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Abstract
Wepresent a systematic derivation of aminimalfive-band tight-bindingmodel for the description of
the electronic structure of the recently discovered quasi-one-dimensional superconductor K2Cr3As3.
Taking as a reference the density-functional theory (DFT) calculation, we use the outcome of a Löwdin
procedure to refine aWannier projection and fully exploit the predominant weight at the Fermi level
of the states having the same symmetry of the crystal structure. Such states are described in terms of
five quasi-atomic d orbitals: four planar orbitals, two dxy and two dx y2 2- , and a single out-of-plane
one, dz2.We show that thisminimalmodel reproduces with great accuracy theDFTband structure in
a broad energy window around the Fermi energy.Moreover, we derive an explicit simplified analytical
expression of suchmodel, which includes three nearest-neighbor (NN)hopping terms along the z
direction and oneNN termwithin the xy plane. Thismodel captures very efficiently the energy
spectrumof the system and, consequently, can be used to study transport properties, super-
conductivity and dynamical effects in this novel class of superconductors.

1. Introduction

The study of the interplay between superconductivity andmagnetism has recently brought to the discovery of
superconductivity in chromium-based compounds [1]. Thefirst example of such systemswasCrAs, where the
superconducting transition takes place atTc=2 K as a result of the suppression of the antiferromagnetic
transition upon applying high pressure [2–5]. This experimental finding inspired the search for
superconductivity in other Cr-basedmaterials, which led to the discovery of ambient-pressure
superconductivity at 6.1 K in aCr-based arsenide, K2Cr3As3, and, subsequently, in awhole class represented by
the family A2Cr3As3, withA beingK [6], Rb [7], Cs [8] orNa [9]. Remarkably, these Cr-based superconductors
have a quasi-one-dimensional (Q1D) crystal structure that consists of [(Cr3As3)

2−]¥ double-walled nanotubes
inwhich chromiumatoms form the innerwall and arsenic atoms the outer one. These nanotubes are in turn
separated by columns of A+ ions [6–8].

These novel superconductors display intriguing physical properties, both in the normal [6, 10] and in the
superconducting phase [6, 11–13], which are under intense investigations especially to clarify the role played by
the reduced dimensionality and by the electronic correlations [6]. This is of course an important issue since the
latter are features which considerably affect the properties of a large fraction of the unconventional
superconductors discovered so far.

The crystal structure of K2Cr3As3 is the hexagonal one reported infigure 1, with a=9.9832Å and
c=4.2304Å. The crystal structure exhibits two planes orthogonal to the c axis with slightly different
stoichiometry, i.e. a planewithKCr3As3 and a planewithK3Cr3As3 stoichiometry [6]. The resistivity of K2Cr3As3
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shows a linear temperature dependence in a broad temperature range, which suggests a non-Fermi-liquid
normal state, possibly related to a quantum criticality and/or a realization of a Luttinger liquid [6]. This
occurrence has not been confirmed byKong et al [10], who rather report aT3 dependence of the resistivity from
10 to 40K.However, it should be noted that while this result refers tomeasurements performed on single
crystals, those reported in [6] have been obtained on polycrystalline samples.

The superconductivity inK2Cr3As3 shows various features pointing towards an unconventional nature. An
anisotropic upper criticalfield is reported, with different amplitudes between the cases offield applied parallel
and perpendicular to the rodlike crystals [10]. NMRmeasurements of the nuclear spin-lattice relaxation rate
1/T1 show a strong enhancement in theCr nanotubes of the spin fluctuations aboveTc, with the power-law
temperature dependence 1/T1T∼T− γ (γ;0.25) being consistent with a Tomonaga–Luttinger liquid [11]. In
addition, the absence of theHebel-Slichter coherence peak in 1/T1 belowTc provides further evidence that the
superconducting phase is unconventional [11]. The same kind of indication comes frommuon-spin rotation
measurements [12], which provide evidence of a possible d-wave superconducting pairing, as well as from
measurements of the temperature dependence of the penetration depthΔλ=λ(T)−λ(0) [13]. For the latter,
a linear behavior is observed forT Tc , instead of the exponential behavior of conventional superconductors,
indicating the presence of line nodes in the superconducting gap and thus supporting the hypothesis of an
unconventional nature of the superconducting phase [13].

