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We explore mechanisms of orbital-order decay in the doped Mott insulators R1−xðSr;CaÞxVO3

(R ¼ Pr;Y;La) caused by charged (Sr,Ca) defects. Our unrestricted Hartree-Fock analysis focuses on
the combined effect of random charged impurities and associated doped holes up to x ¼ 0.5. The study is
based on a generalized multiband Hubbard model for the relevant vanadium t2g electrons and includes the
long-range (i) Coulomb potentials of defects and (ii) electron-electron interactions. We show that the
rotation of t2g orbitals, induced by the electric field of defects, is a very efficient perturbation that largely
controls the suppression of orbital order in these compounds. We investigate the inverse participation
number spectra and find that electron states remain localized on few sites even in the regime where orbital
order is collapsed. From the change of kinetic and superexchange energy, we can conclude that the motion
of doped holes, which is the dominant effect for the reduction of magnetic order in high-Tc compounds, is
of secondary importance here.
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Doping of Mott insulators is a central topic in materials
science [1,2], cold gases [3], and many-body theory [4]—
firstly because of the intriguing origin of the insulating
state, due to strong electron correlations, and secondly
owing to the amazing features that can emerge when they
are doped, such as superconductivity in cuprates [5–10],
magneto- and thermo-electric effects in manganites
[11–15] and heterostructures [16–19]. Yet, often such
systems remain insulating when doped, although transi-
tions into metallic or superconducting states were expected
[20]. The cubic vanadium perovskites show, despite strong
quantum orbital fluctuations [21–25], an unusual gradual
decay of orbital and spin order and a not-well-defined
crossover into a poor metallic state at high doping x, e.g.,
x ¼ 0.18 in La1−xSrxVO3 and x ¼ 0.50 in Y1−xCaxVO3

[26–29]. This makes them an ideal platform for the study of
charged defects and of their interaction with doped holes in
systems with spin and orbital degrees of freedom [30,31].
Vanadates are Mott insulators where the t2g electrons

form a d2 configuration with a S ¼ 1 spin at each V ion.
A small crystal field (CF) lowers the energy of xy orbitals
by Δc≃ 0.1 eV with respect to the fyz; zxg orbital doublet
[27–29], which is the source of strong orbital quantum
fluctuations [21–25]. The breaking of an almost perfect
cubic crystal symmetry leads to highly anisotropic elec-
tronic states. The undoped systems reveal two distinct spin-
orbital ordered ground states. In systems with a large R-ion
radius, as LaVO3, the ground state has a coexisting spin

C-type antiferromagnetic (C-AFM) and G-type alternating
orbital (G-AO) order [32–37], which is stabilized by the
intrinsic spin-orbital superexchange interactions [21,38].
A second type of complementary G-AFM/C-AO spin-
orbital order results from a competition of superexchange
and Jahn-Teller (JT) interactions [21] and occurs in
undoped RVO3 perovskites with small radii of R ions,
as in YVO3 [32–37].
Motivations to analyze the role of charged defects are

(i) the surprising discovery that the G-AFM=C-AO ground
state of YVO3 changes already at x ≃ 1% Ca doping into
the C-AFM=G-AO state [32,39,40], and (ii) the stability of
the latter phase up to high doping [29,41,42]. The fragility
of G-AFM=C-AO order relative to C-AFM=G-AO phase
was explained by a double exchange process for the doped
hole bound to the charged defect, triggered by the ferro-
magnetic (FM) correlations in the C-AFM state [43].
Subsequent studies have shown that the holes in the
C-AFM=G-AO state are confined and bound to the charged
defects, leading to a gradual decay of order proportional to
doping, yet not to its collapse [31].
In this Letter, we investigate the doping dependence of

the orbital order (OO) in doped vanadates and explain its
collapse. We find that the dominant decay mechanism is the
rotation of t2g electron states induced by the Coulomb
potential of defects. This orbital polarization involves all t2g
orbitals at V ions surrounding the defect [44], i.e., on the
defect cube; see Fig. 1. Interestingly, the OO collapse is
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visible in the moderate delocalization of the states in the
upper Hubbard band (UHB) and identified as d2 → d3 high
spin transitions at V ions on the defect cubes.
The Hamiltonian for the t2g electrons in R1−xCaxVO3,

Ht2g ¼ HHub þHpol þ
X

i<j

vðrijÞn̂in̂j þ
X

mi

vðrmiÞn̂i; ð1Þ

includes the extended degenerate Hubbard model HHub
[45], orbital-polarization termHpol [44], and two last terms
stand for t2g electron-electron interactions and the repulsive
potential of Ca defects. Both are determined by the
Coulomb interaction ∝ vðrÞ≡ e2=εcr, where εc≃ 5 [43]
is the dielectric constant of the core electrons, and r is the
distance between interacting charges of (i) two V ions at
sites i and j with rij ¼ jri − rjj, and (ii) a (Ca,Sr) defect at
site m and a t2g electron at a V ion at site i, with

rmi ¼ jRm − rij. We emphasize that the latter term acts
as a potential from all defects on the t2g electron charge
n̂i ¼

P
ασn̂iασ, with n̂iασ ¼ d̂†iασd̂iασ.

