Therefore
the effect of noise is not only to merge avalanches, but
also to hinder their propagation, decreasing the probability
of longer avalanches. A higher noise decreases the lifetime
of the metastable states, and hysteresis turns into up-down
alternation, and even higher noise makes the region of up-down
alternation broader.

Another paper that has considered the effect of the noise
is Ref. [60]. They studied a “cortical branching model” that
has a nonequilibrium phase transition only in the limit of
zero spontaneous activation (that has a similar role of our
noise), and a quasicritical behavior on the Widom line at finite
values of the spontaneous activation, with a broadening of
susceptibility. Also in our case we observe a broadening of
the susceptibility (normalized variance) with the increase
of the noise. However, in our model we observe a (first-order)
transition also at nonzero values of the noise that produces (for
not too low noise) an alternation between up and down states.
Therefore the broadening of the variance is not connected
to a Widom line but to the broadening of the region where
alternation of up and down states is observed.

The main characteristic of our model is the structure of
the connections, which are not chosen randomly but are the
result of a learning rule inspired by spike-time-dependent
plasticity (STDP), where different spatiotemporal patterns
(corresponding to different sequences of firing of the neurons)
are encoded. Connections are set at the beginning and held
fixed during the dynamics of the network. Due to the fact that
the learning kernel has a zero integral over time (see Appendix),
connections are characterized by a balance between excitation
and inhibition, which is one of the ingredients to observe a
critical behavior, as observed experimentally [11,61] and also
in models [62]. However, balance is not the only ingredient,
since the topology and structure of the connectivity, with
collective patterns carved as attractors of the dynamics, are
crucial to observe the nonequilibrium first-order transition.

Preliminary results indeed indicate that by reshuffling the con-
nections randomly between neurons, the transition disappears.
One observes, on the contrary, a continuous increasing of the
spiking rate when the strength of the connections is increased,
with a normalized variance always near to 1, showing that the
dynamics is Poissonian, and no critical behavior is observed
[63]. This is also in agreement with recent results showing that
topology is crucial for the emergence of critical states [64].

The presence of a nonequilibrium first-order transition and
the critical precursor phenomena in our model are crucially
related to the interplay between noise and a connectivity which
promotes collectivity. Criticality emerges naturally near the
edge of an instability, in an associative memory network, with
many metastable dynamical states.

Another model that studies criticality together with as-
sociative memory was proposed in [65]. In their model, a
Hebbian learning rule is used to store static patterns. However,
they found that Hebbian learning alone destroys criticality
even when the synaptic strength is properly scaled. Applying
an optimization procedure that drives the synaptic couplings
either toward the critical regime or toward the memory state in
an alternating fashion, they finally arrive at a configuration both
critical and that retains an associative memory. The reason why
in our model the learning procedure does not destroy criticality
may be due to the difference in the learning rule, that in our case
is based on STDP and stores dynamical attractors as opposed
to static ones.

Previous studies based on the branching process have
explained the repeatability of spatiotemporal patterns [66,67]
together with power laws in avalanche distribution. In their
model, however, patterns are not shown to be attractors of
the dynamics in any parameter space region. They show
repeatability only in the critical region, where the dynamics
is “neutral” (Lyapunov exponent equal to zero). On the other
hand, in our model the stored spatiotemporal patterns emerge
as collective attractors of the dynamics in the region above
the transition. The systems is therefore both able to work as a
stimulus-activated reservoir of spatiotemporal attractors and as
a more flexible device when used at the border of the instability.

In our model, an alternation of up and down states is
obtained with a fixed value of the excitability H0 inside a
certain range of external parameters near the transition. The
same value of H0, lowering the noise, gives rise to hysteresis,
with persistence of one or the other state depending on the
previous history. However, it is plausible that the brain is able
to change its state also by changing the value of H0, going
out of the critical region toward a persistent up (more suited
for either spontaneous or cue-triggered reactivation of previous
experience) or down state (which favors faithful representation
of sensory inputs) depending on the different behavioral state.
For example Ref. [68] shows that focused attention pulls the
system out of criticality towards subcriticality. The switch
between different states, between sleep and wakefulness or
from inattentive to vigilant states, may be induced by specific
neuromodulators that, among other effects, can also change
the efficacy of the connections. Neuromodulation is important
for regulating brain states [69], but the specific mechanisms of
these switchings are not yet well understood.

