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Investigations on possible violation of Lorentz invariance have been widely pursued in the last decades,
both from theoretical and experimental sides. A comprehensive framework to formulate the problem is the
standard model extension (SME) proposed by A. Kostelecky, where violation of Lorentz invariance is
encoded into specific coefficients. Here we present a procedure to link the deformation parameter β of the
generalized uncertainty principle to the SME coefficients of the gravity sector. The idea is to compute the
Hawking temperature of a black hole in two different ways. The first way involves the deformation
parameter β, and therefore we get a deformed Hawking temperature containing the parameter β. The second
way involves a deformed Schwarzschild metric containing the Lorentz violating terms s̄μν of the gravity
sector of the SME. The comparison between the two different techniques yields a relation between β and
s̄μν. In this way bounds on β transferred from s̄μν are improved by many orders of magnitude when
compared with those derived in other gravitational frameworks. Also the opposite possibility of bounds
transferred from β to s̄μν is briefly discussed.
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I. INTRODUCTION

Possible breakdowns of the fundamental symmetries in
physics have received a more and more growing interest
and have been studied in different areas (see for example
[1–6]). The most general setting in which they have been
investigated is the Standard Model extension (SME) [1].
The violation of the fundamental symmetries, i.e. Lorentz’s
and charge parity time (CPT) symmetries, follows from the
observation that the vacuum solution of the theory could
spontaneously violate them, even though they are preserved
by the underlying theory. Modern tests for Lorentz and
CPT invariance breakdown have been discussed in [7].
More recently, the SME has been extended to incorporate
the gravitational interaction [1,8,9]. The latter results
foresee that the effective action is given by

S ¼ SHE þ Sm þ SLV;

where SHE ¼ ð16πGÞ−1 R d4x
ffiffiffiffiffiffi−gp ðR − 2ΛÞ is the standard

Hilbert-Einstein action of general relativity (Λ is the
cosmological constant), Sm the general matter action
(which also includes Lorentz violating matter gravity
coupling), while Lorentz violating gravitational couplings
are included in SLV [10]

SLV ¼ 1

16πG

Z
d4eð−uRþ sμνRT

μν þ tκλμνCκλμνÞ; ð1Þ

where RT is the trace-free Ricci tensor andCκλμν is theWeyl
conformal tensor. The coefficients u, sμν and tκλμν are real
and dimensionless. The coefficients sμν and tκλμν fulfill
the Ricci and Riemann properties, respectively, and are
traceless:

sμμ ¼ 0; tκλκλ ¼ 0; tκμκλ ¼ 0:

We restrict to the case u ¼ 0 and tκλμν ¼ 0, therefore only
the coefficients sμν control the Lorentz violation degrees of
freedom. By varying the action S with respect to the
background metric yields [10]

Gμν − ðTRsÞμν ¼ 8πGTμν
g ; ð2Þ

where Gμν ¼ Rμν − ðR=2Þgμν is the standard Einstein
tensor, and
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ðTRsÞμν ¼ 1

2
gμνðRαβ −∇α∇βÞsαβ

þ 1

2
ð∇α∇μsαν þ∇α∇νsαμ −∇α∇αsμνÞ: ð3Þ

The parametrized post-Newtonian (PPN) approximation of
(1) has been studied in [10]. There a method is developed to
extract the modified Einstein field equations in the limit of
small metric fluctuations above the Minkowski vacuum,
while allowing for the dynamics of 20 independent
coefficients for Lorentz violation. The linearized effective
equations are solved to obtain the post-Newtonian metric.
Then the equations of motion for a perfect fluid in this
metric are obtained, and applied to a many body gravitating
system. Finally, tidal forces are disregarded, and the point-
particle limit of these equations is considered. This pro-
cedure yields a two point-particles Lagrangian, which gives
the effective equations of motion for the two bodies system,
in the coordinate acceleration. In the hypothesis M ≫ m
and considering the heaviest bodyM at rest (with respect to
the test particle with mass m), this effective two bodies
Lagrangian reads

L ¼ 1

2
mv2 þGmM

r

�
1þ 3

2
s̄00 þ 1

2
s̄jk

xjxk
r2

�

−
GmM
r

�
3s̄0jvj þ s̄0j

xj
r
vk

xk
r

�
ð4Þ

where we understood summation over indexes j, k, and
where v2 ¼ v21 þ v22 þ v23, r

