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Abstract We study the probability oscillations of mixed
particles in the presence of self gravitational interaction. We
show that the presence of the parity leads to the violation of
the time-reversal symmetry while the CP-symmetry is pre-
served hence inducing a CPT-symmetry violation. This vio-
lation is directly associated to the rising of the entanglement
among the elements of the system that can be seen as a pure
many-body effect scaling with the number of the elements
in the system. This effect could have played a relevant role
in the first stages of the universe or in core of very dense
systems. Experiments based on Rydberg atoms confined in
microtraps can simulate the mixing and the mutual interac-
tion, and could allow to test the mechanism here presented.

1 Introduction

Particle mixing and oscillations have provided some of the
most direct and robust indications of physics beyond the stan-
dard model [1–3]. We have several examples of such phe-
nomenon both in bosonic and fermionic sector. In the first
sector we have mixing among axion–photon [4–6], η–η′ [7],
neutral kaons [8] and B meson [9]. In the second one we
can find the neutrino flavor oscillations [10,11], the neutron–
antineutron oscillations that could be observed in the next
generation of experiments using slow neutrons with kinetic
energies of a few meV [12], and the quark mixing [13]. Apart
from the last one which involves particles confined inside
hadrons, all the other mixing phenomena concern only neu-
tral particles. All of them are characterized by the fact that
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the physical fields, called flavor fields, are superpositions of
free fields with definite different masses.

Since the difference between the masses is very small,
also weak perturbations can produce measurable deviations
from vacuum oscillation frequencies. The extreme sensibil-
ity to a wide set of perturbations is at the basis of different
experiment proposals. For instance, many studies in recent
years have been devoted to the possibility to test the quantum
nature of gravity using concepts of quantum information the-
ory [14,15]. These proposals are based on the idea of using a
system in which the intensity of the gravitational interaction
depends on some internal degrees of freedom [16]. The sen-
sibility of the oscillation frequency of neutral particles such
as neutrino provides a natural system where to analyze these
effects [17]. Indeed, it is well-known that neutrinos interact
exclusively via gravity and weak interaction. This last inter-
action is stronger than gravity but has an extremely short
range [18] (about d = 10−16/10−18m) and, hence, it can
be neglected for distances bigger than d for which gravity
survives.

The effects of gravity on the oscillation of neutral parti-
cles are not limited to a change in the frequency of flavor
oscillations. Gravity is also considered as one of the possi-
ble sources of decoherence in flavor oscillation [19–21] that
leads to many interesting effects like the CPT symmetry
violation in particle mixing [22–28]. In all these papers the
non-unitary evolution is introduced by considering a dissi-
pator that generates a completely positive dynamics [29,30].
This dissipator summarizes the effects of all possible sources
of decoherence and does not allow to analyze the origin and
the relative weight of the different sources of decoherence.

In the present paper we adopt a different approach to
analyze the role of gravity in the particle mixing phenom-
ena. Instead to consider a single particle as an open system
affected by several uncontrolled phenomena, we consider
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an ensemble of self-interacting particles as a closed sys-
tem where all internal physical quantities are under control.
Therefore, we consider a system made of N mixed neutral
particles evolving under the self-gravity and neglect all other
possible interactions acting between the system and the envi-
ronment. We prove that, because of the difference in mass
of the free fields, the self-gravity induces a violation of the
T symmetry whereas the CP symmetry is preserved. This
implies a violation of the CPT symmetry. Such a violation
represents an emerging many-body effect associated to the
rising of a non-vanishing entanglement among the different
fields.

Both the entanglement and the CPT violation are extre-
mely small and difficult to be observed in laboratories. How-
ever, being many-body effects, they are related to the num-
ber N of elements of the system and to the density n of the
particles. Therefore, the CPT violation induced by the grav-
ity could play an important role in very dense astrophysical
objects and it could have affected the early stages of the uni-
verse [31].

