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Abstract

We present a systematic derivation of a minimal five-band tight-binding model for the description of
the electronic structure of the recently discovered quasi-one-dimensional superconductor K,Cr;Ass.
Taking as a reference the density-functional theory (DFT) calculation, we use the outcome of a Lowdin
procedure to refine a Wannier projection and fully exploit the predominant weight at the Fermi level
of the states having the same symmetry of the crystal structure. Such states are described in terms of
five quasi-atomic d orbitals: four planar orbitals, two d,, and two d,2_,2, and a single out-of-plane
one, d 2. We show that this minimal model reproduces with great accuracy the DFT band structure in
abroad energy window around the Fermi energy. Moreover, we derive an explicit simplified analytical
expression of such model, which includes three nearest-neighbor (NN) hopping terms along the z
direction and one NN term within the xy plane. This model captures very efficiently the energy
spectrum of the system and, consequently, can be used to study transport properties, super-
conductivity and dynamical effects in this novel class of superconductors.

1. Introduction

The study of the interplay between superconductivity and magnetism has recently brought to the discovery of
superconductivity in chromium-based compounds [1]. The first example of such systems was CrAs, where the
superconducting transition takes place at T, = 2 K as a result of the suppression of the antiferromagnetic
transition upon applying high pressure [2—5]. This experimental finding inspired the search for
superconductivity in other Cr-based materials, which led to the discovery of ambient-pressure
superconductivity at 6.1 Kin a Cr-based arsenide, K,Cr;Ass, and, subsequently, in a whole class represented by
the family A,Cr;Ass, with A being K [6], Rb [7], Cs [8] or Na [9]. Remarkably, these Cr-based superconductors
have a quasi-one-dimensional (Q1D) crystal structure that consists of [(Cr3As;)* ] o double-walled nanotubes
in which chromium atoms form the inner wall and arsenic atoms the outer one. These nanotubes are in turn
separated by columns of A* ions [6-8].

These novel superconductors display intriguing physical properties, both in the normal [6, 10] and in the
superconducting phase [6, 11-13], which are under intense investigations especially to clarify the role played by
the reduced dimensionality and by the electronic correlations [6]. This is of course an important issue since the
latter are features which considerably affect the properties of a large fraction of the unconventional
superconductors discovered so far.

The crystal structure of K,Cr3As; is the hexagonal one reported in figure 1, witha = 9.9832 Aand
¢ = 4.2304 A. The crystal structure exhibits two planes orthogonal to the c axis with slightly different
stoichiometry, i.e. a plane with KCr;As; and a plane with K;Cr;As; stoichiometry [6]. The resistivity of K,Cr;Ass
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Figure 1. Crystal structure of K,Cr;As;. The colours blue, green and white denote Cr, As and K atoms, respectively. (a) Top view of the
primitive cell. (b) The double-walled nanotube formed by Cr and As atoms.

shows a linear temperature dependence in a broad temperature range, which suggests a non-Fermi-liquid
normal state, possibly related to a quantum criticality and/or a realization of a Luttinger liquid [6]. This
occurrence has not been confirmed by Kong et al [10], who rather reporta T dependence of the resistivity from
10 to 40 K. However, it should be noted that while this result refers to measurements performed on single
crystals, those reported in [6] have been obtained on polycrystalline samples.

The superconductivity in K,Crs;As; shows various features pointing towards an unconventional nature. An
anisotropic upper critical field is reported, with different amplitudes between the cases of field applied parallel
and perpendicular to the rodlike crystals [10]. NMR measurements of the nuclear spin-lattice relaxation rate
1/T; show a strong enhancement in the Cr nanotubes of the spin fluctuations above T, with the power-law
temperature dependence 1/T,T ~ T~ 7 (v =~ 0.25) being consistent with a Tomonaga—Luttinger liquid [11]. In
addition, the absence of the Hebel-Slichter coherence peak in 1/T) below T, provides further evidence that the
superconducting phase is unconventional [11]. The same kind of indication comes from muon-spin rotation
measurements [ 12], which provide evidence of a possible d-wave superconducting pairing, as well as from
measurements of the temperature dependence of the penetration depth AX = A(T) — A\(0) [13]. For the latter,
alinear behavior is observed for T < T;, instead of the exponential behavior of conventional superconductors,
indicating the presence of line nodes in the superconducting gap and thus supporting the hypothesis of an
unconventional nature of the superconducting phase [13].

The unusual metallic state stimulated several studies with the aim of attaining the best description of the
system. ARPES studies [14] of single crystals reveal two Q1D Fermi surface sheets with linear dispersions, without
indication of any three dimensional 3D Fermi surface, as instead predicted by density-functional theory (DFT)
calculations [15]. The overall bandwidth of the Cr 3d bands and the Fermi velocities are comparable to DFT
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results, indicating that the correlated Fermiliquid picture is not appropriate for K,Cr;Ass;. Furthermore, the
spectral weight of the Q1D bands decreases near the Fermi level according to a linear power law, in an energy range
0f 200 meV. This result has been interpreted as an issue supporting a Tomonaga—Luttinger liquid behavior.