2 ¼ x21 þ x22 þ x23, vk ¼ _xk, and
the derivative is taken in respect to the coordinate time. The
s̄μν are the Lorentz violation coefficients. We work in units
with c ¼ 1, and we consider particles moving slowly in
respect to the speed of light, in a stationary and weak
gravitational field. Therefore v ≪ 1, so at the level of
approximation we need, we can neglect the terms depend-
ing on the velocity v. The effective potential therefore reads

VðrÞ ¼ UðrÞ
m

¼ −
GM
r

�
1þ 3

2
s̄00 þ 1

2
s̄jk

xjxk
r2

�
: ð5Þ

As indicated in several points of Ref. [10] [see Eqs. (62),
(100), (126), (137), (175)] the scalar factor ð1þ 3s̄00=2Þ
merely acts as a rescaling of the gravitational constant, and
hence is unobservable in the present context. We can in fact
rewrite VðrÞ as

VðrÞ ¼ −
GeffM

r

�
1þ s̄jkeff

xjxk
r2

�
ð6Þ

where

Geff ¼ G

�
1þ 3

2
s̄00

�
; s̄jkeff ¼

s̄jk

2þ 3s̄00
: ð7Þ

Notice that the term s̄jkxjxk=r2 cannot be reabsorbed into
Geff since it is an anisoptropic term, which depends upon
the directions xjxk=r2. Given the unobservability of the
factors containing s̄00, in the following we shall simply
rename Geff ≡ G and s̄jkeff ≡ s̄jk. The parameters sμν have
been constrained in different frameworks, see Table I [11].
The aim of this paper is to relate the coefficients s̄μν to

the deforming parameter β of the generalized uncertainty
principle (GUP) [16]. In fact, one of the most studied forms
of the deformation of Heisenberg uncertainty principle
(HUP), usually called GUP, is

ΔxΔp ≥
ℏ
2

�
1þ β

4l2
p

ℏ2
Δp2

�
¼ ℏ

2

�
1þ β

�
Δp
mp

�
2
�
: ð8Þ

Here lp is the Planck length, mp the Planck mass, and we
work in units where 2Gmp ¼ lp, ℏ ¼ 2mplp, c ¼ kB ¼ 1.
Typically, investigations mainly focus on understanding
how gravity may affect the formulation of HUP. Given the
pivotal role of gravitation in these arguments, it is not
surprising that the most relevant modifications to the HUP
have been proposed in string theory, loop quantum gravity,
deformed special relativity, and studies of black hole
physics [17–23]. In principle, the dimensionless parameter
β is not fixed by the theory, although it is generally assumed
to be of order one (this happens, in particular, in some
models of string theory, see Ref. [17]).
In our approach we use the GUP to compute the

Hawking temperature of a given black hole, which
however can be also computed as well via the effective
potential VðrÞ, and hence related to s̄μν. We shall find
β ≃ ðM=mpÞ2js̄jkj, whereM is the mass of the gravitational
source. By making use of the most stringent bound on the
parameter s̄jk (see Table I), we will derive an upper bound
on the deformation parameter β.

II. GUP-DEFORMED HAWKING TEMPERATURE

As is well known from the argument of the Heisenberg
microscope [24], the size δx of the smallest detail of an
object, theoretically detectable with a beam of photons of
energy E, is roughly given by

TABLE I. Upper bounds on the s̄μν derived in different physical
frameworks (see Ref. [11] for a complete list).

s̄μν < Physical Framework References

10−15 Torsion pendulum [10]
10−14 Cosmic rays [12]
10−12 Lunar laser ranging [13]
10−11 Binary pulsars [14]
10−9 Atom interferometry [15]

Perihelion precession [10]
(Solar System data)
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δx ≃
ℏ
2E

ð9Þ

since ever larger energies are required to explore ever
smaller details. From the uncertainty relation (8), we
see that the GUP version of the standard Heisenberg
formula (9) is