The paper is organized as follows. In Sect. 2, for reader
convenience, we resume the main results of the quantum
mechanical approach to the particle mixing. In Sect. 3 we
consider the effects of gravitational interaction in a simple
model made of two interacting fields, and show the CPT
symmetry breaking and the role played by the entanglement.
In Sect. 4 we generalize the formalism to the case of many
interacting particles. In Sect. 5 we discuss how to generalize
our results to the case in which the distance among the parti-
cles changes in time and in Sect. 6 we draw our conclusions.

2 Neutral particle oscillation in vacuum

For sake of completeness, in this section we review some
aspects of neutral particle oscillations. We consider the very
general case represented by the mixing of two flavor fields
named nA and nB . To fix the ideas, in case of neutrino oscilla-
tions, the two flavor fields coincide with the leptonic flavors
as nA = νe and nB = νμ while, in the case of neutron–
antineutron oscillations we have nA = n and nB = n̄. Since
the flavor fields do not coincide with those of definite masses,
the mixing relations can be written as

|nA〉 = cos(θ) |m1〉 + eıφ sin(θ) |m2〉 ;
|nB〉 = −e−ıφ sin(θ) |m1〉 + cos(θ) |m2〉 , (1)

where θ is the mixing angle and φ is the Majorana phase
which is zero in case of Dirac fermions [2] and |mi 〉 are the
states with definite masses mi .

Neglecting any interaction with the rest of the universe,
the particle is a closed system which travels through the space
with its energy E . Assuming that the masses mi are much

smaller than E , we can write the Hamiltonian of mixed fields
as

H (1) = E + c2

2E

(
m2

1 |m1〉 〈m1| + m2
2 |m2〉 〈m2|

)
. (2)

Introducing the Pauli operator σ z which discriminates
between the mass eigenstates, σ z = |m1〉 〈m1| − |m2〉 〈m2|,
and neglecting state independent terms proportional to the
identity operator in the Hamiltonian, Eq. (2) becomes

H (1) = ω0 σ z; ω0 = c2

4E

(
m2

1 − m2
2

)
. (3)

The single particle state, that at t = 0 is in one of the
two flavor states of Eq. (1), for t > 0 evolves under the
effect of H (1). Due to this evolution we have, for t > 0,
a non-vanishing probability to observe a change in the fla-
vor state of the particle. The time-dependent expression of
the flavor oscillation formula is than given by PnA→nB =
| 〈nB | exp(−ı Ht) |nA〉 |2 and is invariant under the exchange
of flavors states, i.e. PnA→nB = PnB→nA . Explicitly, we have

PnA→nB = PnB→nA = sin2(2θ) sin2(ω0t). (4)

This is the well-known Pontecorvo formula [10] that descri-
bes the oscillation of a neutral particle in the vacuum.

3 Oscillation of two interacting neutral particles

Let us now consider the case in which the system that we
analyze is made not of a single particle but of two mixing
particles interacting gravitationally.

Before starting our analysis, let us discuss the basic
hypothesis we will use along the section. At first, we assume
the validity of the equivalence principle between inertial
and gravitational mass. Moreover, we represent the gravi-
tational interaction with the standard Newtonian potential.
Replacing it with ghost-free theories of gravity as the one
showed in Ref. [32] would induce quantitative but not qual-
itative changes in the physical behavior. Furthermore, for
the sake of simplicity, we assume that the particles travel in
the space with the same energy along the same direction,
hence, keeping their relative distance, that we denote with
d, a time-independent parameter. It is worth to note that this
last assumption is made only to simplify the explanation of
our results. Indeed, as we will show in Sect. 5, it is possible
to extend our results to the case of time-dependent d.

Within the above assumptions the Hamiltonian of the sys-
tem made of two mixed particles that interact gravitationally
becomes
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H (2) = H (1)
i + H (1)

j − Gm2
1

d
|m1,m1〉 〈m1,m1|

−Gm1m2

d
(|m1,m2〉 〈m1,m2|+|m2,m1〉 〈m2,m1|)

−Gm2
2

d
|m2,m2〉 〈m2,m2| , (5)

where G is the gravitational constant, d the distance between
the two particles and the indices in the two particles states
refer, respectively, to the i-th particle (the first) and to the
j-th particle (the second).