The unusualmetallic state stimulated several studieswith the aimof attaining the best descriptionof the
system.ARPES studies [14] of single crystals reveal twoQ1DFermi surface sheetswith linear dispersions, without
indicationof any three dimensional 3DFermi surface, as instead predicted bydensity-functional theory (DFT)
calculations [15]. The overall bandwidth of theCr 3dbands and the Fermi velocities are comparable toDFT

Figure 1.Crystal structure of K2Cr3As3. The colours blue, green andwhite denote Cr, As andK atoms, respectively. (a)Top view of the
primitive cell. (b)The double-walled nanotube formed byCr andAs atoms.
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results, indicating that the correlated Fermi liquidpicture is not appropriate forK2Cr3As3. Furthermore, the
spectral weight of theQ1Dbands decreases near the Fermi level according to a linear power law, in an energy range
of 200meV.This result has been interpreted as an issue supporting aTomonaga–Luttinger liquidbehavior.

On the other hand,measurements andmodelling of K2Cr3As3 spinwave excitations show that inter-tube J
terms are necessary to reproduce the experimental data [16]. Furthermore, usingDFT, it has been found that in-
plane structural distortions, driven by unstable optical phononmodes, play an important role to control the
subtle interplay between the structural properties, the electron–phonon and themagnetic interactions [17].
These results point out the importance of both the intra- and the inter-tube dynamics, as well as the relevance of
the electron–phonon and themagnetic interactions.

From theory perspective, the electronic structure of K2Cr3As3 has been examined throughDFT calculations
[15]. In contrast with otherQ1D superconductors, K2Cr3As3 exhibits a relatively complex electronic structure,
where theCr-3d orbitals, specifically the dz2 , dxy and dx y2 2- ones, dominate the electronic states near the Fermi
energy [15]. Several related calculations have been also developed [18–21]which establish a basis for theoretical
models. In particular, it has been shown [18], by using a three-bandmodel built from the abovementioned 3d
orbitals, that a triplet pz-wave pairing driven by ferromagnetic fluctuations is the leading pairing symmetry for
physically realistic parameters. This result, holding in bothweak and strong coupling limits, has been confirmed
in a subsequent paper where amore accurate six-bandmodel was used [19]. Another theoretical work focuses on
the study of a twistedHubbard tubemodelling the [(Cr3As3)

2−]¥ structure [20]. Here, a three-channel effective
Hamiltonian describing a Tomonaga–Luttinger liquid is derived and it is shown, within this scenario, that the
system tends to exhibit triplet superconducting instabilities within a reasonable range of the interaction
parameters. Finally, the superconducting phase has also been investigated bymeans of an extendedHubbard
model with threemolecular orbitals in each unit cell [21]; as in the previouslymentioned approaches, it is found
that the dominant pairing channel is always a spin-triplet one, both for small and largeU.

In this paper, we present the construction of aminimal tight-binding (TB)model hamiltonian, which
reproduces with high accuracy the band structure of K2Cr3As3 around the Fermi level, as obtained via first-
principle calculations.We demonstrate that such description can be derived starting fromaminimal set offive
quasi-atomic orbitals withmainly d character, namely four planar orbitals (dxy and dx y2 2- for each of the two
planes KCr3As3 andK3Cr3As3) and a single out-of-plane one (dz2).Moreover, we derive an explicit simplified
analytical expression of ourfive-band TBmodel, which includes three nearest-neighbor (NN) hopping terms
along the z direction and oneNNwithin the xy plane.

Such TB representation of theK2Cr3As3 band structure is obtainedwithin a three-stage approach consisting
of the following steps: (i) guided by first-principles DFT calculations, wefirst construct themodel based on the
atomicCr andAs orbitals and use it to investigate the orbital character and the symmetry of the bandswhich
dominate in a certain energywindow around the Fermi level; (ii)we use the Löwdin procedure to downfold the
original full hamiltonian into amuch smaller space spanned by a set of atomic Cr andAs orbitals which are
symmetric with respect to the basal plane; (iii) the knowledge of the results of steps (i) and (ii) allows to
formulate, within aWannier projection, a TB description based onfive atomic-like orbitals ofmainly d
character, which are spatially localized around virtual lattice sites located at the center of the Cr-triangles of the
K3Cr3As3 planes, stacked along the chain direction.

We point out that thisminimalmodel well reproduces all the details of the low-energy band structures in a
broad energy region around the Fermi level, whichmakes it a remarkable improvement with respect to previous
three-bandmodels.Moreover, we expect that, by solving suchminimalmodel and its extensions using suitable
approximations, onemay obtain information about the superconducting pairingmechanism especially for the
pairing symmetry, starting from amore complete band structure.

The paper is organized as follows. In the next section, we present the details of theDFT calculations aswell as
their extension taking into account the effect of the localHubbard interaction. In section 3, we present the TB
description in terms of atomic orbitals, which serves as a starting point for the study of the total and the local
density of states (DOS), together with the characterization of theCr andAs orbital components of the electronic
bands. In section 4, we present the results of the Löwdin down-folding procedure giving the projection of the
totalHamiltonian on the subspace of the orbitals that dominate at the Fermi level. From the results of this last
section, we are able to identify the relevant orbitals at the Fermi level, so thatwe formulate aminimal five-band
effective TBmodel, as described in section 5, whereas last section contains our conclusions.