δx ≃
ℏ
2E

þ 2βl2
p
E
ℏ

ð10Þ

which relates the (average) wavelength of a photon to its
energy E.1 To compute the thermal GUP corrections
to the Hawking spectrum, we follow the arguments of
Refs. [25–32]. We can derive from (10) a relation between
the mass and the temperature of a Schwarzschild black
hole. Consider an ensemble of unpolarized photons of
Hawking radiation just outside the event horizon of a
Schwarzschild black hole. From a geometrical point of
view, it is easy to see that the position uncertainty of such
photons is of the order of the Schwarzschild radius RS ¼
2GM of the black hole. Hence, the photon positional
uncertainty is δx ≃ 2μRS. The proportionality constant μ
is of order unity, as we will see. According to the
equipartition principle, the average energy E of unpolarized
photons of the Hawking radiation is simply related with
their temperature T by E ¼ T. Formula (10) then becomes

4μGM ≃
ℏ
2T

þ 2βGT: ð11Þ

Finally, we have

M ¼ ℏ
8πGT

þ β
T
2π

ð12Þ

where we fixed μ ¼ π by requiring that formula (11)
predicts the standard semiclassical Hawking temperature,
when the semiclassical limit β → 0 is considered.
This is the black hole mass-temperature relation pre-

dicted by the GUP for a Schwarzschild black hole. Of
course this relation can be easily inverted, to get
T ¼ TðMÞ. Since however the term in βT is small,
especially for solar mass black holes, it is more useful
to invert and expand in powers of β. We arrive to the
expression

T ¼ ℏ
8πGM

�
1þ βm2

p

4π2M2
þ � � �

�
ð13Þ

and it is evident that to zero order in β, we recover the usual
well-known Hawking formula. We stress that we are
assuming that the correction induced by the GUP has a
thermal character, and, therefore, it can be cast in the form

of a shift of the Hawking temperature. Of course, there are
also different approaches, where the corrections do not
respect the exact thermality of the spectrum, and thus need
not be reducible to a simple shift of the temperature
(an example is the corpuscular model of a black hole
of Ref. [33]).

III. METRIC MIMICKING A POTENTIAL
CORRECTED WITH LORENTZ

VIOLATING TERMS

Now we consider the effective potential produced by a
metric of the very general class

ds2 ¼ FðrÞdt2 − gikðx1; x2; x3Þdxidxk ð14Þ

where r ¼ jxj ¼ ðx21 þ x22 þ x23Þ1=2, and x1, x2, x3 are the
standard Cartesian coordinates. A particular case of the
metric (14) is the Schwarzschild metric, in the standard
form

ds2 ¼
�
1 −

2GM
r

�
dt2 −

�
1 −

2GM
r

�
−1
dr2 − r2dΩ2

as well as in harmonic coordinates

ds2 ¼
�
R−GM
RþGM

�
dt2 −

�
RþGM
R−GM

�
dR2−ðRþGMÞ2dΩ2;

with R ¼ r −GM.
It can be easily seen2 that any general metric of the form

ds2 ¼ FðrÞdt2 − FðrÞ−1dr2 − CðrÞdΩ2 ð15Þ

can be put in the form (14). In fact, Eq. (15) is equivalent to

ds2 ¼ FðrÞdt2 −
�
FðrÞ−1 −CðrÞ

r2

�
1

r2
ðx · dxÞ2 −CðrÞ

r2
dx2:

Once the metric is in the form (14), in Cartesian coor-
dinates, then, with well-known procedures [34], it is easy to
show that the effective Newtonian potential3 is of the form

VðrÞ ≃ 1

2
ðFðrÞ − 1Þ ð16Þ

or, equivalently,

FðrÞ ≃ 1þ 2VðrÞ: ð17Þ

1Here, the standard dispersion relation E ¼ pc is assumed.