The hopping of the t2g electrons ∝ t≡ ðddπÞ in HHub is
two-dimensional and orbital flavor conserving [43–47],
which has peculiar consequences for hole propagation
[48–52]. Below we denote the t2g orbitals fyz; xz; xyg
by the cubic directions fa; b; cg, respectively, for which
the hopping is forbidden [53] (see Fig. 1). Intra-atomic
Coulomb interactions are parametrized by intraorbital U
and Hund’s exchangeJH. The rotational invariant form [54]
is essential for multiorbital models when orbitals and/or
spins rotate [44,55]. The cubic symmetry of the spin-orbital
structure is broken by a CF term ∝ Δc, which favors the
c1ða=bÞ1 electronic configuration at V3þ ions. The second
electron can select between two degenerate orbitals fa; bg,
according to the spin-orbital superexchange interaction that
emerges from the present Hubbard model [21]; see
Fig. 1(a).
A Ca2þ defect in the lattice of Y3þ ions in Y1−xCaxVO3

acts effectively as a negative charge, which repels all
vanadium electrons on a defect cube by VD ≡ vðdÞ, as
shown in Fig. 1(c). As we are dealing with a Mott insulator,
the upward shift creates defect states in the Mott-Hubbard
gap [43]. In this Letter, we focus on another effect of
the defect’s charge that is displayed in Fig. 1(b). The t2g
vanadium orbitals on a defect cube rotate to reduce their
Coulomb energy in the electric field of the defect. This
rotation is described by [44]

Hpol ¼ D
X

m;i∈Cm
α≠β;σ

λαβðri −RmÞðd̂†iασd̂iβσ þ d̂†iβσd̂iασÞ: ð2Þ

The orbital-polarization parameter D is defined by the
matrix element hiαjvðjri −RmjÞjiβi≡Dλabðri −RmÞ.
Here, we shall treat D as a free parameter. The sign of
the matrix element is encoded in λαβðri −RmÞ ¼ %1 and
depends on the vector ri −Rm. For the fa; bg doublet, we
have [43]

λabðri −RmÞ ¼
!
1 if ðri −RmÞkð111Þ; ð111̄Þ;
−1 if ðri −RmÞkð1̄11Þ; ð11̄1Þ:

Signs of all other λαβ are obtained by cubic symmetry; see
the Supplemental Material [56].
The effect of orbital polarization (2) on vanadium ions

around a Ca defect is shown in Fig. 1(b) for the large D
case. The actual form of the rotated fa0; b0; c0g orbitals
depends on the corner of the defect cube under analysis.
The orbitals are here classified according to their energy;
see Fig. 1(c). This perturbation of the G-type OO is
expected to be a strong effect, as it involves the orbitals
of all eight V ions in a defect cube. It competes with
the CF, JT, and superexchange terms, which stabilize the
C-AFM=G-AO order in LaVO3.

FIG. 1. Schematic view of occupied and unoccupied (grayed
out) t2g V orbitals for (a) G-AO order in undoped RVO3 with
C-AFM spin order marked by red and blue arrows, and (b) a
defect cube around a Ca2þ defect (red sphere) in R1−xCaxVO3,
with fa0; b0; c0g orbitals in the large D limit. Finite D modifies
the standard t2g basis fa; b; cg at each V site to fa0; b0; c0g; the
lowest orbitals fc0; b0g are occupied at all but the hole (h) site.
(c) t2g orbital energies at a V ion for D ∼ Δc=2, with the fa0; b0g
doublet split by 2D.