Another important ingredient of the network connectiv-
ity in our model is the presence of a small percentage of
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neurons that have higher incoming connection strengths and
are responsible for focusing the noise and initiating the collec-
tive activity (and avalanche propagation). The presence of a few
highly active sites, driving cortical neural activity (leaders),
has been reported experimentally [29,70–72]. Notably it has
been shown that these leader sites are reliably and rapidly
recruited within both spontaneous and evoked bursts [71]. As
shown in Ref. [70], initiation of bursts of collective activity in
cultured networks is a noise-driven nucleation phenomenon.
The nucleation sites seem to be highly localized; they collect
and amplify activity originated elsewhere. This noise focusing
effect is realized in the present model with a higher H0 to
incoming connections to a bunch of neurons, which focus noise
and cooperate to initiate the emergence of the pattern.

There are some predictions that could be investigated in
experiments to discriminate between the first-order transition
scenario considered here and other models. A prediction is
that, lowering the noise, the lifetime of the states increases,
and the system goes from a phase with alternation of up and
down states to a phase characterized by metastability and hys-
teresis. The noise can be related, for example, to spontaneous
neurotransmitter release. Another prediction of our model is
that, increasing the strength of the connections but maintaining
the balance between excitation and inhibition, the patterns that
in the critical region appear during the alternation of up and
down states become more attractive and can be replayed for a
longer time. To our knowledge this kind of experiment has
not been realized. What has been done is something quite
different, that is, changing the balance between excitation and
inhibition. This tunes the network into a phase characterized
by high activity, far from the critical regime and with an excess
of long avalanches. It is not clear, however, if this corresponds
to the same kind of transition that we observe.

This work is a leaky integrate-and-fire model which shows
how both dynamical attractors and neuronal avalanches con-
verge in a single cortical model, and therefore may help to link
the bridge between criticality and the need to have a reservoir
of spatiotemporal metastable memories.

Note added in proof. Recently, we became aware that
an argument similar to that following Eq. (3) was given in
Ref. [73].

APPENDIX: THE MODEL

We simulate a network of N spiking neurons, modeled
as leaky integrate-and-fire units and represented by the spike
response model [74], in the presence of a Poissonian noise dis-
tribution. We study the spontaneous dynamics of the neurons
connected by a sparse structured connectivity in absence of any
external inputs. Between consecutive spikes, the membrane
potential of neuron i is given by

ui(t) =
∑

j

∑
ti<tj <t

Jij [e−(t−tj )/τm − e−(t−tj )/τs ]

+
∑

ti<t̂i<t

J (t̂i)[e
−(t−t̂i )/τm − e−(t−t̂i )/τs ], (A1)

where Jij is the synaptic strength between presynaptic neuron
j and postsynaptic neuron i, tj are the spiking times of neuron
j coming after the last spike ti of neuron i, t̂i are random times

extracted from a Poissonian distribution with rate ρ = 1 ms−1,
J (t̂i) is a Gaussian variable extracted at time t̂i with zero mean

and standard deviation
√

αN
3000ρ

∑
j J 2

ij , τm is the characteristic

time of membrane (τm = 10 ms), and τs is the characteristic
time of synapse (τs = 5 ms). When the membrane potential
ui(t) hits the threshold 	 = 1, it is reset to zero and spikes are
transmitted to all the neurons that receive input from neuron i.
The strengths of the connections are determined by a learning
rule [34,35,75,76], inspired by STDP (spike-time-dependent
plasticity), which gives rise to a highly heterogeneous and
disordered distribution of weights.