2.Density functional calculations

In this section,wepresent thefirst-principle calculationswhich supply a basis for constructing the TBmodeling
of theK2Cr3As3 band structure that will be described in the following sections. The real spaceHamiltonianmatrix
elements have been set according to the outcomeofDFT calculations [22], performedby using theVASP package
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[23]. In such an approach, the core and the valence electrons have been treatedwithin the projector augmented
wavemethod [24] andwith a cutoff of 500eV for the planewave basis. All the calculations have been performed
using a 4×4×10 k-point grid. For the treatment of the exchange correlation, the local density approximation
(LDA) and the Perdew–Zunger [25]parametrizationof theCeperley–Alder [26]data have been considered.After
obtaining theBlochwave functions, themaximally localizedWannier functions [27, 28] are constructedusing the
WANNIER90 code [29]. To extract theCr 3d andAs 4p electronic bands, the Slater–Koster interpolation scheme
has been used, in order to determine the real-spaceHamiltonianmatrix elements [29].

Themagnetism in these systems has been studiedwithin the generalized gradient approximation (GGA)
[15, 30].We use the LDA approach that gives lowermagneticmoment andweakermagnetic properties inmetals
with respect to theGGA [22, 31]. Themagnetic properties of these compounds are still under debate [12] and it
is not clear which is the best exchange-correlation functional that should be used.

The role of the electronic correlations on the energy spectrumofK2Cr3As3 has also been explored. To this
purpose, we have performed first-principle calculations taking into account the effect of the localHubbard
interactions, assumed to be non-vanishing on all the Cr d orbitals, and efficiently parametrized by afinite
number of Slater integrals.We follow the convention [32] of identifyingUwith the Slater integral F0 and the
Hund couplingwith F2 and F4. The direct calculation gives for the intra-t2g orbitalHund interaction the value
JH=0.15U [33]. Considering that previous studies [15] indicate that the system isweakly correlated, we have
assumed forU values ranging in a interval going from0 to 4eV. The band structure obtained in the two limiting
cases ofU=0 andU=4 eV is reported infigure 2(a). As far as theU=0 case is concerned, the results are in
agreementwith the literature [15]. The character of the bands at low energies ismainly due to the d states of Cr
atoms, whereas the p states of the As atoms are located few electronvolts above and below the Fermi level, as also
found for CrAs [22, 34–36].

We can see that, apart from a slight increase of the energy bandwidth corresponding to the chromium states
being pushed away from the Fermi level, electronic correlations on chromiumorbitals barely affect the energy
spectrum. In particular, the band energy separation occurring when theCoulomb repulsion is turned on is one
order ofmagnitude lower than the value ofU considered in the calculation. This result thus seems to confirm
that K2Cr3As3 is in amoderate-coupling regime, characterized by a robustmetallic phase, expected to remain
stable also under the influence of pressure, strain or doping. As also found for CrAs [22], the nonmagnetic and

Figure 2. (a) LDA+Uband structure near the Fermi level forU 0= (green lines) andU=4 eV (red lines). (b)Total density of states
of K2Cr3As3 (Fermi level is at zero energy). (c)DOSs per atomofK2Cr3As3 projected onto orbitals symmetric with respect to the basal
plane, i.e. dxy and dx y2 2- (blue line), dz2 (red line) and px and py (orange line). The curves have been obtained averaging the projected
DOSs over all the atoms of the unit cell. (d) Same as of (c) for antisymmetric orbitals, i.e. dyz and dxz (purple line) and pz (green line).

4

New J. Phys. 21 (2019) 063027 GCuono et al



the antiferromagnetic phases turn out to be very close in energy. In the case of K2Cr3As3, the triangular geometry
tends to frustrate antiferromagnetism, so that the nonmagnetic phase is themost stable one.

3. Tight binding approximation and orbital characterization of the band structure

In this section, we derive a TBmodel obtained from a basis set of localized atomic orbitals at each site of the
crystal structure. Our starting point will be themost reliable TB description that is capable to reproduce the LDA
band structure close to the Fermi level. This descriptionwill then be used to examine in detail the orbital
character of the energy bands, whichwill be resolved bothwith respect to the energy itself and to the k vector in
themain high-symmetry points of the Brillouin zone.