On the other hand, measurements and modelling of K,Cr;As; spin wave excitations show that inter-tube J
terms are necessary to reproduce the experimental data [16]. Furthermore, using DFT, it has been found that in-
plane structural distortions, driven by unstable optical phonon modes, play an important role to control the
subtle interplay between the structural properties, the electron—phonon and the magnetic interactions [17].
These results point out the importance of both the intra- and the inter-tube dynamics, as well as the relevance of
the electron—phonon and the magnetic interactions.

From theory perspective, the electronic structure of K,Cr;As; has been examined through DFT calculations
[15]. In contrast with other Q1D superconductors, K,Cr;As; exhibits a relatively complex electronic structure,
where the Cr-3d orbitals, specifically the d 2, d., and d,:_ > ones, dominate the electronic states near the Fermi
energy [15]. Several related calculations have been also developed [18—-21] which establish a basis for theoretical
models. In particular, it has been shown [ 18], by using a three-band model built from the above mentioned 3d
orbitals, that a triplet p,-wave pairing driven by ferromagnetic fluctuations is the leading pairing symmetry for
physically realistic parameters. This result, holding in both weak and strong coupling limits, has been confirmed
in a subsequent paper where a more accurate six-band model was used [19]. Another theoretical work focuses on
the study of a twisted Hubbard tube modelling the [(Cr3As;)* ] oo structure [20]. Here, a three-channel effective
Hamiltonian describing a Tomonaga—Luttinger liquid is derived and it is shown, within this scenario, that the
system tends to exhibit triplet superconducting instabilities within a reasonable range of the interaction
parameters. Finally, the superconducting phase has also been investigated by means of an extended Hubbard
model with three molecular orbitals in each unit cell [21]; as in the previously mentioned approaches, it is found
that the dominant pairing channel is always a spin-triplet one, both for small and large U.

In this paper, we present the construction of a minimal tight-binding (TB) model hamiltonian, which
reproduces with high accuracy the band structure of K,Cr;As; around the Fermi level, as obtained via first-
principle calculations. We demonstrate that such description can be derived starting from a minimal set of five
quasi-atomic orbitals with mainly d character, namely four planar orbitals (d,, and d,:_,: for each of the two
planes KCr3;As; and K5Cr;As;) and a single out-of-plane one (d,2). Moreover, we derive an explicit simplified
analytical expression of our five-band TB model, which includes three nearest-neighbor (NN) hopping terms
along the z direction and one NN within the xy plane.

Such TB representation of the K,Cr;As; band structure is obtained within a three-stage approach consisting
of the following steps: (i) guided by first-principles DFT calculations, we first construct the model based on the
atomic Cr and As orbitals and use it to investigate the orbital character and the symmetry of the bands which
dominate in a certain energy window around the Fermi level; (ii) we use the Léwdin procedure to downfold the
original full hamiltonian into a much smaller space spanned by a set of atomic Cr and As orbitals which are
symmetric with respect to the basal plane; (iii) the knowledge of the results of steps (i) and (ii) allows to
formulate, within a Wannier projection, a TB description based on five atomic-like orbitals of mainly d
character, which are spatially localized around virtual lattice sites located at the center of the Cr-triangles of the
K;Cr;As; planes, stacked along the chain direction.

We point out that this minimal model well reproduces all the details of the low-energy band structuresin a
broad energy region around the Fermi level, which makes it a remarkable improvement with respect to previous
three-band models. Moreover, we expect that, by solving such minimal model and its extensions using suitable
approximations, one may obtain information about the superconducting pairing mechanism especially for the
pairing symmetry, starting from a more complete band structure.

The paper is organized as follows. In the next section, we present the details of the DFT calculations as well as
their extension taking into account the effect of the local Hubbard interaction. In section 3, we present the TB
description in terms of atomic orbitals, which serves as a starting point for the study of the total and the local
density of states (DOS), together with the characterization of the Cr and As orbital components of the electronic
bands. In section 4, we present the results of the Lowdin down-folding procedure giving the projection of the
total Hamiltonian on the subspace of the orbitals that dominate at the Fermi level. From the results of this last
section, we are able to identify the relevant orbitals at the Fermi level, so that we formulate a minimal five-band
effective TB model, as described in section 5, whereas last section contains our conclusions.