PHYSICAL REVIEW LETTERS 122, 127206 (2019)

127206-2



Each Ca2þ defect injects a hole that replaces the b0

electron on a defect cube with the highest energy in the
actual defect realization [31]; see Fig. 1(b). Which V ion
this is depends on the interaction vðrÞ with all other
random defects and doped holes. The unrestricted
Hartree-Fock (UHF) method is well designed to study
spin-orbital order [57–60]. The subtle self-consistency
problem, with random charged defects, is solved here
using the rotationally invariant UHF method, which is
able to reproduce the gap between the lower Hubbard
band (LHB) and the UHB (with its multiplet structure)
for the perovskite vanadates [31]. Statistical averages are
performed over M ¼ 100 defect realizations, and we have
verified that, for the quantities presented here, it suffices to
consider N ¼ ð4×4×4Þ-size clusters.
In Fig. 2, we show how orbital polarization D influences

charge densities nc and naþb ≡ na þ nb for increasing
doping x, where nα ¼ hn̂αi and n̂α ¼ ð1=NÞ

P
iσn̂iασ .

The case D ¼ 0 is straightforward: doped holes go into
the higher lying ab states, i.e., naþb ¼ 1 − x and nc ¼ 1.
At finite D, electrons occupy the rotated jc0i and jb0i
orbitals that, for increasing D, leads to a decrease of nc and
to an increase of naþb, which may even exceed 1. This
redistribution is evident in the large D limit, where the
occupied states become jc0i ¼ ð2jci − jai − jbiÞ=

ffiffiffi
6

p
and

jb0i¼ðjai− jbiÞ=
ffiffiffi
2

p
for a V ion in (111) position [see

Fig. 1(b)], leading—for small x and t ¼ 0—to occupations
naþb ¼ 1 − xþ 8

3 x and nc ¼ 1 − 8
3 x.

The rotation of t2g orbitals reduces the OO parameter
describing the staggered a=b order on each defect cube:

mo
aþb ≡

1

M

XM

s¼1

1

N

X

i

hn̂ia − n̂ibiseiQG·Ri ; ð3Þ

where QG ¼ ðπ; π; πÞ is the vector corresponding to the
G-AO order. One finds mo

aþb ≃ 0.9 in the undoped case
[see Fig. 3(a)], i.e., due to the finite hopping t ¼ 0.2 eV.
For D ¼ 0, the order parameter mo

aþb decreases almost
linearly with x. This case has been studied in a
polaron theory using a small t expansion [31] where

mo
aþb ≃ 1 − xð1þ 2δcÞ. The 1 − x describes the dilution

of electrons in a or b orbitals upon doping. The polarity
parameter δc is 0 if the doped hole is localized on a single V
site and is finite, but less than 0.5, if it moves in a double
exchange process along an active bond (AB) [44], thereby
generating orbital defects. It is clear that the kinetic energy
of holes in the D ¼ 0 case [31] weakens the OO but does
not collapse it. In contrast, theD dependence in Fig. 3(a) is,
for small D ≤ 0.03 eV, almost absent and followed by a
decay centered at Dc≈ 0.05. We identify the orbital-
polarization interaction ∝ D as the driving force of the
decay. For large doping x ≥ xc≈ 0.3 and D ≥ 0.07eV,
there is a saturation ofmo

aþb induced by the large number of
overlapping defect cubes. Simultaneously C-AFM spin
order persists in the regime where the OO melted. This
behavior agrees with the experimental data [27–29].
We remark that the Hamiltonian parameters used here are

relevant for La1−xSrxVO3, where G-AO order disappears at
xexp ≃ 0.18[27]. It is worth noticing that the decay of the
OO is due to a field term in the Hamiltonian, which
explains its rather gradual decline, a trend also seen in
experiments [28,42]. So far, we have not observed in our
data the collective features expected for conventional phase
transitions.
Given the randomness of these systems, how does the

localization of states change with orbital polarization ∝ D?
A convenient measure of the degree of localization of an
UHF wave function ψn;sðrÞ is the participation number
(PN) Pn;s, which is 1 for a state localized on a single site
and N for a Bloch state. Usually, one considers the inverse
participation number (IPN) which takes the form [31]
P−1
n;s ¼

P
ið
P

ασjhψn;sjiασij2Þ2 ∈ ½0; 1' for systems with
spin-orbital degeneracy. P−1

n;s is plotted in Fig. 4 for
x ¼ 0.3125 vs the respective eigenvalues ω ¼ ωn;s for
all 6N states n and M ¼ 100 defect realizations s together
with the average IPN spectra PðωÞ−1 [31]. Interestingly,
despite the strong changes in theUHFwave functionsψn;sðrÞ,
the density of states NðωÞ≡ ð1=MÞ