We construct the TBmodel by considering all the atomic orbitals that participate to conduction, namely Cr
3d andAs 4p orbitals. The basis in theHilbert space is given by the vector

d d d p p d d p, , , , , , , , 1i i xy i x y i z i x i y i yz i xz i z, , , , , , , ,2 2 2f = -( ) ( )† † † † † † † † †

where i is the lattice index and the orbitals are ordered having first those symmetric with respect to the basal
plane and then the antisymmetric ones.

The TBHamiltonian is defined as

H t , 2
i

i i i
i j

i i j j
,

,å åf e f f f= +ˆ ˆ ( )† †

where i and j denote the positions of Cr or As atoms in the crystal, and iê and ti j,ˆ arematrices whose elements
have indices associatedwith the different orbitals involved. The first term of theHamiltonian takes into
account the on-site energies, with i i ,e e d=ab a

a b(ˆ ) , while the second termdescribes hopping processes
between distinct orbitals, with amplitudes given by thematrix elements tij

ab. The latter are given by the
expectation values of the residual lattice potentialV(r) on the complete orthogonal set of theWannier
functionsfα(r−Ri):

t Vr R r r R . 3ij i jf f= á - - ñab
a b( )∣ ( )∣ ( ) ( )

Their values are obtained according to the procedure described in the previous section. TheHamiltonian in
equation (2) is a 48×48matrix because the primitive cell contains six Cr and six As atoms andwe have to
consider five d orbitals for eachCr atom and three p orbitals for eachAs atom.

Recently, we have carried out a detailed TB analysis in order to address the nature of the electronic bands
provided by ab initio calculations, in particular with respect to its supposed one-dimensionality [37]. Such study
revealed that considering only the hoppings between the orbitals of the atoms that lie within a single sub-
nanotube fails completely to describe the in-plane band structure, not even allowing the correct description of
the band structure along the z axis. Such result is also in agreementwith previousDFT calculations showing that,
in contrast with other quasi-1D superconductors, K2Cr3As3 exhibits a relatively complex electronic structure
and the Fermi surface contains both 1D and 3D components [15].

In order to understand how the band structure is affected by the number and the position of the lattice
cells involved in the hopping processes, here we have carried out amore accurate optimization of the TB
hamiltonian, as explained in detail in appendix A. Such procedure starts by first considering the hopping
processes within the quasi one-dimensional [(Cr3As3)

2−]¥ double-walled nanotubes only, and then
including step by step inter-tube and longer-range intra-tube processes. Our analysis suggests that the LDA
results arise from a delicate combination of several very small contributions, which are crucial in order to
faithfully determine the dispersion of the bands that cut the Fermi level perpendicular to the chain direction
(ΓMKΓ path).We thus conclude that, in order to obtain a faithful representation of the electronic ab initio
band structure, it is necessary to take into account all hopping processes up to the fifth-neighbor cells along
the z-axis, together with the in-plane hoppings up to the second-neighbor cells. Diagonalizing the
Hamiltonian in equation (2) and retaining such hopping terms, we obtain an energy spectrum that perfectly
matches the one forU=0 in figure 2(a) (see figure A4), as evaluated along the high symmetry path of the
hexagonal Brillouin zone considered in [38]. Accordingly, the results presented in this section have been
obtainedwithin this framework. However, although the agreement is extremely satisfactory, we cannot
consider successfully concluded our quest for aminimalmodel because of the need for somany hopping
parameters. Therefore, in order to gain sufficient insight in the behavior of the system and design an efficient
reduction procedure leading us to a realminimalmodel, we proceedwith the analysis of the partial DOS and
of the orbital character of the bands.
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In order to evaluate the orbital character of the low-energy excitations around the Fermi level, we calculate
the totalDOS, together with its projection on theCr andAs relevant orbitals. The total DOS is obtained from the
standard definition

N

1
4

k
k  år d= -( ) ( ) ( )

inwhich k is the energy dispersion as obtained from the TB calculation presented in the previous section, and
the sum is carried out on the Brillouin zone, our grid consisting of 6×6×12 k points. The delta functions in
equation (4) have been approximated byGaussian functionswhere the variance is assumed to beσ=0.025eV.
The total DOS reported infigure 2(b) exhibits, as expected, peaks in correspondence of the flat portions of the
energy spectrum. Similarly towhat found for CrAs [22, 34, 35], theDOShas a predominant As character at
energies of the order of±2 eV away from the Fermi level. The peaks near−0.5 and 1 eV are instead associated
with theCr-dyz and dxz orbitals, whereas, differently fromwhat happens for CrAs, there is no clear prevalence of
Cr states around the Fermi energy, but rather theCr-dxy, dx y2 2- and dz2 and the As-px and py contributions are all
relevant, as wewill point out below inmore detail.