2. Density functional calculations

In this section, we present the first-principle calculations which supply a basis for constructing the TB modeling
of the K,Crs;As; band structure that will be described in the following sections. The real space Hamiltonian matrix
elements have been set according to the outcome of DFT calculations [22], performed by using the VASP package
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Figure 2. (a) LDA-+U band structure near the Fermilevel for U = 0 (green lines) and U = 4 eV (red lines). (b) Total density of states
of K,Cr3As; (Fermi level is at zero energy). (c) DOSs per atom of K,Cr3As; projected onto orbitals symmetric with respect to the basal
plane, i.e. d,,and d,2_ 2 (blueline), d 2 (red line) and p, and p, (orange line). The curves have been obtained averaging the projected
DOSs over all the atoms of the unit cell. (d) Same as of (c) for antisymmetric orbitals, i.e. d,, and d,, (purple line) and p, (green line).

[23]. In such an approach, the core and the valence electrons have been treated within the projector augmented
wave method [24] and with a cutoff of 500 eV for the plane wave basis. All the calculations have been performed
usinga4 x 4 X 10 k-point grid. For the treatment of the exchange correlation, the local density approximation
(LDA) and the Perdew—Zunger [25] parametrization of the Ceperley—Alder [26] data have been considered. After
obtaining the Bloch wave functions, the maximally localized Wannier functions [27, 28] are constructed using the
WANNIER90 code [29]. To extract the Cr 3d and As 4p electronic bands, the Slater—Koster interpolation scheme
has been used, in order to determine the real-space Hamiltonian matrix elements [29].

The magnetism in these systems has been studied within the generalized gradient approximation (GGA)
[15,30]. We use the LDA approach that gives lower magnetic moment and weaker magnetic properties in metals
with respect to the GGA [22, 31]. The magnetic properties of these compounds are still under debate [12] and it
is not clear which is the best exchange-correlation functional that should be used.

The role of the electronic correlations on the energy spectrum of K,Cr3As; has also been explored. To this
purpose, we have performed first-principle calculations taking into account the effect of the local Hubbard
interactions, assumed to be non-vanishing on all the Cr d orbitals, and efficiently parametrized by a finite
number of Slater integrals. We follow the convention [32] of identifying U with the Slater integral F° and the
Hund coupling with F* and F*. The direct calculation gives for the intra-t,, orbital Hund interaction the value
Ju = 0.15 U[33]. Considering that previous studies [15] indicate that the system is weakly correlated, we have
assumed for U values ranging in a interval going from 0 to 4eV. The band structure obtained in the two limiting
casesof U = 0and U = 4 eV isreported in figure 2(a). As far as the U = 0 case is concerned, the results are in
agreement with the literature [15]. The character of the bands at low energies is mainly due to the d states of Cr
atoms, whereas the p states of the As atoms are located few electronvolts above and below the Fermi level, as also
found for CrAs [22, 34-36].

We can see that, apart from a slight increase of the energy bandwidth corresponding to the chromium states
being pushed away from the Fermi level, electronic correlations on chromium orbitals barely affect the energy
spectrum. In particular, the band energy separation occurring when the Coulomb repulsion is turned on is one
order of magnitude lower than the value of U considered in the calculation. This result thus seems to confirm
that K,Cr;As; is in a moderate-coupling regime, characterized by a robust metallic phase, expected to remain
stable also under the influence of pressure, strain or doping. As also found for CrAs [22], the nonmagnetic and
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the antiferromagnetic phases turn out to be very close in energy. In the case of K,Cr3Ass, the triangular geometry
tends to frustrate antiferromagnetism, so that the nonmagnetic phase is the most stable one.

3. Tight binding approximation and orbital characterization of the band structure

In this section, we derive a TB model obtained from a basis set of localized atomic orbitals at each site of the
crystal structure. Our starting point will be the most reliable TB description that is capable to reproduce the LDA
band structure close to the Fermi level. This description will then be used to examine in detail the orbital
character of the energy bands, which will be resolved both with respect to the energy itself and to the k vector in
the main high-symmetry points of the Brillouin zone.

We construct the TB model by considering all the atomic orbitals that participate to conduction, namely Cr
3dand As 4p orbitals. The basis in the Hilbert space is given by the vector

T il ¥ i i i
¢i - (d;)rx}” di,xz—yz’ di,zz’ pi,x’ pi,y’ dZ)’Z’ difxz’ pi,z)’ (1)

where iis the lattice index and the orbitals are ordered having first those symmetric with respect to the basal
plane and then the antisymmetric ones.
The TB Hamiltonian is defined as

H= Z e+ > ¢,Tfi,j¢j) 2

1,j

where iand j denote the positions of Cr or As atoms in the crystal, and &; and #; ; are matrices whose elements
have indices associated with the different orbitals involved. The first term of the Hamiltonian takes into
account the on-site energies, with (;)*” = £, 5, while the second term describes hopping processes
between distinct orbitals, with amplitudes given by the matrix elements 2. The latter are given by the
expectation values of the residual lattice potential V(r) on the complete orthogonal set of the Wannier
functions ¢,(r — R)):

t57 = (¢, (r — RY|V()|gy(r — R)). ©)

Their values are obtained according to the procedure described in the previous section. The Hamiltonian in
equation (2)isa48 x 48 matrix because the primitive cell contains six Cr and six As atoms and we have to
consider five d orbitals for each Cr atom and three p orbitals for each As atom.