It is useful to rewrite the Hamiltonian in Eq. (5) in a more
compact form. By recalling the definition of σ z

i and neglect-
ing all terms proportional to the identity, the Hamiltonian of
the system can be written as

H (2) = ω (σ z
i + σ z

j ) + �σ z
i · σ z

j , (6)

where ω = ω0 + g(m2
1 − m2

2), � = g(m1 − m2)
2, and

g = − G
4d . Comparing the above Hamiltonian with the one

in Eq. (3) we can see that the presence of the gravitational
interaction has two different effects. The first is that the inter-
action changes the value of ω from ω0 to ω0 + g(m2

1 − m2
2)

while the second one is the appearance of a new term, with
amplitude equal to � = g(m1 − m2)

2, involving operators
defined on both the fields. It is worth to note that both of them
will disappear in the case in which m1 and m2 coincide.

Before going further, let us recall two basic results of quan-
tum information that can be found in all quantum information
books as, for example, that in Ref. [33]. The first result is that,
given a bipartite system, the evolution induced by Hamilto-
nian terms acting only on a single part of the system can never
affect the value of the entanglement between the two parts.
On the contrary, terms that act simultaneously on both the
parts usually modify the entanglement. The second result is
that when we project a pure state defined on a bipartite sys-
tem into one of its parts, the projection obtained in such a
way is still pure if and only if the state was not entangled.

In our case, the natural bipartition of the system under
analysis is obtained by considering each part coinciding with
one of the two particles. With respect to this partition the
terms proportional to ω are local, since each one of them
acts on one single particle. Therefore they cannot create, or
destroy, entanglement inside the system. On the contrary, the
term proportional to �, induced by the presence of the state-
dependent gravitational interaction, is non-local respect to
the natural bipartition. Hence, it can increase, or decrease,
the value of the entanglement [34].

At t = 0, i.e. when the two particles were created, we can
assume that there is no entanglement between them. Thus, the
initial state of the whole system is a two-body fully separable
(i.e. without any entanglement between the two particles)
pure flavor state of the form |ψ(0)〉 = ∣∣nη

〉
1

∣∣nχ

〉
2, where η

and χ could assume all possible combinations of A and B.

Once fixed |ψ(0)〉, the state at t > 0 can be obtained as
|ψ(t)〉 = U (t) |ψ(0)〉, where the time evolution operator is
U (t) = exp(−ı t H (2)). The operator U (t) is unitary because
we assume that the system under analysis is closed, i.e. does
not interact with the surrounding world. Therefore, for any
time t ≥ 0, the state |ψ(t)〉 is still a pure state exactly as at
t = 0. But, if � �= 0 the state |ψ(t)〉 holds, in general, a
non-vanishing entanglement between the two particles. This
implies that the projection of |ψ(t)〉 on any of the two parti-
cles would be, in general, a mixed state.

It is possible to quantify how much a projection is
pure using a quantity called purity defined as P(ρi (t)) =
Tr(ρ2

i (t)), where ρi (t) = Trj(|ψ(t)〉 〈ψ(t)|) is the projection
over the i-th particle of the state |ψ(t)〉 [33]. The purity holds
a relevant role in the theory of entanglement for pure states
defined in bipartite systems. Indeed, it is also associated to
the 2-Renyi entropy, defined as S2 = − ln(P(ρi (t))), that
represents, a proper measure of the entanglement between
a particle and the rest of the system [35–37]. Projections of
fully separable states hold a purity equal to 1 and a vanish-
ing Renyi entropy while entangled states are characterized
by P(ρi (t)) < 1 and a non-vanishing entropy.

In our case it is easy to verify that the time-dependent
expression of purity is, independently on the initial state,
equal to

P(ρi (t)) = 1 − 1

2
sin4(2θ) sin2(2t�). (7)

In the presence of flavor mixing, i.e. for θ �= 0, π/2, and for
any time t �= n π

2�
(with n integer), we have P(ρi (t)) < 1

and, thus, the single particle state is not a pure state, hence
implying that |ψ(t)〉 is entangled. The expression of purity
is also a proof of the fact that the entanglement between
two flavor fields is a direct consequence of the presence of
the gravitational interaction and vanishes if � is neglected,
i.e. if m1 = m2. This fact can be also considered a proof
of the quantum nature of gravity since quantum correlations
and entanglement, can be created only through a quantum
channel [38].