We have also determined the projections of the total DOS on the orbitals of the Cr or As atoms of the
material. These are defined as

N
f

1
, 5

k
k k

2  år y d= á ñ -a a( ) ∣ ∣ ∣ ( ) ( )

where ky are the eigenstates of our problem and fα represents the orbital onwhichwe project (the delta functions
are again approximatedwithGaussians). The projectedDOSs associatedwith the orbitals symmetric with
respect to the basal plane, i.e. dxy, dx y2 2- , dz2, px, py, are shown infigure 2(c), while those associatedwith the
antisymmetric ones, i.e. dyz, dxz, pz, are presented infigure 2(d).

Their behavior confirms the results offirst-principle calculations, namely the orbitals that dominate the low-
energy excitations are the chromium dxy, dx y2 2- and dz2 [15], with the highest contribution corresponding to a
pronounced peak at the Fermi energy associatedwith the dxy and dx y2 2- orbitals. Nonetheless, we see that an
appreciable contribution also comes fromAs px and py orbitals, this signaling the difficulty of reducing the full
Hamiltonian (2) to a simpler effective onewhere the d and the p orbital degrees of freedom are efficiently
disentangled. Finally, from figure 2(d)we see that the projectedDOS for antisymmetric orbitals exhibits
negligible contribution at the Fermi energy, providing evidence of the decoupling between the two sectors
corresponding to orbitals symmetric or antisymmetric with respect to the basal plane.

To gain a better insight into the nature of the isolated set of ten bands in the energy window [−1.2 eV, 0.4 eV]
around the Fermi level, we have performed a detailed analysis of the orbital character of each energy level along
themain directions in the Brillouin zone. This is provided through the ‘fat bands’ representation, where the
width of each band-line is proportional to theweight of the corresponding orbital component, as shown in
figures 3(a)–(e). One can notice that an accurate description of the conduction and valence bands along the
various paths involves bothCr andAs. As one can see, the three bands crossing the Fermi level aremainly built
from the dxy, dx y2 2- , dz2 orbitals of Cr, with a degree ofmixingwhich is highly dependent on the selected path in
the Brillouin zone.

4. Löwdin procedure

As our previous analysis suggests, the symmetric orbitals dxy, dx y2 2- , dz2, px and py dominate at the Fermi level, so
one can project out the low-lying degrees of freedomusing the Löwdin downfolding procedure [39]. This
method is based on the partition of a basis of unperturbed eigenstates into two classes, related to each other by a
perturbative formula giving the influence of one class of states on the other one. In this case, the two classes are
the symmetric (s) and antisymmetric (a) p and d orbitals with respect to the basal plane.

Schematically, given the basis defined in equation (1), thematrix has the structure

H
H H
H H

, 6ss sa

as aa
= ⎜ ⎟⎛

⎝
⎞
⎠ ( )

whereHss is the submatrix including hoppings between symmetric orbitals,Hsa hoppings between symmetric
and antisymmetric orbitals, andHaa hoppings between antisymmetric orbitals.
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The submatrices are in turnmade of blockmatrices. Considering for instanceHss, we have

H
H H

H H
, 7ss

Cr Cr Cr As

As Cr As As

s s s s

s s s s

=
⎛
⎝⎜

⎞
⎠⎟ ( )

where the subscripts indicate the orbitals involved, so that

H

H H H

H H H

H H H

,

xy xy xy x y xy z

x y xy x y x y x y z

z xy z x y z z

Cr Crs s

2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

=
-

- - - -

-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

/ / /

/ / /

/ / /

Figure 3.Contribution to the tight binding band structure (blue curve) of the (a) dxy and dx y2 2- , (b) dz2, (c) dxz and dyz, (d) px and py,
(e) pz orbitals, represented as fat bands (in orange).
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H
H H

H H
x x x y

y x y y
As Ass s =

⎛
⎝⎜

⎞
⎠⎟

/ /

/ /

and similarly for HCr Ass s
. Here xy, x2−y2, z2, yz and xz denote the five d orbitals of the Cr atoms, while x, y and z

denote the three p orbitals of theAs atoms. For example, Hxy x y2 2- is the submatrix that includes all the hopping
processes between the dxy and dx y2 2- orbitals belonging to the six chromium atoms.