Recently, we have carried out a detailed TB analysis in order to address the nature of the electronic bands
provided by ab initio calculations, in particular with respect to its supposed one-dimensionality [37]. Such study
revealed that considering only the hoppings between the orbitals of the atoms that lie within a single sub-
nanotube fails completely to describe the in-plane band structure, not even allowing the correct description of
the band structure along the z axis. Such result is also in agreement with previous DFT calculations showing that,
in contrast with other quasi- 1D superconductors, K,Cr;As; exhibits a relatively complex electronic structure
and the Fermi surface contains both 1D and 3D components [15].

In order to understand how the band structure is affected by the number and the position of the lattice
cells involved in the hopping processes, here we have carried out a more accurate optimization of the TB
hamiltonian, as explained in detail in appendix A. Such procedure starts by first considering the hopping
processes within the quasi one-dimensional [(CrsAs;)* "] double-walled nanotubes only, and then
including step by step inter-tube and longer-range intra-tube processes. Our analysis suggests that the LDA
results arise from a delicate combination of several very small contributions, which are crucial in order to
faithfully determine the dispersion of the bands that cut the Fermi level perpendicular to the chain direction
(CMKT path). We thus conclude that, in order to obtain a faithful representation of the electronic ab initio
band structure, it is necessary to take into account all hopping processes up to the fifth-neighbor cells along
the z-axis, together with the in-plane hoppings up to the second-neighbor cells. Diagonalizing the
Hamiltonian in equation (2) and retaining such hopping terms, we obtain an energy spectrum that perfectly
matches the one for U = 0in figure 2(a) (see figure A4), as evaluated along the high symmetry path of the
hexagonal Brillouin zone considered in [38]. Accordingly, the results presented in this section have been
obtained within this framework. However, although the agreement is extremely satisfactory, we cannot
consider successfully concluded our quest for a minimal model because of the need for so many hopping
parameters. Therefore, in order to gain sufficient insight in the behavior of the system and design an efficient
reduction procedure leading us to a real minimal model, we proceed with the analysis of the partial DOS and
of the orbital character of the bands.
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In order to evaluate the orbital character of the low-energy excitations around the Fermi level, we calculate
the total DOS, together with its projection on the Cr and As relevant orbitals. The total DOS is obtained from the
standard definition

ple) = %ij 5(c — &) @

in which ¢ is the energy dispersion as obtained from the TB calculation presented in the previous section, and
the sum is carried out on the Brillouin zone, our grid consisting of 6 x 6 x 12 k points. The delta functions in
equation (4) have been approximated by Gaussian functions where the variance is assumed to be ¢ = 0.025 eV.
The total DOS reported in figure 2(b) exhibits, as expected, peaks in correspondence of the flat portions of the
energy spectrum. Similarly to what found for CrAs [22, 34, 35], the DOS has a predominant As character at
energies of the order of +2 eV away from the Fermi level. The peaks near —0.5 and 1 eV are instead associated
with the Cr-d,, and d,, orbitals, whereas, differently from what happens for CrAs, there is no clear prevalence of
Cr states around the Fermi energy, but rather the Cr-d,, d,2_,2 and d,> and the As-p, and p, contributions are all
relevant, as we will point out below in more detail.

We have also determined the projections of the total DOS on the orbitals of the Cr or As atoms of the
material. These are defined as

() = = Sl £.) P8 (e — @), 5)
N k

where 1 are the eigenstates of our problem and f, represents the orbital on which we project (the delta functions
are again approximated with Gaussians). The projected DOSs associated with the orbitals symmetric with
respect to the basal plane, i.e. dyy, d,2_,2, d,2, ps, py» are shown in figure 2(c), while those associated with the
antisymmetric ones, i.e. d,, d,, p,, are presented in figure 2(d).

Their behavior confirms the results of first-principle calculations, namely the orbitals that dominate the low-
energy excitations are the chromium d,,, d_ 2 and d 2 [15], with the highest contribution corresponding to a
pronounced peak at the Fermi energy associated with the d,,and d._ > orbitals. Nonetheless, we see that an
appreciable contribution also comes from As p, and p, orbitals, this signaling the difficulty of reducing the full
Hamiltonian (2) to a simpler effective one where the d and the p orbital degrees of freedom are efficiently
disentangled. Finally, from figure 2(d) we see that the projected DOS for antisymmetric orbitals exhibits
negligible contribution at the Fermi energy, providing evidence of the decoupling between the two sectors
corresponding to orbitals symmetric or antisymmetric with respect to the basal plane.