Let us now show that, in the system we are analyzing, the
presence of the entanglement induces also a violation of T
and CPT symmetry. In order to provide this proof, we con-
sider a simple conceptual experiment. We take into account
two copies of the system already described. We assume that
the two copies are identical except for the fact that, in the
initial state of the first, both particles are in the state |nA〉,
i.e. |ψ0〉 = |nA〉 |nA〉 while in the second one are both in
|nB〉 and hence |ψ0〉 = |nB〉 |nB〉. At the same time t > 0,
we observe, in both copies, one of the two particles, and we
analyze the oscillation probabilities.

Let us name ρA(t) the projection obtained in the first
copy of our system and ρB(t) the one obtained in the second
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copy. In the two cases, the probability of flavor transitions
are given, respectively, by PnA→nB = Tr(ρA(t) |nB〉 〈nB |)
and PnB→nA = Tr(ρB(t) |nA〉 〈nA|). Explicitly, we obtain

PnA→nB = 1

2
sin2(2θ)[1 − cos(2ωt) cos(2�t)

+ cos(2θ) sin(2ωt) sin(2�t)];
PnB→nA = 1

2
sin2(2θ)[1 − cos(2ωt) cos(2�t)

− cos(2θ) sin(2ωt) sin(2�t)]. (8)

It is easy to note that the probabilities in Eq. (8) are indepen-
dent on the Majorana phase φ, and, hence, the CP symmetry
is preserved, CP = 0. On the contrary, since the probabil-
ity is not invariant under the exchange of the two flavors, we
have a violation of the time-reversal symmetry

T = PnA→nB − PnB→nA

= sin2(2θ) cos(2θ) sin(2ωt) sin(2�t). (9)

For m1 �= m2 we have T = 0 only if t �= π/�, or θ =
kπ
4 , k ∈ Z. Since T �= CP we also have the violation of

the CPT symmetry. Therefore, the entanglement between
the two particles induces a CPT symmetry breaking.

It is worth to note that, even if in the system that we have
analyzed, the presence of the entanglement induces a viola-
tion of the T -symmetry, this is not a general result. Indeed it is
possible to find several Hamiltonians that can induce entan-
glement without breaking the T –symmetry, or breaking both
the T - and the CP-symmetry etc. To provide a simple exam-
ple, if we consider an interaction that can be summarized by a
Hamiltonian as H = �σ z

i ·σ z
j , that can be obtained from the

one in Eq. (6) assuming ω = 0, we can immediately recover
from Eqs. (7) and (9) that T = 0 even in the presence of a
non-vanishing entanglement.

A simple numerical analysis of the above model shows
that, for many mixed particle systems, the non-unitary evo-
lution effect is negligible. However, as we will show in the
next section, this effect is a many-body effect and, hence, its
relevance increases proportionally to the number of particles
in the system.

4 Oscillation of N interacting neutral particles

We now generalize the scheme presented above to the case
where each copy of the analyzed system is made of a large
number N of particles. We consider the same assumptions
used in the previous section: (1) we assume that the system is
closed; (2) we take into account only the gravitational interac-
tion among the particles; (3) we assume the identity between
inertial and gravitational masses; (4) we consider the New-
tonian potential valid; (5) we assume the invariance of the
relative distances among the fields during the time evolution.

Within the above hypothesis, the system evolves with
time-independent Hamiltonian which generalize that in
Eq. (6), i.e.