We build the connections Jij forcing the network to store
P spatiotemporal patterns. Each pattern is a periodic train of
spikes, with one spike per neuron and per cycle, with the neuron
i firing at times t

μ

i + nT , with t
μ

i randomly and uniformly
extracted in the interval [0,T μ]. In the present work, we use
a number of neurons between N = 3000 and N = 12 000,
and a number of patterns between P = 2 and P = 10, with
period T μ = 333 ms. After the learning stage, the strength of
connection Jij is given by

Jij = fiH0

N

P∑
μ=1

∞∑
n=−∞

A
(
t
μ

i − t
μ

j + nT μ
)
, (A2)

where A(τ ) is the STDP learning window [77,78] given by

A(τ ) =
{
ape−τ/Tp − aDe−ητ/Tp if τ > 0,

apeητ/TD − aDeτ/TD if τ < 0,
(A3)

with ap = A0/[1 + ηTp/TD], aD = A0/[η + Tp/TD], A0 =
3000, Tp = 10.2 ms, TD = 28.6 ms, and η = 4. To take
account of the heterogeneity of the neurons, we use two values
of fi , fi = 1 for “normal” neurons and fi = 3 for “leader” neu-
rons, i.e., neurons with higher incoming connection strengths,
that amplify activity initiated by noise [29,70–72]. In other
words, leaders are neurons that fire more than other ones
and give rise to a cue able to initiate the short collective
replay. They are chosen as a fraction of 3% of neurons with
consecutive phases, for each pattern μ. The connection Jij

between neurons i and j does not depend therefore on the
spatial distance between them if they are embedded in a
two- or three-dimensional space. Therefore this form of the
connections is a “long range” one, for which one could expect
a “mean-field-like” behavior, with long lifetimes (infinite in the
thermodynamic limit) of the metastable states. Long lifetimes
can be expected also if connections are not independent from
the distance, but the range is not too small.

Note that Jij are proportional to N−1, so that the noise is
independent from N at fixed value of α. On the other hand,
due to the shape of the STDP learning kernel that has a time
integral equal to zero, this learning procedure assures the
balance between excitation and inhibition, i.e.,

∑
j Jij is of

order 1/
√

N . At the end of the learning procedure, part of
the connections are positive (excitatory) and part are negative
(inhibitory). Inhibitory neurons are not explicitly simulated,
but negative connections can be considered as connections
mediated by fast inhibitory interneurons. Alternatively, one
could introduce a global inhibition and explicitly simulate only
the positive connections.
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FIG. 10. Distribution of the positive connections after the learning
procedure for N = 3000 neurons and P = 2 patterns.

The result of learning multiple spatiotemporal patterns, each
with quenched randomly chosen phase ordering, gives rise
to quenched disorder. The distribution of weight that results
from this learning procedure is highly heterogeneous, with
many small connections and a few strong ones. In Fig. 10

we show the distribution of the positive weights for N = 3000
neurons and P = 2 patterns. The distribution is very skewed
and long-tailed, as observed in the cortex [79,80] and in other
STDP-based models [81–83]. Note, however, that in our model
the distribution of the weights is not a sufficient condition to
determine the dynamical phase transition. Indeed, by shuffling
the connections, leaving their distribution unchanged, this
kind of transition disappears [63]. It seems therefore that
the topology of the network, such as the relative abundance
of motifs, is crucial for the manifestation of the first-order
dynamical transition.

To get a sparse connectivity, like in the brain cortex, we
prune the smallest connections. The pruning procedure still
keeps the balance between excitation and inhibition and leaves
only 30% of the original connections. Once this connectivity
structure is built, it is kept fixed during all the network
dynamics simulations.

Note that apart from the quenched random values of the
times t

μ

i defining the encoded patterns and fi defining the
leader neurons, the dynamics of the model depends only on
the parameters α, determining the strength of the noise, and
H0, determining the strength of the connections.
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