To gain a better insight into the nature of the isolated set of ten bands in the energy window [—1.2 ¢V, 0.4 eV]
around the Fermi level, we have performed a detailed analysis of the orbital character of each energy level along
the main directions in the Brillouin zone. This is provided through the ‘fat bands’ representation, where the
width of each band-line is proportional to the weight of the corresponding orbital component, as shown in
figures 3(a)—(e). One can notice that an accurate description of the conduction and valence bands along the
various paths involves both Cr and As. As one can see, the three bands crossing the Fermi level are mainly built
fromthed,,, d,2_,2, d,> orbitals of Cr, with a degree of mixing which is highly dependent on the selected path in
the Brillouin zone.

4. Lowdin procedure

As our previous analysis suggests, the symmetric orbitals dy,, dy2_ 2, d 2, p.and p, dominate at the Fermi level, so
one can project out the low-lying degrees of freedom using the Lowdin downfolding procedure [39]. This
method is based on the partition of a basis of unperturbed eigenstates into two classes, related to each other by a
perturbative formula giving the influence of one class of states on the other one. In this case, the two classes are
the symmetric (s) and antisymmetric (a) p and d orbitals with respect to the basal plane.

Schematically, given the basis defined in equation (1), the matrix has the structure

H55 HSa
H= (Has H) ©®

where H, is the submatrix including hoppings between symmetric orbitals, H,, hoppings between symmetric
and antisymmetric orbitals, and H,,, hoppings between antisymmetric orbitals.
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The submatrices are in turn made of block matrices. Considering for instance H;, we have
H. — HCrSCrS HCrsAss
” HAssCrs HAssAss ’
where the subscripts indicate the orbitals involved, so that
Hyy/xy Hyyjxoy Hyy /22

Hever, = | Hetyryny Hatoyryxryr Hyroy2)z2
HZZ/Xy sz/x27y2 HZZ/ZZ
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and similarly for Hc, a5 . Here xy, x* — y*, 2, yzand xz denote the five d orbitals of the Cr atoms, while x, y and z
denote the three p orbitals of the As atoms. For example, H,, /.22 is the submatrix that includes all the hopping
processes between the d,, and d.2_ > orbitals belonging to the six chromium atoms.

Referring to the matrix of equation (6) and downfolding the H,,, submatrix, the solution of the original
eigenvalue problem is mapped to that of a corresponding effective Hamiltonian H,,, whose rank is 30, with H,
given by [40]

Ir:j;s(g) = H;, — Hsu(Huu - <C-—}:[)71Hcts- (8)

Using this technique, we get the low-energy effective Hamiltonian projected into the subsector given by the
symmetric orbitals, going beyond the simpler complete Wannier function method. The band structure that we
have obtained applying the Lowdin procedure is shown in figure 4(a), where the DFT spectrum near the Fermi
level is also reported for comparison. We can see that the band structure near the Fermi level is caught to a high
degree of approximation and the agreement is almost complete. The d and p antisymmetric orbitals thus can be
fully disentangled from the symmetric ones, as a consequence of the peculiar geometry corresponding to the
arrangement of the chromium atoms.

It is worth noting that we still have a disagreement in the A—-L-H-A region. Such an occurrence is due to the
predominance of the weight of the d2 orbital in that region of the Brillouin zone, although the corresponding
bands are somehow distant from the Fermi surface.

5. Derivation of a minimal five-band TB model

On the basis of the indications provided by the orbital characterization of the band structure and by the Lowdin
procedure, we now introduce a minimal TB model allowing to satisfactorily reproduce the energy spectrum
around the Fermi energy in the whole k-space. We start by referring to the isolated set of ten bands developing in
the energy range going approximately from —1.2 to 0.4 eV (see, for instance, figure 4(a)). The fat band
representation used in figures 3(a)—(e) provides evidence that these bands have mainly the character of the
orbitals that are symmetric with respect to the basal plane. The Léwdin projection clearly demonstrated that
downfolding the ten bands over the six symmetric ones, it is possible to obtain a very good description of the
energy bands in proximity of the Fermi energy. These results naturally suggest a further refinement of our
calculations, consisting in an application of the Wannier method taking explicitly into account the predominant
weight of the symmetric states. We eventually find that this combination of the Lowdin and the Wannier
approaches allows to obtain a fully reliable minimal TB model.




10P Publishing

NewJ. Phys. 21 (2019) 063027 G Cuonoetal

Figure 5. Fermi surface obtained with our minimal model (top panel) and top view of the 3D surface due to the yband (bottom panel).