2More details can be found in Ref. [34].
3The effective Newtonian potential is produced by the metric

given in (14) for a point particle which moves slowly, in a
stationary and weak gravitational field, i.e., quasi-Minkowskian
far from the source, r → ∞.
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Therefore, the metric able to mimic the corrected
Newtonian potential (6), containing Lorentz violating
terms, will be

FðrÞ ¼ 1 −
2GM
r

ð1þ s̄jkfjkðθ;ϕÞÞ; ð18Þ

where we have introduced standard spherical coordinates
x¼rðsinθcosϕ;sinθsinϕ;cosθÞ and xjxk=r2 ¼ fjkðθ;ϕÞ.
Notice that the formal angular dependence on ðθ;ϕÞ
displayed by (18), in our context does not really matter.
In fact we know that js̄μνj≲ 10−10, jfjkðθ;ϕÞj ≤ 1 for any
ðθ;ϕÞ, and we are just interested in transferring bounds
from s̄jk to β. Hence, angular dependence does not
influence our considerations.

IV. TEMPERATURE FROM A DEFORMED
SCHWARZSCHILD METRIC

Let us define, for fixed θ and ϕ,

ϵðrÞ ¼ −
2GM
r

s̄jkfjkðθ;ϕÞ: ð19Þ

Therefore, FðrÞ will now be of the form

FðrÞ ¼ 1 −
2GM
r

þ ϵðrÞ: ð20Þ

Since jfjkðθ;ϕÞj ≤ 1, and we are supposing js̄jkj ≪ 1, then
it is clear that jϵðrÞj ≪ 2GM=r for any r ≥ 2GM.
We can legitimately wonder what kind of deformed

Hawking temperature can be inferred from a deformed
Schwarzschild metric as in (20). The deformation (20)
makes sense when jϵðrÞj ≪ GM=r. For computational
reasons, we can introduce a regulatory small parameter ε
so that we can write ϵðrÞ≡ εϕðrÞ. At the end of the
calculation, ε can be sent to unity. Of course, we will look
for the lowest order correction in the dimensionless param-
eter ε. The horizon’s equation, i.e., FðrÞ ¼ 0, now reads

r − 2GM þ εrϕðrÞ ¼ 0: ð21Þ

Such equations can be solved, in a first approximation in ε.
The solution reads (see Appendix A)

rH ¼ a −
εaϕðaÞ

1þ ε½ϕðaÞ þ aϕ0ðaÞ� ð22Þ

where a ¼ 2GM. Using Eqs. (19) and (20) for FðrÞ, and
Eq. (22) for rH, and expanding in ε, one arrives to the
deformed Hawking temperature as (see Appendix B)

T ¼ ℏ
F0ðrHÞ
4π

¼ ℏ
4πa

f1þ ε½2ϕðaÞ þ aϕ0ðaÞ�
þ ε2ϕðaÞ½ϕðaÞ − 2aϕ0ðaÞ − a2ϕ00ðaÞ� þ � � �g: ð23Þ

It is noteworthy that the only function ϕðrÞ that annihilates
the first-order in ε temperature correction term is the solution
of the differential equation 2ϕðrÞ þ rϕ0ðrÞ ¼ 0, namely
ϕðrÞ ¼ A=r2, where A is an arbitrary constant. In particular,
for the functionϕðrÞ ¼ G2M2=r2, the coefficient of ε in (23)
is zero, and the coefficient of ε2 is −1=16.

V. RELATION BETWEEN β AND s̄jk

We are now in the position to compute the temperature
generated by the metric (20), by simply employing (23).
Therefore, the metric-deformed Hawking temperature is of
the form

T ¼ ℏ
4πa

f1þ ½2ϵðaÞ þ aϵ0ðaÞ� þ � � �g ð24Þ

while the GUP-deformed Hawking temperature reads

T ¼ ℏ
8πGM

�
1þ βm2

p

4π2M2
þ � � �

�
: ð25Þ

By comparing the two respective first-order correction
terms in the two previous expansions, we obtain

β ¼ 4π2M2

m2
p

½2ϵðaÞ þ aϵ0ðaÞ�: ð26Þ

Using now the expression (19) for ϵðrÞ, we get

β ¼ −
4π2M2

m2
p

s̄jkfjkðθ;ϕÞ ð27Þ

for fixed4 θ and ϕ.
Again, we can comment that angular dependence shown

by Eq. (27) is not particularly puzzling in this context, since
we are here interested in linking the magnitudes of s̄jk and
β, therefore it suffices to notice that jfjkðθ;ϕÞj ≤ 1 for any
ðθ;ϕÞ. Furthermore, the fact that β in some cases could
result negative for positive values of s̄jk (in general, the
quantities s̄jk can be positive or negative), should not
actually be a worry, since negative β can be interpreted as a
signal of a lattice structure of the space-time at the Planck
scale (see Refs. [35,36]). We can get rid of angular