Referring to thematrix of equation (6) and downfolding theHaa submatrix, the solution of the original
eigenvalue problem ismapped to that of a corresponding effectiveHamiltonian Hss

~
, whose rank is 30, with Hss

~

given by [40]

H H H H H . 8ss ss sa aa as
1e e= - -~ -( ) ( ) ( )

Using this technique, we get the low-energy effectiveHamiltonian projected into the subsector given by the
symmetric orbitals, going beyond the simpler completeWannier functionmethod. The band structure that we
have obtained applying the Löwdin procedure is shown in figure 4(a), where theDFT spectrumnear the Fermi
level is also reported for comparison.We can see that the band structure near the Fermi level is caught to a high
degree of approximation and the agreement is almost complete. The d and p antisymmetric orbitals thus can be
fully disentangled from the symmetric ones, as a consequence of the peculiar geometry corresponding to the
arrangement of the chromium atoms.

It is worth noting that we still have a disagreement in the A–L–H–A region. Such an occurrence is due to the
predominance of theweight of the dz2 orbital in that region of the Brillouin zone, although the corresponding
bands are somehowdistant from the Fermi surface.

5.Derivation of aminimalfive-bandTBmodel

On the basis of the indications provided by the orbital characterization of the band structure and by the Löwdin
procedure, we now introduce aminimal TBmodel allowing to satisfactorily reproduce the energy spectrum
around the Fermi energy in thewhole k-space.We start by referring to the isolated set of ten bands developing in
the energy range going approximately from−1.2 to 0.4 eV (see, for instance, figure 4(a)). The fat band
representation used infigures 3(a)–(e) provides evidence that these bands havemainly the character of the
orbitals that are symmetric with respect to the basal plane. The Löwdin projection clearly demonstrated that
downfolding the ten bands over the six symmetric ones, it is possible to obtain a very good description of the
energy bands in proximity of the Fermi energy. These results naturally suggest a further refinement of our
calculations, consisting in an application of theWanniermethod taking explicitly into account the predominant
weight of the symmetric states.We eventually find that this combination of the Löwdin and theWannier
approaches allows to obtain a fully reliableminimal TBmodel.

Figure 4. (a)Comparison in the energy range around the Fermi level between theDFT band structure (red dashed lines) and the one
obtained from the Löwdin downfolding procedure described in the text (blue lines). (b)Comparison between the LDAband structure
(red dashed lines) and the one obtained from thefive-bandmodel described in the text (green solid lines).
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Weobserve that the non-dispersive bands in the kz=0 plane present an antisymmetric character with
weight mainly coming from dxz and dyz orbitals. Moreover, as one can see from the behavior of the DOS
shown in figure 2(d), the contribution at the Fermi level of these bands, as well as the one of the p bands, is
small compared to that of the symmetric ones. This suggests to exclude the antisymmetric bands from the
construction of a simplifiedmodel Hamiltonian, and thus to consider only the six symmetric ones,
associated with two dxy, two dx y2 2- and two dz2 orbitals. A further simplification is applied limiting to one
the number of the dz2 orbital, in consideration of the fact that the corresponding band is the one lying
farther from the Fermi energy.We thus perform theWannier calculation referring to a five-band effective
model, consistently with the fact that four bands cut the Fermi level, one of them being doubly degenerate at
Γ point.

Since chromium-based compounds, such as K2Cr3As3, exhibit weak ormoderate electronic correlations,
they have a covalent character rather than a ionic one, so that, in the case of low-dimensional systems, a
Wannier function can also be placed between equivalent atoms [41]. Our choice is to place dxy, dx y2 2- , and dz2

wave functions in themiddle of the Cr-triangle belonging to the KCr3As3 plane, locating the other two dxy and

Figure 5. Fermi surface obtainedwith ourminimalmodel (top panel) and top view of the 3D surface due to the γ band (bottompanel).
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dx y2 2- wave functions in themiddle of the Cr-triangle lying in the K3Cr3As3 plane. The interpolated band
structure obtained by thismethod is shown in figure 4(b) together with theDFT band structure.We can
observe a perfectmatch between the two spectra, thus demonstrating that our five-bandmodel allows to
describe the low energy physics in a range of about 0.3eV around the Fermi level with the same accuracy
provided byDFT.We also notice that themixing of two different types of orbital which is at the basis of the
model, suggests that K2Cr3As3might actually behave as a two-channel Stoner d-electronmetallicmagnet [42].
Interestingly, this effect can drive pressure-induced transitions between ferromagnetic and antiferromagnetic
ground states.

We also show in figure 5 the Fermi surface obtainedwith ourminimalmodel. The Fermi surface is quite
similar to theDFT one reported in [15, 30]. It consists of two quasi-1D sheets formed by theα and β bands
and one 3D sheet formed by the γ band. The quasi-1D surfaces are in excellent agreement with the literature,
while the 3D surface shows some differences due to the different exchange-correlation functional that we
have used.