We observe that the non-dispersive bands in the k, = 0 plane present an antisymmetric character with
weight mainly coming from d,, and d,, orbitals. Moreover, as one can see from the behavior of the DOS
shown in figure 2(d), the contribution at the Fermilevel of these bands, as well as the one of the p bands, is
small compared to that of the symmetric ones. This suggests to exclude the antisymmetric bands from the
construction of a simplified model Hamiltonian, and thus to consider only the six symmetric ones,
associated with two d,, two d,2_ 2> and two d 2 orbitals. A further simplification is applied limiting to one
the number of the d 2 orbital, in consideration of the fact that the corresponding band is the one lying
farther from the Fermi energy. We thus perform the Wannier calculation referring to a five-band effective
model, consistently with the fact that four bands cut the Fermi level, one of them being doubly degenerate at
I" point.

Since chromium-based compounds, such as K,Cr;Ass, exhibit weak or moderate electronic correlations,
they have a covalent character rather than a ionic one, so that, in the case of low-dimensional systems, a
Wannier function can also be placed between equivalent atoms [41]. Our choice is to place d,, d,:_,2,and d 2
wave functions in the middle of the Cr-triangle belonging to the KCr3Ass plane, locating the other two d,;, and
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Table 1. On-site energies and out-of-plane and in-plane hopping integrals
between the same Wannier states. The on-site energy of the z2-like function is
set to zero (energy units in meV).

Out of plane In plane
Onssite
000 001 002 003 100 010
o —86.6 154.1 —53.0 —6.3 23.0 =35
Q; —86.6 154.1 —53.0 —6.3 —12.3 14.2
a3 —37.0 165.0 —41.9 -2.9 30.9 —0.2
Qy —37.0 165.0 —41.9 —-2.9 —10.6 20.6
Qs 0 271.6 —63.9 —14.2 —15.4 —15.4

d.>_,» wave functions in the middle of the Cr-triangle lying in the K3Cr3As; plane. The interpolated band
structure obtained by this method is shown in figure 4(b) together with the DFT band structure. We can
observe a perfect match between the two spectra, thus demonstrating that our five-band model allows to
describe the low energy physics in arange of about 0.3 eV around the Fermi level with the same accuracy
provided by DFT. We also notice that the mixing of two different types of orbital which is at the basis of the
model, suggests that K,Cr;As; might actually behave as a two-channel Stoner d-electron metallic magnet [42].
Interestingly, this effect can drive pressure-induced transitions between ferromagnetic and antiferromagnetic
ground states.

We also show in figure 5 the Fermi surface obtained with our minimal model. The Fermi surface is quite
similar to the DFT one reported in [15, 30]. It consists of two quasi-1D sheets formed by the o and Sbands
and one 3D sheet formed by the yband. The quasi-1D surfaces are in excellent agreement with the literature,
while the 3D surface shows some differences due to the different exchange-correlation functional that we
have used.

We now derive the analytic expression of our TB model, including in the calculation three NN hopping
terms along z, one in the plane and one along the diagonal. We will denote by ; and a, the Wannier functions
relative to the orbitals in the plane atz = ¢/2 with predominant xy and x> — y* character, c/2 being the
distance between KCr3;As; and K5Cr;As; planes, and by a3, oy and a5 those relative to the orbitals with
predominant xy, x> — y*and z* character, respectively, in the plane with z = 0. We will also denote by ¢/
the hopping amplitudes between the Wannier states ; and ;along the direction Ix + my + nz. Since the
system exhibits inversion symmetry along the z axis and the orbitals under consideration are even, we will get
terms proportional to cos(nk,c/2) for the hopping along z, n being an even (odd) integer for hopping between
homologous (different) orbitals.

According to the above assumptions, the Hamiltonian in momentum space is representedasa 5 x 5 matrix,
with elements H,,, o, Concerning the diagonal elements, i.e. those referring to the same Wannier state, they
result from the sum of different contributions related to on-site, out-of-plane and in-plane amplitudes,
respectively. They thus read as

Hai,a,-(kxa ky) kz) = Hg,.,a,» + HQL,-,Q,‘ (kz) + H(‘l,-,ai(kx) ky))

where

0 __ 4000 — _O
ana; = laja; = €
€L 00n
Hy ., (k)= > 2t cos(nk,c)
n=1,2,3

3
Hﬂ,”ai(kx, ky) = Zté?,%x_ cos(kya) + 4t§igi cos (kxg) cos (kﬂ%),

with the numerical values of the hopping parameters being reported in table 1.
Going to the off-diagonal elements connecting different Wannier states, we first observe on a general ground

that when a crystal structure exhibits a reflection symmetry with respect to the x axis, one has for pure d-orbitals

100 010 tOIO

oy = 0and fy, 2 2 = 1,0 2. Astegards K,CrsAs;, we have that its crystal structure is symmetric with

respect to the y-axis, but not with respect to the x-axis. Since the Wannier functions keep this missing symmetry,
wehave t1% = 0and %10 = t210 . Westress that in our TB model this effect is explicitly taken into account,

Qy, Q0

differently from previous approaches where the above-mentioned x-axis symmetry is nonetheless applied
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[18, 19]. As in the previous case, we have that the non-diagonal elements of the Hamiltonian result from in-plane
and out-of-plane contributions associated with hopping processes connecting different Wannier states. Their
expressions are reported in appendix B, together with the tables giving the numerical values of the hopping
amplitudes involved.