4We note that the relation (27) can be derived also in a different
way. The metric (18) can be written as

FðrÞ ¼ 1 −
2GM
r

· A

where A ¼ 1þ ξ, with ξ ¼ s̄jkfjkðθ;ϕÞ. The horizon FðrÞ ¼ 0 is

now rH ¼ 2GMA, and therefore the temperature is T ¼ ℏ F0ðrHÞ
4π ≃

ℏ
8πGM ð1 − ξÞ. Finally, on comparing with (13) we get β ¼
− 4π2M2

m2
p

ξ, which coincides with (27).
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dependence by averaging over ðθ;ϕÞ, in fact hxjxki ¼
r2δjk=3, and therefore setting fjk ¼ 1

3
δjk, one gets [see (27)]

β ¼ 4π2

3

�
M
mp

�
2

δ; δ≡ js̄11 þ s̄22 þ s̄33j ¼ js̄iij: ð28Þ

VI. COMPARISON WITH
EXPERIMENTAL DATA

A. Bounds from s̄jk to β

Before proceeding further, we have to clarify what kind
of mass M we have to insert in formula (28) in order to
compute the relevant bounds on β. Clearly, M is the same
mass which appears in the deformed metric (18). Therefore
M will be chosen according to the specific gravitational
experiment used to produce specific bounds (of gravita-
tional origin) on s̄jk. Examining the experimental situations
described in Refs. [10,13,14] (see there in particular
Table VI of [10]), and the relevant gravitational bounds
on s̄jk, we can list the following cases.
Lunar ranging. It is well known that lunar laser ranging

is among the most sensitive tests of gravitational physics
within the Solar System. In this situation M is the mass of
the Earth, and the distance of the Moon is probed with
lasers with a precision at the centimeter level. According to
Ref. [10] and its Table VI, the best attainable sensitivity is
of order js̄jkj≲ 10−11. According to Ref. [13], we have
js̄jkj≲ 10−12. In any case here we have M ¼ MEarth ≃
2.74 × 1032mp.
Binary pulsars. In the case of binary pulsars we have

bounds on the quantities s̄e, s̄ω. In particular s̄ω ≤ 10−11.
According to Ref. [10], both s̄e, s̄ω are linear combinations
of the quantities s̄PP, s̄kP, s̄QQ, etc. [see Eq. (184) of [10] ],
which in turns are linear combinations of the quantities s̄jk

[see Eq. (185) of [10] ]. The coefficients entering these
linear combinations are all of order 1, therefore the bounds
stated for s̄ω can be safely transferred to s̄jk. So finally we
can affirm that from binary pulsar data we get the bounds
js̄jkj ≤ 10−11, confirmed by Ref. [14]. Here the relevant
mass is the total mass of the binary pulsar system (on this,
see also Refs. [36–38]), namely M¼m1þm2. Considering
the very well-known system PRS B 1913þ 16, we have
M ¼ m1 þm2 ¼ 2.828 ×M⨀ ¼ 2.55 × 1038mp.
Perihelion precession. For the perihelion precession in

the Solar System we consider of course in particular the
data fromMercury. Again we see from Ref. [10], Eq. (191),
that we have a bound s̄Mer ≤ 10−9, and s̄Mer turns out to be a
linear combination of s̄jk with coefficientsOð1Þ. So we can
use that bound also for s̄jk. Obviously, the mass here
involved is the mass of the SunM ¼ M⨀ ¼ 0.9 × 1038mp.
Torsion pendulum.We conclude this inspection with the

most stringent case, as for the bounds on s̄jk. In a laboratory
experiment, on the Earth surface, a torsion pendulum has

been considered in Ref. [10]. The bounds in principle
attainable with this device on the coefficients s̄JK are of
order 10−15 (see again table VI of Ref. [10]). The quantities
s̄JK are here again just linear combinations of the quantities
s̄jk, with coefficients of Oð1Þ. So we can infer the bounds
js̄jkj≲ 10−15. Obviously the mass to be considered here is
again the Earth mass [see Eqs. (119), (121), (122) of
Ref. [10]], namely M ¼ MEarth ≃ 2.74 × 1032mp.
The above analysis suggests that the relevant masses to