We now derive the analytic expression of our TBmodel, including in the calculation threeNNhopping
terms along z, one in the plane and one along the diagonal.Wewill denote byα1 andα2 theWannier functions
relative to the orbitals in the plane at z=c/2with predominant xy and x2−y2 character, c/2 being the
distance betweenKCr3As3 and K3Cr3As3 planes, and byα3,α4 andα5 those relative to the orbitals with
predominant xy, x2−y2 and z2 character, respectively, in the plane with z=0.Wewill also denote by t lmn

,i ja a

the hopping amplitudes between theWannier statesαi andαj along the direction lx+my+ nz. Since the
system exhibits inversion symmetry along the z axis and the orbitals under consideration are even, wewill get
terms proportional to cos(nkzc/2) for the hopping along z, n being an even (odd) integer for hopping between
homologous (different) orbitals.

According to the above assumptions, theHamiltonian inmomentum space is represented as a 5×5matrix,
with elements H ,i ja a . Concerning the diagonal elements, i.e. those referring to the sameWannier state, they
result from the sumof different contributions related to on-site, out-of-plane and in-plane amplitudes,
respectively. They thus read as

H k k k H H k H k k, , , ,x y z z x y, ,
0

, ,i i i i i i i i
= + +a a a a a a a a

^ ( ) ( ) ( )
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with the numerical values of the hopping parameters being reported in table 1.
Going to the off-diagonal elements connecting differentWannier states, wefirst observe on a general ground

thatwhen a crystal structure exhibits a reflection symmetry with respect to the x axis, one has for pure d-orbitals
t 0xy x y,

100
2 2 =- and t txy x y xy x y,

010
,

010
2 2 2 2=- -

¯ . As regards K2Cr3As3, we have that its crystal structure is symmetric with
respect to the y-axis, but not with respect to the x-axis. Since theWannier functions keep thismissing symmetry,
we have t 0,

100
1 2

¹a a and t t,
010

,
010

1 2 1 2
¹a a a a

¯ .We stress that in our TBmodel this effect is explicitly taken into account,
differently fromprevious approaches where the above-mentioned x-axis symmetry is nonetheless applied

Table 1.On-site energies and out-of-plane and in-plane hopping integrals
between the sameWannier states. The on-site energy of the z2-like function is
set to zero (energy units inmeV).

On site
Out of plane In plane

000 001 002 003 100 010

α1 −86.6 154.1 −53.0 −6.3 23.0 −3.5

α2 −86.6 154.1 −53.0 −6.3 −12.3 14.2

α3 −37.0 165.0 −41.9 −2.9 30.9 −0.2

α4 −37.0 165.0 −41.9 −2.9 −10.6 20.6

α5 0 271.6 −63.9 −14.2 −15.4 −15.4
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[18, 19]. As in the previous case, we have that the non-diagonal elements of theHamiltonian result from in-plane
and out-of-plane contributions associatedwith hopping processes connecting differentWannier states. Their
expressions are reported in appendix B, togetherwith the tables giving the numerical values of the hopping
amplitudes involved.

6. Conclusions

Wehave presented amethod that combines the Löwdin and theWannier procedures to derive aminimal five-
bandTBmodel correctly describing the low-energy physics of K2Cr3As3 in terms of four planar orbitals (dxy and
dx y2 2- for each of the two planes KCr3As3 andK3Cr3As3) and a single out-of-plane one (dz2).We are confident
that this combinedmethod can be applied to other transition-metal compounds, including the iron-based
superconductors.

Our results give clear indication that the physics of the system is significantly affected by in-plane dynamics,
in spite of the presence in the lattice of well-defined quasi-1Dnanotube structures. The results presented here
alsomake evident theminor role played by the local electronic correlations in determining the physical
properties of the compound. Indeed, the inclusionwithin a LDA+Ucalculation scheme of a non-vanishing
Hubbard repulsion developing in theCr d-orbitals leads to only slight quantitative differences with respect to the
non-interacting case.

We notice that although a six-bandmodel was previously reported [19] using six symmetric orbitals, the
five-bandmodel proposed here describes with higher accuracy the low-energy physics as a consequence of the
application of theWanniermethod.We also point out that, with a filling of four electrons shared among two
kinds of orbitals, the planar dxy and dx y2 2- and the out-of-plane dz2 ones, the systemmight be in theHund’s
metal regime. In this framework, it has been proposed that Hund’s couplingmay lead to an orbital decoupling
thatmakes the orbitals independent from each other, so that some of them can acquire a remarkably larger
mass enhancement with respect to the other ones. Furthermore, a possible connection between the orbital-
selective correlations and superconductivitymight be investigated: the selective correlations could be the
source of the pairing glue or, alternatively, could strengthen the superconducting instability arising from a
more conventionalmechanism based on the exchange of bosons or spinfluctuations.Work in this direction is
in progress.