6. Conclusions

We have presented a method that combines the Léwdin and the Wannier procedures to derive a minimal five-
band TB model correctly describing the low-energy physics of K,Cr;As; in terms of four planar orbitals (d,, and
d>_ for each of the two planes KCr3As; and K3Cr3As;) and a single out-of-plane one (d,2). We are confident
that this combined method can be applied to other transition-metal compounds, including the iron-based
superconductors.

Our results give clear indication that the physics of the system is significantly affected by in-plane dynamics,
in spite of the presence in the lattice of well-defined quasi-1D nanotube structures. The results presented here
also make evident the minor role played by the local electronic correlations in determining the physical
properties of the compound. Indeed, the inclusion within a LDA+U calculation scheme of a non-vanishing
Hubbard repulsion developing in the Cr d-orbitals leads to only slight quantitative differences with respect to the
non-interacting case.

We notice that although a six-band model was previously reported [ 19] using six symmetric orbitals, the
five-band model proposed here describes with higher accuracy the low-energy physics as a consequence of the
application of the Wannier method. We also point out that, with a filling of four electrons shared among two
kinds of orbitals, the planar d,,, and d,:_ > and the out-of-plane d> ones, the system might be in the Hund’s
metal regime. In this framework, it has been proposed that Hund’s coupling may lead to an orbital decoupling
that makes the orbitals independent from each other, so that some of them can acquire a remarkably larger
mass enhancement with respect to the other ones. Furthermore, a possible connection between the orbital-
selective correlations and superconductivity might be investigated: the selective correlations could be the
source of the pairing glue or, alternatively, could strengthen the superconducting instability arising from a
more conventional mechanism based on the exchange of bosons or spin fluctuations. Work in this direction is
in progress.

Finally, we point out that the model may be used to study transport properties, magnetic instabilities, as well
as superconductivity in anisotropic crystal structures [43], also allowing to investigate dynamical effects in this
class of superconductors [44]. In this case, the evidence that the main features of the energy spectrum around the
Fermi level are essentially determined by the three symmetric d,, d,2_,2 and d > Cr orbitals and by the p, and p,,
As ones, provides a constraint on the form of the superconducting order parameter that should be assumed in
the development of the theory.
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Appendix A. TB parametrization

In this appendix, we report the systematic procedure leading to the TB parametrization based on the 48 atomic
orbitals taken into account in the model Hamiltonian (2). In the following, we perform the calculations by first
considering the hopping processes within the quasi one-dimensional [(Cr;Ass)*~] > double-walled nanotubes
only, and then including step by step inter-tube and longer-range intra-tube processes.

Al Short range intra-tube hybridizations

As previously pointed out, the most relevant sub-geometry of the K,Cr;As; lattice is a quasi-one dimensional
double-walled sub-nanotube extending mainly along the z-axis. So, if we consider only hopping processes
between intra-tube atoms, an already reasonable approximation of the band structure can be obtained, in

11
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Figure Al. (a) (0,0, 0), (0,0, 1) and (0, 0, —1) primitive cells of K,Cr3As;. (b) Atoms taken into account in the diagonalization
procedure when only short-range intratube hopping processes are considered. (¢) (0, 0, 0), (1, 0, 0), (—1, 0, 0), (0, 1, 0), (0, —1,0),
(1,—1,0),(—1,1,0),(1,1,0)and (— 1, —1, 0) primitive cells.

particular along the line of the Brillouin zone associated with variations of k,, i.e. the I"-A line. Referring to the
notation R = ma; + ma, + nsa;, we start by limiting ourselves to the primitive cells denoted by (111, 1, n3) =
(0,0,0),(0,0,1)and (0,0, —1), as shown in figures A1(a)—(b).

The band structure that we have obtained is shown in figure A2 in an energy window around the
Fermi level, with the DFT spectrum being also reported for comparison. We can see that the bands are flat
along the in-plane paths of the Brillouin zone where k. and k, vary, as expected, but along the I'-Aline
they exhibit a behavior quite close to the DFT results. Itis also evident that more reliable results require in
any case the inclusion of hopping processes involving longer range intra-tube cells as well as inter-tube
ones.

A2.Inter-tube and long-range intra-tube hybridizations
We now include in the diagonalization procedure inter-tube hoppings in the x—y plane (13 = 0), taking into
account the contributions coming from the cells (1, 0, 0), (—1, 0, 0), (0, 1, 0), (0, —1, 0), (1, —1,0), (—1, 1, 0),

12
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Figure A2. Comparison between the tight-binding band structure obtained considering hoppings within the (0, 0, 0), (0,0, 1) and
(0,0, —1) primitive cells (blue lines) and the DFT band structure (red dashed lines), in an energy range around the Fermi level (set
equal to zero).