be inserted in relation (28), in order to get bounds on β, are
essentially the Earth mass, MEarth ≃ 2.74 × 1032mp, or the
Solar mass, M⨀ ¼ 0.9 × 1038mp.
As for the constraints on the parameter β, in recent years

there has been a wide and lively research on this topic (see
e.g. Refs. [39–41]), summarized in Tables II and III. To be
consistent with the logic of the argument presented here, we
focus only on the bounds of β of gravitational origin,
reported in Table II. If we use now, in relation (28), the best
bound on s̄jk, namely the one from torsion pendulum
experiments, js̄jkj < 10−15, and consequently the Earth
mass for M ¼ MEarth, then we get for the deformation
parameter of GUP

TABLE II. Upper bounds on the GUP parameter β inferred in
gravitational measurements/experiments.

β < Physical Framework References

1021 Violation of equivalence principle (on Earth);
law of reciprocal action

[42]

1060 GW 150914 [41]
1069 Perihelion precession (Solar System data) [36]
1071 Perihelion precession

(pulsar PRS B 1913þ 16 data)
[36]

1078 Modified mass-temperature relation; light
deflection

[36]

TABLE III. Upper bounds on the GUP parameter β inferred in
different nongravitational measurements/experiments.

β < Physical Framework References

1018 Evolution of micro and nano mechanical
oscillators (masses ∼mp)

[43]

1020 Lamb shift [44]
1021 Scanning tunneling microscope [44]
1033 Gravitational bar detectorsa [40]
1034 Electroweak measurement [44]
1034 Charmonium levels [44]

Energy difference in hydrogen
levels 1S − 2S

[45]

1039 87Rb cold-atom-recoil experiment [46]
1046 Landau levels [44]

aThis bound is derived without explicitly involving the
gravitational interaction.
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β < 1051: ð29Þ

As it clear from Table II, this bound improves by many
orders of magnitude almost all the bounds on β inferred in
different gravitational experiments. In particular, the pro-
cedure above outlined does not involve a violation of the
equivalence principle. Finally, the bound (29) is quite close
to the one derived from Landau level measurements, i.e. a
nongravitational bound.

B. Bounds from β to s̄jk

It is however clear that relation (28) can be formally
inverted, resulting in δ ≃ 3ðmp=2πMÞ2β, and suggesting
therefore also the opposite path, namely the possibility to
transfer bounds from β to s̄jk. Obviously, in this context we
keep considering only the bounds on β displayed in
Table II, i.e. those of gravitational origin.

(i) If we consider the bound on β coming from the
perihelion precession in the Solar System, β < 1069,
then we use M¼M⨀≃1038mp, and from the above
relation we get js̄jkj < 10−9, perfectly in line with
the correspondent value displayed in Table I.

(ii) If we consider the bound on β coming from the
gravitational wave event GW150914, β < 1060, then
we should use forM the total mass of the (supposed)
two-black holes system, roughly M ¼ m1 þm2 ≃
50M⨀ ≃ 5 × 1039mp. From the above relation we
obtain js̄jkj≲ 10−21. Obviously, this evaluation can-
not be retained as reliable as the previous one, given
for example the still large uncertainties affecting the
event GW150914.

(iii) The constraint β < 1021 coming from universality of
free fall, or from the law of reciprocal action, is
somehow problematic in this context. Such con-
straint is derived in Ref. [42] by postulating a
deformation of the classical (covariant) Poisson
brackets which resembles the deformed quantum
commutator (8). As it is explicitly shown in
Ref. [36], a deformation of Poisson brackets implies
immediately a deformation of the equation of motion
(i.e. of the geodesic equation, in the relativistic
context), in such a way that the motion of a test
particle depends on the mass of the particle itself.
That is, a violation of the equivalence principle. This
immediately reflects on the modified relations for
free fall, or for reciprocal actions, from which in
Ref. [42] the bound β < 1021 is obtained. On the
contrary, the other bounds reported in Table II are
derived by deforming the dispersion relation
(Ref. [41]), or by deforming the metric (Ref. [36]),
in order to mimic the GUP-deformed Hawking
temperature, but this is done always under the strict
assumption of validity of equivalence principle, i.e.
without deforming the geodesic equation.