H (N ) =
∑
i

ωiσi + 1

2

∑
i, j

�i, jσi · σ j . (10)

The main difference between Eqs. (6) and (10) is that, now,
all parameters of the Hamiltonian depend on the index run-
ning on the set of particles. Indeed, ωi and �i, j are now given
by ωi = ω0 +∑

j gi, j (m
2
1−m2

2) and �i, j = gi, j (m1−m2)
2,

where gi, j = G
4di, j

and di, j is the relative distance between
the i-th and the j-th fields. Despite this loss of symme-
try, the Hamiltonian in Eq. (10) still holds the fundamental
property that it can be seen as a sum of mutual commuting
terms. This property plays a key role in the rest of our paper.
Indeed, usually the dynamic of a quantum many-body system
is extremely complex to be analyzed exactly and numerical
and/or approximate approach are needed. However this is
not the case. In fact, exploiting such a property, we have that
the time evolution operator can be written as the product of
several operators each one of them accounts for the evolu-
tion induced by a single term of the Hamiltonian in Eq. (10).
Hence, collecting all the terms it is possible to obtain an exact
expression of the state at a time t > 0 and, more important for
our analysis, of its projection into the Hilbert space defined
on a single particle.

As in the previous section we consider, at time t = 0,
that the system is described by a fully separable state. We
assume that the first M particles are created in the state |nA〉
and the rest is in the state |nB〉, so that the initial state is∣∣ψ(N )(0)

〉 = ⊗M
α=1 |nA〉α

⊗N
β=M+1 |nB〉β . Soon after t = 0

the system will start to evolve under the influence of the self-
gravity and for any t > 0, the whole system is represented
by the pure state (because we are assuming that the system is
closed)

∣∣ψ(N )(t)
〉 = U (t)

∣∣ψ(N )(0)
〉
, where the unitary time

evolution operator is U (t) = exp(−ı t H (N )). Knowing the
initial state, the reduced density matrix on the selected k-th
particle can be obtained in terms of the Pauli matrix [39] as

ρk(t)= 1

2

(
1+

∑
α

〈
ψ(N )(0)

∣∣∣U †(t)σα
k U (t)

∣∣∣ψ(N )(0)
〉
σα
k

)
,

(11)

where α runs over the ensemble {x, y, z}. Since all terms in
the Hamiltonian commutes with each other, the operatorU (t)
can be arranged as the product of three different terms, i.e.
U (t) = uk(t)uk,r (t)ur (t). Here uk(t) = exp(−ıωkσ

z
k t) is

the part of the unitary evolution that acts only on the selected
k-th particle, uk,r (t) = exp(−ı t

∑
j �k, jσk ·σ j ) while ur (t)

includes all the other Hamiltonian terms that do not involve
directly the k-th field.

Taking into account the fact that Pauli operators on dif-
ferent particles commute with each other, we have that in
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the evaluation of ρk(t) the operator ur (t) can be neglected.
Hence ρk(t) depends only on uk(t) and uk,r (t). Moreover,
since both uk(t) and uk,r (t) depend only on σ z

k , we have that
the coefficient of σ z

k , and hence the elements on the diagonal
of the reduced density matrix are time-independent. On the
contrary, the coefficients of σ x

k and σ
y
k depend on time and

their derivation is long but straightforward. Substituting the
expression of the flavour fields in Eq. (1) in |ψ(0)〉, we have
that the initial state can be written as

|ψ(0)〉 =
∑
{l}

Rl (ak |m1, l〉 + bk |m2, l〉) (12)

where |m1, l〉 (|m2, l〉) is a generic tensor product of mass
states in which the state in the k-th field is equal to m1 (m2).
For the different parameters we have that, ak (bk) is equal to
cos(θ) (eıφ sin(θ)) for k ≤ M and to e−ıφ sin(θ) (cos(θ)) for
k > M . On the other side Rl = ∏

s cl,s where cl,s is equal
to al (bl ) if in |l〉 the s-th field in the mass state m1 (m2).