PM
s¼1 ½ð1=NÞ×P

6N
n¼1 δðω − ωn;sÞ'hardly changes for D ≤ 0.1 eV; thus,
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FIG. 2. Average electron density (per V ion) vs orbital-
polarization parameter D (2) for doping x ∈ ½0.0; 0.5'[legend
in (a)] for (a) c orbitals, nc; (b) fa; bg orbital doublet, naþb.
Parameters: U ¼ 4.5, JH ¼ 0.5, t ¼ 0.2, VD ¼ 2.0 (all in eV).
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PHYSICAL REVIEW LETTERS 122, 127206 (2019)

127206-3



we show it only for D ¼ 0. Overall, one recognizes a
gradual decrease of the IPN values with increasing D and
a saturation for D ≥ 0.08eV, where the OO is practically
absent. The PN results in a maximum of about 3 (8) sites for
the LHB (UHB): all states remain well localized. The
discontinuity of the IPN at D ¼ 0 between removal and
addition states, right belowandabove theFermi energyμ, has
been discussed before [31]. Here, we observe its disappear-
ance at moderate D: delocalization of removal states can be
attributed to the orbital rotation leading to thec0 orbital [61].
For the D dependence of the IPN (Fig. 4), the energy

interval ω ∈ ð2.7; 3.5Þ eV is special and shows the largest
variation in the range 0.04< D < 0.07eV, similar to
the D dependence of mo

aþb for x ¼ 0.3125, shown in
Fig. 3(a). There are three different types of d2 → d3

transitions that fall into this energy window. Namely,
either one of the two low spin (LS) transitions in the
host or the high spin (HS) transition on a defect cube,
where excitation energies are increased by VD, i.e.,
ωHS ¼ U − 3JH þ VD þ ωLHB ≈ 3.0 eV, where the posi-
tion of the LHB is given by ωLHB ¼ ELHB − μ ≈ −VD [31].
It is the ωHS transitions that are sensitive to the melting of
the OO.
We discussed above the fact that the rotation of orbitals

lowers the Coulomb energy of electrons in the electric field
of defects. So far, we have not explained which mechanism
opposes the rotation and determines the characteristic
scales Dc and xc in Fig. 3. We show here that both are
indeed determined by the kinetic energy of the system
rather than by the CF—a consequence of strong correla-
tions. First, we analyze in Fig. 5(a) the total kinetic energy
per vanadium site, KðxÞ≡ ð1=NÞhH̃kini, which includes
both the hopping ∝ t and Fock ∝ vðrijÞ terms [44]. For an
undoped Mott insulator (x ¼ 0) such as LaVO3, we find
large kinetic energy Kð0Þ ≃ −230 meV; see the horizontal

x ¼ 0 line in Fig. 5(a). This is equivalent to the sum of the
spin-orbital superexchange energies for the three cubic
bond directions [62]. For all other x ≥ 0.0625, one finds a
monotonic increase of K (i.e., loss of superexchange) for
increasing either x or D. Note the complementary trends in
the decay of the OO parameter mo

aþb in Fig. 3(a).
From a polaron perspective, the increase of K is

puzzling, as one may expect that added holes would lead
to delocalization, giving rise to some extra negative kinetic
energy. In fact, for small D and x, the kinetic energy K in
Fig. 5(a) is indeed lower than the energy of the undoped
system Kð0Þ, in agreement with intuition. The dominant
kinetic energy gain is expected to stem from a d2d1 → d1d2

double exchange process on active FM bonds, as confirmed
by looking at the total UHF kinetic energy of holes on ABs
KAB; see Fig. 5(b). We also consider the kinetic energy gain
per defect δk and per active bond kAB, or equivalently per
doped hole,

δk ≡ ½KðxÞ − Kð0Þ'=x; kAB ≡ KABðxÞ=x: ð4Þ

The kinetic energy gain δk shown in Fig. 5(c) reveals
an approximate isosbestic point, where δk increases
(decreases) as function of x for small (large) D. For
D ¼ 0 in the dilute case (x ¼ 0.0625), the kinetic energy
gain is δk ¼ −0.208eV, while the kinetic energy of a hole
on an active bond in Fig. 5(d) is kAB ≈ −0.162 eV. To
better appreciate these numbers, we recall that t ¼ 0.2 eV.
Thus, we conclude that kAB is in fact the dominant
contribution of the total kinetic energy gain δk at
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x ¼ 0.0625 and small D. For larger doping and small D,
the kinetic energy per hole is quenched due to electron-
electron and electron-defect interactions [31], and the
formation of localized bipolarons (ABs with two doped
holes) created by touching defect cubes. States remain
localized beyond the percolation limit [63]; see the
Supplemental Material [53].
Next, we turn to the D dependence of δk and kAB in