Because of its origin from violation of the equivalence
principle, the bound β < 1021 should be therefore consid-
ered not homogeneous with the others reported in Table II,
which on the contrary respect the equivalence principle.
Moreover, the bound β < 1021, with the use ofM ¼ MEarth,
would imply js̄jkj < 1.01 × 10−45. This suppresses by
many orders of magnitude the current bounds reported
in Table I, and appears quite unexpected with respect to the
corresponding bounds of SME coefficients in the matter
sector, where the present sensitivity of experiments has not
provided the evidence of such a suppression (in the SME, in
fact, coefficients can be transferred from the gravitational
sector to matter sector and vice versa with an appropriate
change of coordinates).5

In this context, it is however instructive to derive an
upper bound on s̄jk by using directly the present bounds on
the violation of law of reciprocal action obtained from data
of Lunar Laser Ranging. According to [47,48] the
active mass ma is the source of the gravitational field
[∇2VðxÞ ¼ −4πmaδx], while the passive mass is related to
the response of a mass to a gravitational field, and appears
in the equation of motion miẍ ¼ mp∇VðxÞ, where mi is
the inertial mass. Following [42,48], the equations of
motion for a gravitationally bound system of two particles,
and of its center of mass X are

m1iẍ1 ¼ Gm1pm2a
x2 − x1

jx2 − x1j3
;

m2iẍ2 ¼ Gm2pm1a
x1 − x2

jx1 − x2j3
;

Ẍ ¼ G
m1pm2p

m1i þm2i
C21

x
jxj3 ; C21 ¼

m2a

m2p
−
m1a

m1p
;

where x is the relative coordinate. If C21 ≠ 0, then the
center of mass possesses a self-acceleration. In SME model
this occurs through the coefficients s̄jkn by assuming that
they are particle depending. Here, therefore,mni, (n ¼ 1, 2)
is the inertial mass of particles, and mna¼ð1þ s̄jkn x̂jx̂kÞmni
is the active mass of particles (see Eq. (6). Besides, mnp is

5The bound β < 1021 can perhaps be made more reasonable if
we consider that, according to [45], where composite systems
have been investigated, to get the deformation parameter referred
to particle physics one should consider an effective deformation
parameter that must be multiplied with the square of the nucleon
number Nnuc making up the gravitational source. Considering the
Moon with MMoon ≃ 7.3 × 1022Kg and the nucleon mass
mnuc ≃ 1.67 × 10−27 Kg, one gets Nnuc ¼ MMoon

mnuc
≃ 4 × 1049. The

deformation parameter turns out to be β ¼ N2
nuc10

21, and there-
fore this procedure increases the deformation parameter by many
orders of magnitude, relaxing in such a way the strong suppres-
sion of the SME parameter sjk. It should also be noticed, however,
that the considerations proposed in Ref. [45] are themselves
based on deformed Poisson brackets, namely on violation of
equivalence principle.
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identified with mni. The absence of self interaction of
the Moon (one considers the distribution of the main
constituent of Moon, Al and Fe) yields the bound
jCAl−Fej < 7 × 10−13, which implies jδAl−Fej < 7 × 10−13,
which is in clear agreement with the expected bounds for
s̄jk of Table I.
(iv) In Ref. [32] the deformation parameter β has been

computed by making use of the leading quantum
corrections to the Newtonian potential [49–51]. The
corrections to the Newtonian potential imply natu-
rally a quantum correction to the Schwarzschild
metric, and this leads to a precise numerical value for
β, namely β ¼ 82π=5, which is of the same order of
magnitude expected from string theory. If we use
this value for β, together with the Earth mass,
M ≃ 2.74 × 1032mp, we get js̄jkj ≃ 5.21 × 10−65, a
value which is hugely beyond the tested experimen-
tal bounds of s̄jk. Although the actual physical
relevance of this bound remains questionable, such
a minute value is somehow expected, since with the
above procedure we checked, for the first time, the
Lorentz violating SME coefficients against a quan-
tity, β, typically linked with Planck scale phenom-
ena. The previous gravitational bounds on s̄jk are all
obtained in the contest of classical gravity, although
post Newtonian. Here instead we face a “quantum”
gravity scenario, or to be more precise, a semi-
classical gravity scenario, represented by the Hawk-
ing effect. To this circumstance can be presumably
traced back such a huge refinement of the value of
the s̄jk coefficients.