From this expression, it is immediate to obtain the expres-

sion of
∣∣∣ψ̃(t)

〉
= uk(t)uk,r (t) |ψ(0)〉

∣∣∣ψ̃(t)
〉
=

∑
{l}

Rl

(
ake

−ı(ω+�k )t |m1, l〉 + bke
ı(ω+�k )t |m2, l〉

)

(13)

where �k = ∑
s(−1)λs�s,k with λs = 1 (λs = 2) if in |l〉

the mass state of the s-th particle is m1 (m2)

The knowledge of
∣∣∣ψ̃(t)

〉
allows us to construct the

reduced density matrix taking into account that
〈
ψ(N )(0)

∣∣U †(t)σα
k

U (t)
∣∣ψ(N )(0)

〉 =
〈
ψ̃(t)

∣∣∣ σα
k

∣∣∣ψ̃(t)
〉
. After some algebras we

obtain the following general exact expression, i.e expression
for the reduced density matrix

ρk(t) = 1

2

(
1 + ζk cos(2θ) ζke−ıφ sin(2θ)a∗

k (t)
ζkeıφ sin(2θ)ak(t) 1 − ζk cos(2θ)

)
,

(14)

where ζk is a function that is equal to +1 for k ≤ M , and to
−1 for k > M , ak(t) is given by

ak(t)=eı2ωk t
N∏
j=1

(cos(2�k, j t)+ıζk cos(2θ) sin(2�k, j t)),

(15)

and we assume, as definition, that �k,k = 0. It is worth
to note that the expression of the reduced density matrix in
Eq. (14) is exact and obtained, once given the set of the
relative distances, without any approximation and without
the necessity to use any master equation approach.

As we have already said, since we are neglecting any inter-
action among the elements of the system and the surround-
ing world, the time evolution is unitary. As a consequence,

∣∣ψ(N )(t)
〉

is always a pure state. Therefore, it is possible to
use the 2-Renyi entropy defined as S2 = − ln(P(ρi (t))) to
quantify the total entanglement that any single particle shares
with the rest of the system. From Eq. (14), we obtain for the
time-dependent purity

P(ρk(t)) = 1 − sin2(2θ)
(

1 − |ak(t)|2
)

. (16)

Now the couplings �i, j are not invariant under the change
of fields. Thus, we have |ak(t)|2 < 1, ∀t > 0 and reduces to
1 only at t = 0. Therefore, for t > 0, any single particle is
entangled with the rest of the system.

By means of Eq. (14) we can generalize the result pre-
sented in Eqs. (8) and (9) by analyzing the oscillation prob-
ability in two copies of the system in which the first one
has M = N and the second one has M = 0. Differently
from the previous case, now the reduced density matrices at
t > 0, and, hence, also the oscillation probabilities, are site-
dependent. Thus, we have to consider the average over all
elements of the system. Explicitly we obtain

PnA→nB = 1

2
sin2(2θ)

(
1 − 1

N

N∑
k=1

Re(a(A)
k (t))

)
;

PnB→nA = 1

2
sin2(2θ)

(
1 − 1

N

N∑
k=1

Re(a(B)
k (t))

)
, (17)

where Re(a(A)
k (t)) (Re(a(B)

k (t))) is the real part of a(A)
k (t)

(a(B)
k (t)) that are the functions ak(t) when M = N (M = 0).

As well as in Eq. (8), also the transition probability in Eq. (17)
does not depend on the CP violating Majorana phase, then
CP = 0. On the other hand, PnA→nB �= PnB→nA because
of a(A)

k (t) �= a(B)
k (t) and, hence, T �= 0. In order to make

this violation more evident, let us assume that �i, j t � 1. In
this case ai (t) becomes

ak(t)  e2ıωk t

⎛
⎝1 ± 2ı cos(2θ)

N∑
j=1

�k, j t

⎞
⎠ , (18)

where the sign + is for the system that at t = 0 are composed
only by nA particles, i.e. a(A)

k (t), and the sign − is for systems

that, at t = 0 are composed only by nB particles, i.e. a(B)
k (t).