Energy (eV)
)
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Figure A3. Same as in figure A2, with the tight-binding calculations extended to hopping processes in the (1, 0, 0), (—1, 0, 0), (0, 1, 0),
(0,—1,0),(1,—1,0),(—1,1,0),(1, 1,0)and (—1, —1, 0) primitive cells.

(1,1,0)and (—1, —1, 0) (see figure A1(c)). The comparison of the band structure correspondingly obtained with
the one given by DFT (see figure A3) makes evident that the agreement improves along the I'-A line as well as
along the other lines of the Brillouin zone, though there are still some qualitative differences, also at the Fermi
level. In order to get a truly satisfactory agreement, it is necessary to include all hopping processes up to the fifth-

neighbor cells along the z-axis (from n3 = 5ton; = —5), together with the in-plane hoppings up to the second-
neighbor cells (see figure A4).
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Figure A4. Same as in figure A3, with the tight-binding calculations further extended to fifth neighbor cells along the z-axis (from
—5) and to second-neighbor in-plane cells.
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Appendix B. Off-diagonal elements of TB Hamiltonian

We report here the expressions of the off-diagonal elements H,, o, (k, ky, k.) (a; = ;) of the TB Hamiltonian
introduced in section 6. They refer to hopping processes which connects different Wannier states and have the

following form:

n=0,1,2

Hupoy = . Zt((jo”z cos (( )k c) + 41,9, cos(kca)cos(k,c/2)

4 a0 (o

Qg 0/3

00n+
Z Ztﬂz (e
n=0,1,2

az,w, =

+ 4¢010 ¢

(Xz,(hl

ol

i(kas )cos(k a/2)cos(k,c/2) + 4t°10 ¢

)cos(k a/2)cos(k,c/2) + 4t§3g3 7i(k TE) cos(kea/2)cos(k,c/2),

)k c) + 4t(1£0a4 cos(kya)cos(k,c/2)

(k 7 )cos(k a/2)cos(k,c/2),

(,\2,0[4

Hppo, = 211‘;?%2 sin(k,a) + 2zt§}9¥2 (k “*) sin(kca/2) + 211;?119,2 (kyu%) sin(k,a/2)

Hy, o, = 4it}%

+ 4it010 e
Haba5 — 444100

+ 40210 e

Hp,y o, = 4it 1%

Q,Q3

ana, Sin(kya)cos(k c/2) + 411}?10 (k 7 )sm(k a/2)cos(k,c/2)

(kY“T) sin(kca/2)cos(k,c/2)

tayas Sin(kca)cos(k c/2) + 41t§11%5 ( 23) sin(k,a/2)cos(k,c/2)

(k 7 )sm(k a/2)cos(k,c/2),

sin(kca)cos(k,c/2) + 411‘321?13 (ky“g) sin(kea/2)cos(k,c/2)

+ 41t321%3 (kya%) sin(k,a/2)cos(k,c/2)

Qay, as

Hopos = 4t(1120a5 cos(kca)cos(k,c/2) + 4t£212¥5 (kya%) cos(kya/2)cos(k,c/2)
+ 4t221%5 (k 7 )cos(k a/2)cos(k,c/2),
IS
Hy, o, = 2it)%, sin(kea) + 2t €' i(kas )sln(k a/2) + 211,‘33124 “i(kat) sin(kca/2)
Ha,as = 2it)00, sin(kea) + 2it9 e (k”a 2 ) sin(kya/2) + 21t3}135 7‘(’””1%) sin(kya/2)
Hpypas = Ztég?as cos(kea) 4+ 2t210 e (k T )cos(k a/2) + 26010 ¢ (k 7 )cos(k a/2).

Qay, as
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Table B1. Hopping integrals between c;—av; and a,—ay Wannier states

(energy units in meV).
Out of plane Inplane
001 002 003 100 010 010
03 7.9 7.3 14.6 —7.4 —6.9 1.4
Q0 7.9 7.3 14.6 —1.2 —1.7 —-9.9

Table B2. Hopping integrals between
different Wannier states, other than those
listed in table B1 (energy units in meV).

100 010 ()
e 3Te —15.0 30.3 —-0.2
oy —7.1 —2.7 2.6
Qs —9.1 —8.6 —0.5
Q003 —2.4 -7.3 —2.1
QnQss —4.7 —5.6 10.2
30y 17.4 0.6 —35.4
Q305 13.0 —-1.0 14.1
Qs —8.7 15.7 —6.9

The numerical values of the hopping parameters in the above expressions are reported in tables B1 and B2.
In particular we see from table B2 that the most relevant hopping amplitudes, larger than 30 meV, occur between
the planar a; and «v, and between the planar «; and ay Wannier states in the xy plane.
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