Finally, we point out that themodelmay be used to study transport properties,magnetic instabilities, as well
as superconductivity in anisotropic crystal structures [43], also allowing to investigate dynamical effects in this
class of superconductors [44]. In this case, the evidence that themain features of the energy spectrum around the
Fermi level are essentially determined by the three symmetric dxy, dx y2 2- and dz2 Cr orbitals and by the px and py
As ones, provides a constraint on the formof the superconducting order parameter that should be assumed in
the development of the theory.
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AppendixA. TBparametrization

In this appendix, we report the systematic procedure leading to the TB parametrization based on the 48 atomic
orbitals taken into account in themodelHamiltonian (2). In the following, we perform the calculations by first
considering the hopping processes within the quasi one-dimensional [(Cr3As3)

2−]¥ double-walled nanotubes
only, and then including step by step inter-tube and longer-range intra-tube processes.

A1. Short range intra-tube hybridizations
As previously pointed out, themost relevant sub-geometry of theK2Cr3As3 lattice is a quasi-one dimensional
double-walled sub-nanotube extendingmainly along the z-axis. So, if we consider only hopping processes
between intra-tube atoms, an already reasonable approximation of the band structure can be obtained, in
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particular along the line of the Brillouin zone associatedwith variations of kz, i.e. theΓ-A line. Referring to the
notation R a a an n n1 1 2 2 3 3= + + , we start by limiting ourselves to the primitive cells denoted by (n1, n2, n3)=
(0, 0, 0), (0, 0, 1) and (0, 0,−1), as shown infigures A1(a)–(b).

The band structure that we have obtained is shown in figure A2 in an energy window around the
Fermi level, with theDFT spectrumbeing also reported for comparison.We can see that the bands are flat
along the in-plane paths of the Brillouin zonewhere kx and ky vary, as expected, but along theΓ-A line
they exhibit a behavior quite close to theDFT results. It is also evident thatmore reliable results require in
any case the inclusion of hopping processes involving longer range intra-tube cells as well as inter-tube
ones.

A2. Inter-tube and long-range intra-tube hybridizations
Wenow include in the diagonalization procedure inter-tube hoppings in the x–y plane (n3=0), taking into
account the contributions coming from the cells (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (1,−1, 0), (−1, 1, 0),

Figure A1. (a) (0, 0, 0), (0, 0, 1) and (0, 0,−1) primitive cells of K2Cr3As3. (b)Atoms taken into account in the diagonalization
procedure when only short-range intratube hopping processes are considered. (c) (0, 0, 0), (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0),
(1,−1, 0), (−1, 1, 0), (1, 1, 0) and (−1,−1, 0) primitive cells.
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(1, 1, 0) and (−1,−1, 0) (seefigure A1(c)). The comparison of the band structure correspondingly obtainedwith
the one given byDFT (see figure A3)makes evident that the agreement improves along theΓ-A line aswell as
along the other lines of the Brillouin zone, though there are still some qualitative differences, also at the Fermi
level. In order to get a truly satisfactory agreement, it is necessary to include all hopping processes up to the fifth-
neighbor cells along the z-axis (from n3=5 to n3=−5), togetherwith the in-plane hoppings up to the second-
neighbor cells (see figure A4).

Figure A3. Same as infigure A2, with the tight-binding calculations extended to hopping processes in the (1, 0, 0), (−1, 0, 0), (0, 1, 0),
(0,−1, 0), (1,−1, 0), (−1, 1, 0), (1, 1, 0) and (−1,−1, 0) primitive cells.

Figure A2.Comparison between the tight-binding band structure obtained considering hoppings within the (0, 0, 0), (0, 0, 1) and
(0, 0,−1) primitive cells (blue lines) and theDFTband structure (red dashed lines), in an energy range around the Fermi level (set
equal to zero).
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Appendix B.Off-diagonal elements of TBHamiltonian

We report here the expressions of the off-diagonal elements H k k k, ,x y z,i ja a ( ) i ja a¹( ) of the TBHamiltonian
introduced in section 6. They refer to hopping processes which connects differentWannier states and have the
following form:
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Figure A4. Same as infigure A3, with the tight-binding calculations further extended tofifth neighbor cells along the z-axis (from
n3=5 to n3=−5) and to second-neighbor in-plane cells.
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The numerical values of the hopping parameters in the above expressions are reported in tables B1 andB2.
In particular we see from table B2 that themost relevant hopping amplitudes, larger than 30meV, occur between
the planarα1 andα2 and between the planarα3 andα4Wannier states in the xy plane.
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