Figs. 5(c) and 5(d). For low (high) doping x ¼ 0.0625
(0.50), the change of δk between D ¼ 0 and 0.1 eV is
800 (200) meV, i.e., much more than the change of kAB,
which is only 60 (40) meV. This clearly shows that the
D-dependent change of δk is due mainly to the orbital
rotation at all corners of the defect cube, not just at the
active bond. The smaller values at high doping result from
the frustration of orbital rotation due to the touching of
defect cubes. In view of the significant overlap of defect
cubes at already moderate doping, one may expect that
some states extend over several cubes. Yet, in the analysis
of IPN, we have shown in Fig. 4 that such delocalized states
do not exist and that holes injected into the LHB do extend
typically over just two to three V sites.
Summarizing, we have shown that the dominant mecha-

nism that leads to the collapse of the orbital order is not the
motion of doped holes, but rather the orbital rotation
induced by charged defects on their vanadium neighbors.
This field-induced suppression of the orbital order is
noncooperative and does not lead to a conventional phase
transition—like the loss of antiferromagnetic order in high-
Tc cuprates [64]. We believe that our model gives a
qualitative explanation of the decay of the orbital order
accompanied by robustness of spin order in R1−xSrxVO3

compounds.
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Supplemental Material
Defect-induced orbital polarization and collapse of orbital order in doped vanadium perovskites

by Adolfo Avella, Andrzej M. Oleś, and Peter Horsch

In the first Section of this Supplemental Material, we present the three-band extended Hubbard model used
in the main text, which describes the t2g electronic states in vanadium perovskites. In Section II, we explain
in detail how the general form of the orbital polarization interaction, describing the rotation of t2g orbitals on
the vanadium neighbors of charged defects, is obtained from the representative term acting on the {a, b} orbital
doublet reported in the main text. In Section III, we show that spin order decouples from orbital order and is
robust at increasing doping; it is not influenced by orbital polarization interaction. Finally, in Section IV, we
discuss some of the interaction and frustration effects appearing on increasing defect density where more and
more defect cubes have common corners, edges or faces.

I. THE THREE-BAND HUBBARD MODEL

The Hamiltonian for t2g electrons in doped vanadium
(La,Y)1�xCaxVO3 perovskites [1, 2],

Ht2g= HHub+Hpol+
X

i<j

v(rij)n̂in̂j +
X

mi

v(rmi)n̂i, (1)

includes the three-band Hubbard model HHub [3] for the ref-
erence host system without charged defects. It acts on the
electrons in t2g orbital states similar to the model for pnictides
[4] and consists of the kinetic energy Hkin, local interactions
described by the degenerate Hubbard model HU�JH

, supple-
mented by rather weak terms: the CF splitting HCF, and the
JT interactions HJT,

HHub = Hkin +HU�JH
+HCF +HJT. (2)

The kinetic energy reads as,

Hkin =
X

hijik�
↵�

t�↵
ij

⇣
d̂†
i↵�

d̂
j↵�

+ d̂†
j↵�

d̂
i↵�

⌘
. (3)

Here, d̂†
i↵�

is the electron creation operator in the t2g orbitals
↵ 2 {xy, yz, zx} with spin � =", # at site i. The effective
hopping t�↵

ij
of t2g electrons between two vanadium ions at

sites i and j depends on bond direction hiji k � and on the or-
bital flavor ↵. It occurs via hybridization with an intermediate
oxygen 2p⇡ orbital along 180° V–O–V bonds. Therefore, the
hopping is diagonal and conserves the orbital flavor ↵. It is
convenient to introduce the following short-hand notation for
the orbital degree of freedom [5],

|ai ⌘ |yzi, |bi ⌘ |zxi, |ci ⌘ |xyi,

with the labels � = a, b, c referring to the cubic axis along
which the hopping element vanishes, i.e., t��

ij
= 0. When

↵ 6=� the hybridization is finite and t�↵
ij

= �t.
Local interactions at vanadium ions are described by the

degenerate Hubbard model HU�JH
parametrized by two

Kanamori parameters: intraorbital Coulomb interaction U and

Hund’s exchange JH between two t2g electrons [6],

HU�JH
= U

X

i↵

n̂i↵"n̂i↵# + JH
X

i,↵ 6=�

d̂†
i↵"d̂

†
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+
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2
JH

◆
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~̂Si�

�
.