VII. CONCLUSIONS

In this paper we have derived an upper bound on the
deformation parameter β of the generalized uncertainty
principle (8), by relating β to the coefficients s̄jk defined in
the gravitational sector of SME. The main point of the
derivation relies on the fact that we directly compute a
quantum mechanical effect, the Hawking temperature, for
which the GUP is necessarily relevant, without postulating
a specific representation of canonical commutators. We
then compute the same temperature using a deformed
Schwarzschild-like metric, thereby linking together the
deformed uncertainty relation, and the deformed metric.
It is noteworthy that in our formalism general relativity and
standard quantum mechanics are recovered in the limits
sjk → 0 and β → 0, respectively.
Our main results can be summarized in two distinct

cases:
(i) By considering the experimental upper bounds on

the parameter js̄jkj < 10−15, we infer a bound on
the GUP deformation parameter β < 1051, which
improves by many order of magnitude the
bounds obtained in gravitational frameworks

compatible with the equivalence principle, and it
lies quite close to the Landau level measurements,
obtained with nongravitational measurements/
experiments.

(ii) If we adopt for the parameter β the value 82π=5,
derived in the framework of QFT and GR, then
the coefficients s̄jk turns out to be bounded by
s̄jk ≃ 10−65. Such a minute value, although extremely
tight because derived within a semiclassical gravity
approach (Hawking effect), seems however to de-
mand for further investigations, both on the exper-
imental as well on the theoretical side.

There is, nowadays, a lively debate on the measurable
features implied by various kinds of GUPs, and many
efforts are devoted to the predictions about the size of these
modifications. In this respect, several experiments have
been also proposed to test GUPs in the laboratory. As
shown in this paper, GUP measurements could have an
interplay with the violation of the fundamental symmetries
in physics, such as CPT and Lorentz invariance, through
the SME. Here we focus on SME for the gravitational
sector, but to understand whenever the other coefficients of
the model may affect GUP, or specific representations of
canonical operators, might be of great interest, especially in
perspective of possible links with quantum gravity. These
aspects, in turn, are particularly appealing in view of the
possibility to create, in the next future, a laboratory-scale
imitation of a black hole horizon, emitting analogue
Hawking radiation [52].
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APPENDIX A: SOLUTION OF EQ. (21)

To solve Eq. (21), first we formulate it in a general
form

x ¼ aþ εfðxÞ: ðA1Þ

It is obvious that if ε is set equal to zero, then the solution
will be x0 ¼ a. If ε is slightly different from zero, then we
can try a test solution of the form x0 ¼ aþ ηðεÞ where
ηðεÞ→0 for ε→0. Substituting the aforesaid test solution in
(A1), we get x0 ¼ aþ εfðx0Þ which means η¼εfðaþηÞ.
To first order in η, we have η ¼ ε½fðaÞ þ f0ðaÞη� from
which we obtain η ¼ εfðaÞ=½1 − εf0ðaÞ�. Therefore, to first
order in ε, the general solution of (A1) reads

x0 ¼ aþ εfðaÞ
1 − εf0ðaÞ : ðA2Þ
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APPENDIX B: EXPANSION IN ε OF T

Hawking temperature is given by

T ¼ ℏ
4π

F0ðrHÞ: ðB1Þ

From Eq. (20), one gets

F0ðrÞ ¼ a
r2

þ εϕ0ðrÞ: ðB2Þ

It is useful to write the solution (22) in the compact form
rH ¼ að1 − λÞ where λ ¼ εϕðaÞ=f1þ ε½ϕðaÞ þ aϕ0ðaÞ�g
and, therefore, λ ∼ ε, jλj ≪ 1. Then

F0ðrHÞ ¼
1

að1 − λÞ2 þ εϕ0½að1 − λÞ�: ðB3Þ

Expanding in ε this last expression, one gets Eq. (23).
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