(4)

Interorbital Coulomb interactions / ni↵ni� are ex-
pressed in terms of spin-orbital electron density opera-
tors, n̂

i↵
=

P
�
n̂
i↵�

=
P

�
d̂†
i↵�

d̂
i↵�

; orbital spin opera-

tors, ~̂Si↵ ⌘ {Ŝx

i↵
, Ŝy

i↵
, Ŝz

i↵
}, appear in the Hund’s exchange

/ �JH ~̂Si↵ ·
~̂Si� . In a Mott insulator, charge fluctuations are

quenched and electrons localize due to large U � t. In case
of LaVO3, one finds a t2

2g
configuration at each vanadium

ion and Hund’s exchange JH stabilizes high spin states with
S = 1. The insulating ground state of LaVO3 has a C-type
antiferromagnetic (C-AF) spin coexisting with G-type alter-
nating orbital (G-AO) order [3].

The structural transition at Ts ⇠ 200 K lifts the degeneracy
of the three t2g orbitals and breaks the cubic symmetry in the
orbital space [3]. At low temperature, the CF splitting favors
xy ⌘ c orbitals by energy �c = 0.1 eV, which we take as
a constant parameter independent of temperature, and the CF
Hamiltonian is,

HCF = ��c

X

i

n̂ic. (5)

It selects the orbital doublet as orbital degree of freedom and
gives either c1

i
a1
i

or c1
i
b1
i

configuration at the V ion sitting at
site i, depending on the actual lattice distortion in the ab plane.
In the Mott insulator LaVO3 [7] the intrinsic spin-orbital su-
perexchange induces the C-AF spin and G-AO order charac-
teristic for the ground state of this compound.

Lattice distortions change the electronic state and induce
weak JT interactions in the three-band model (2),

HJT =
1

4
Vab

X

hijikab

(n̂ia � n̂ib)(n̂ja � n̂jb)

�
1

4
Vc

X

hijikc

(n̂ia � n̂ib)(n̂ja � n̂jb). (6)
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Using the orbital ⌧z
i

operators,

⌧z
i
⌘

1

2

X

�

⇣
d̂†
ia�

d̂
ia�

� d̂†
ib�

d̂
ib�

⌘
, (7)

the JT interactions are,

HJT = Vab

X

hijikab

⌧̂z
i
⌧̂z
j
� Vc

X

hijikc

⌧̂z
i
⌧̂z
j
. (8)

These interactions stabilize another competing type of spin-
orbital order [7], the G-type AF (G-AF) spin coexisting with
C-type AO (C-AO) order, which represents the ground state
in YVO3 [1, 8]. Small doping x ' 0.01 leads to a phase tran-
sition to the C-AF/G-AO phase, which is the phase studied in
this work.

Following the earlier studies, we have fixed the small pa-
rameters in HCF and HJT as follows: �c = 0.1, Vab = 0.03,
and Vc = 0.05 (all in eV). The term / Vab favors alternat-
ing {a, b} orbitals, i.e., AO order in the ab planes (Vab > 0)
while the ferro-orbital order is favored along the c cubic
axis (Vc > 0). Thus, the term / Vc weakens the superex-
change orbital interaction / Jr1, where J = 4t2/U and
r1 = (1 � 3⌘)�1 with ⌘ = JH/U , which along the c axis
favors the observed G-AO order [7]. One finds that for the
present parameters (U = 4.5, t = 0.2, JH = 0.5, all in eV)
Jr1 = 53 meV, so taking Vc = 50 meV one is indeed close to
the switching of the orbital order observed in YVO3 [9, 10].

II. ORBITAL POLARIZATION AROUND DEFECTS

The orbital polarization term results from the off-diagonal
matrix-elements of the electron-defect interaction and leads to
the rotation of orbitals at V ions on the defect cube Cm around
the charged defect at Rm [2]:

Hpol = D

X

m,i2Cm
↵ 6=�,�

�↵�(ri�Rm)
⇣
d̂†
i↵�

d̂
i��

+ d̂†
i��

d̂
i↵�

⌘
. (9)

The orbital-polarization parameter D is defined by the matrix
element of the vanadium t2g wave functions and the Coulomb
potential of the defect in the center of the defect cube for
↵ 6= �:

hi↵|v(|ri�Rm|)|i�i ⌘ D�ab (ri�Rm). (10)

The coefficients �↵�(ri� Rm) = ±1 are selected to min-
imize the Coulomb repulsion with the defect charge. Tak-
ing the {a, b} doublet active along the c axis as an exam-
ple, one finds that �ab (ri�Rm) = +1 for the directions

TABLE I: The coefficients �↵�(ri � Rm) in Eq. (9) for different
orbital doublets {↵,�} and for different directions {(ri �Rm)}.

orbital doublet (ri �Rm)k
{↵,�} (111) (111̄) (1̄11) (11̄1)
{a, b} 1 1 �1 �1
{a, c} 1 �1 �1 1
{b, c} 1 �1 1 �1

(ri�Rm) k (111), (ri�Rm) k (111̄), and �1 for the other
two diagonal directions [1], see Table I. The remaining values
of �↵� (ri �Rm), which determine the local mixing of {a, c}
or {b, c} orbitals can be obtained by simultaneous cyclic per-
mutations of the orbitals {a, b, c} and of the cubic axes in the
direction of the vector (ri �Rm), see Table I. Note that each
direction along one of the cube’s diagonals involves two vana-
dium ions.

The overlap matrix element D between different t2g or-
bitals is proportional to the strength of the defect potential at
nearest neighbor vanadium sites VD = v(d), in the present
case VD ⇡ 2 eV. To provide an estimate for D we have cal-
culated the ratio D/VD using t2g atomic orbitals of the rel-
evant V3+ ion. This yields for the ratio D/VD ⇡ 0.018 or
D ' 40 meV. We note that this value lies in the D range
where the largest variation of the order parameter mo

a+b
is ob-

served (Fig. 3). This quite rough estimate has been obtained
by using atomic orbitals for V 3+ ions with an effective charge
Z = 3 and a distance d between the defect and a V ion of 3.4
Angstrom.

III. ORBITAL POLARIZATION DEPENDENCE OF SPIN
ORDER

The defect-induced orbital polarization (9) strongly affects
the orbital order as well as the doping dependence of the G-
type orbital order parameter mo

ab
, as we have shown in Fig.

3(b). Here, we present a complementary picture that shows
how the spin order parameter in the C-AF phase, ms, de-
creases as function of doping x changes with the orbital po-
larization strength D. The spin order parameter is defined as

ms =
X

i,⌫

D
d̂†
i⌫"d̂i⌫" � d̂†

i⌫#d̂i⌫#

E
eiQC ·ri , (11)

where QC ⌘ (⇡,⇡, 0), and the sum is over all sites ri and
orbital flavors ⌫ = a, b, c.

The results in Fig. 5 show that the spin order parameter ms

has an approximate linear decay with x, and only an extremely
weak dependence on D. The latter may be easily understood
as the orbital rotation does not affect spins. Yet, a so weak
dependence on D is surprising if we go back to the origins of
the decay with x. The latter has been explained in terms of a
spin-polaron approach in Ref. [11]. There are two basic con-
tributions to the almost linear decrease of ms with x:
(a) the dilution of spins due to the added holes and
(b) the kinetic energy or string-formation effect due to the mo-
tion of doped holes in the C-AF background.
Orbital rotation leads to the mixing of flavors and thus to the
appearance of off-diagonal hopping processes that affect the
kinetic energy. From this perspective, the insensitivity of the
spin-order to orbital rotation, which we observe in Fig. 5,
comes as a surprise. The solution of the puzzle follows from
the observation that holes form small spin-orbital polarons
that are bound to defects where the kinetic energy string con-
tributions are small.

We note that similar trends were reported in a recent exper-
imental study of spin and orbital disordering by hole doping
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in Pr1�xCaxVO3 [12]. In that system, the long-range C-type
(C-AF) spin order persists beyond the insulator-metal transi-
tion crossover regime (0.22 < x < 0.25) and a Néel transition
is still observed in the regime where the orbital order melted.

IV. FRUSTRATION RESULTING FROM OVERLAPPING
DEFECT CUBES

As we have argued in the text, the self-consistent UHF algo-
rithm is capable to obtain the electronic structure of the doped
Mott insulator even at high doping, where defect cubes share
faces, edges or just corners. The final results presented in the
paper are averages over many defect realizations — neverthe-
less one certainly would like to get some deeper insight or idea
of the energy changes resulting from orbital rotations beyond
the dilute limit, that is when frustration due to overlapping de-
fect cubes is essential. This is possible by a careful analysis
of correlation functions of individual random systems. In the
following, we give for the interested reader a qualitative de-
scription of the most important effects due to the touching of
defect cubes.

The increase with doping x of the number of defect cubes
sharing corners, edges, and faces is responsible for the non-
linearity with doping x of the behavior of nc, na+b and mo

a+b

at finite D. Actually, the percolation limit for defect cubes
taking into account simultaneously corner, edge and face shar-
ing between V cubes is counter-intuitively low: xp = 0.0976
[13]. This explains why x = 0.0625 is somehow different
from all other dopings we report. This also says that having
defect cubes that share, in particular, one vertical bond is not
that unusual also for very low values of doping. This brings
in the possibility to confine two holes on that bond and gain
substantial Coulomb potential energy (minimizing simultane-
ously the distances between the two holes and the two defects)
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FIG. 5: Spin-order parameter ms versus doping x and its dependence
on the orbital polarization strength D. Parameters as in the main text.

at the expense of the kinetic energy gain we usually have at ac-
tive bonds. In other words, small spin-orbital polarons merge
to give bipolarons. This becomes more and more relevant for
increasing values of D as active bonds gain less and less ki-
netic energy because of the induced orbital rotation.

It is worth noting that two defect cubes sharing a face along
a or b direction can simultaneously gain Coulomb potential
energy and kinetic energy by confining the two holes over the
two shared vertical bonds, but this leads again to two active
bonds as if they would be on separate defect cubes [13]. Also
sharing just corners, horizontal edges and faces along the c di-
rection does not change the actual number of active bonds and
has effects only on the potential energy one can gain. Accord-
ingly, only defect cubes sharing vertical bonds really affects
the kinetic energy of the system as they can reduce the overall
number of active bonds.

Actually, the main source of kinetic energy loss with in-
creasing x is just such sharing of empty vertical bonds (oc-
cupied by a bipolaron). The loss of kinetic energy by orbital
rotation on all vertical bonds of a defect cube on increasing D

is the other relevant source of kinetic energy loss. In the dilute
limit (x = 0.0625) for large enough D, we have that defect
realizations with shared vertical bonds become so much more
favorable and, therefore, so much more easy to converge nu-
merically that they dominate the statistical averages. Just for
this doping, at ⇠ Dc, one has a transition from a situation with
mainly well separated defect cubes to mainly couples of defect
cubes sharing one vertical bond, see Fig. 5(d). As a matter of
fact, D affects also the way polarons interact: below Dc, they
avoid each other to maximize the gain in kinetic energy, but
above Dc, they attract each other in order to minimize the loss
in kinetic energy.

Indeed, Dc corresponds to the value of D that imposes an
orbital rotation large enough to make the kinetic energy gain
on an active bond equal to just half of that of a standard su-
perexchange bond, making thus equal the kinetic energy gain
on two separated defect cubes (two active bonds and six spec-
tator bonds [11]) and two defect cubes sharing an empty verti-
cal bond: no active bonds, with no kinetic energy gain at all on
the empty shared vertical bond, still six spectator bonds, but a
whole ordinary superexchange bond recovered! Such an oc-
currence makes clear why at Dc the kinetic energy per defect
is almost completely independent of x (we have an approxi-
mate isosbestic point). The value of x just rules the number of
defect cubes sharing an empty vertical bond and if the energy
of the two relevant configurations (two active bonds or one
empty vertical bond plus a recovered ordinary superexchange
bond) is equal, the dependence on x is clearly lost. The small
loss of kinetic energy �k at Dc, is then equal to that of a miss-
ing ordinary superexchange bond plus the difference between
the kinetic energy of six ordinary superexchange bonds and
the kinetic energy of six rotated spectator bonds.

It is now clear that the presence of defect cubes sharing
empty vertical bonds (forming bipolarons) is very relevant —
for larger and larger values of doping this comes to dominate
the physical properties. This is extremely clear by looking at
mo

a+b
as a function of x for all finite values of D. On increas-

ing x > xc ⇡ 0.3, one adds defects in V cubes that have al-
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most all corners/edges already belonging to other defect cubes
[13]. Hence, no substantial increase of rotations and decrease
of orbital order above a certain value of D = 0.07 > Dc. Each
added hole either generates a polaron (on an active bond) or
a bipolaron (on an empty vertical bond). The latter actually
slightly increases the orbital order, as it is clearly shown by
mo

a+b
versus x in the regime of large values of D. The posi-

tion of the minimum defines xc where the balance is reached
between decreasing the orbital order through the the formation
of new spectator bonds and its increase by changing polarons

into bipolarons. It also coincides with value at which K, as a
function of x for D = 0, passes through the undoped value.
The gain of kinetic energy at polarons (active bonds) is again
balanced by its loss at bipolarons (empty bonds).

Just one final remark regarding the role of Dc in the IPN:
above Dc, in the middle of the LHB, and less evidently right
below µ, the delocalization inverts its overall trend and actu-
ally decreases as the orbital polarization inhibits the gain of
kinetic energy along the active bonds. Right above µ, this
mechanism works for all values of D.
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