Substituting Eq. (18) in Eq. (17), we have the time-reversal
symmetry violation becomes

T = PnA→nB − PnB→nA

= sin2(2θ) cos(2θ)
2t

N

N∑
k, j=1

sin(2ωk t)�k, j . (19)

Being CP �= T , then the CPT symmetry is broken.
The exact value of the violation of the time reversal sym-

metry in Eq. (19) depends on the whole set of relative dis-
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tances among the particles in the system. For system with
large N this set is not known but we can express T in terms
of average values. Indeed, since the gravity has a very long
range, then the sum in Eq. (19) contains N (N − 1) non–zero
terms (we assumed �i,i = 0 ∀i). Moreover, all these terms
have the same sign. In fact, since gravity is attractive, all �k, j

are negative regardless of the particular choice of k and j .
On the other hand, the sign of ωk depends on the difference
between m1 and m2 and hence the sign does not depend on
k. Therefore, inside the sum, for time short enough such that
max(ωk t) < π/4, all the terms have the same sign. In other
words, by defining fk = sin(2ωk t)

N

∑
j �k, j we have that fk is

of the order of unity and all fk ∀k have the same sign. There-
fore, defining F as the average of fk , i.e. F = 1

N

∑N
k=1 fk

we have

T = sin2(2θ) cos(2θ)2NtF. (20)

where we see explicitly that T is proportional to the number
of particles of the system.

Similar CPT violation can be obtained for all configura-
tions in which the difference M and N − M is of the same
order of magnitude of N . Indeed, when this does not happen,
as in the case in which at t = 0 we have N/2 particles in the
flavor state |nA〉 and N/2 in |nB〉, it is possible to show, using
the Lindeberg–Lévy theorem [40], that T is proportional to√
N .

5 Time-dependent relative distances

All the results obtained up to now were derived assuming con-
stant the relative distances among the particles of the system.
However, this assumption is not crucial. In this section we
extend our analysis also to the more realistic case in which
the distances change in time.

Removing the constraints of the independence of the dis-
tances on time, for any t > 0, the Hamiltonian of the gravi-
tational self–interacting system can be written as

H (N )(t) =
∑
k

ωk(t)σk + 1

2

∑
k, j

�k, j (t) σk · σ j . (21)

Differently from Eq. (10), now the parameters ωk(t) and
�k, j (t) depend explicitly on time. Indeed, they are, respec-
tively, ωk(t) = ω0 + ∑

j gk, j (t)(m
2
1 − m2

2) and �k, j (t) =
gk, j (t)(m1 − m2)

2, where gk, j (t) = G
4dk, j (t)

and dk, j (t) is
the relative time-dependent distance between the k-th and the
j-th fields.

The time-dependence of the Hamiltonian affects the eval-
uation of the time-evolution unitary operator. Indeed, this
operator, that is obtained as solution of the Schrödinger equa-
tion can be, in general, written in terms of Magnus expan-
sion [41,42] as,

U (t) = exp

(∑
l

1

l!�l

)
(22)

The first terms of the expansion are

�1 = −ı
∫ t

0
H (N )(τ )dτ

�2 = (−ı)2
∫ t

0

∫ τ1

0
[H (N )(τ1), H

(N )(τ2)]dτ1dτ2 (23)

where the square brackets denote the commutator between
the Hamiltonian at diffferent times. Moreover, all the other
terms of the Magnus expansion depend on a combination of
commutators between the Hamiltonian in Eq. (21) at different
times [42].

However, in the case that we are analyzing, it is easy to
check that [H(τ1), H(τ2)] = 0 ∀τ1, τ2 and, hence, we have
that �l = 0 ∀ l ≥ 2. Therefore, from Eq. (22) we obtain that

U (t) = exp

(
−ı

∫ t

0
H(τ )dτ

)

= exp

⎡
⎣−ı

∫ t

0

⎛
⎝∑

k

ωk(τ )σk+
∑
k, j

�k, j (t)

2
σk · σ j

⎞
⎠ dτ

⎤
⎦

= exp

⎛
⎝−ı t

∑
k

ω̃k(t)σk − ı t

2

∑
k, j

�̃k, j (t)σk · σ j

⎞
⎠

= exp
(
−ı t H̃(t)

)
(24)

where

H̃(t) =
∑
k

ω̃k(t)σk + 1

2

∑
k, j

�̃k, j (t)σk · σ j

ω̃k = ω0 + 1

t

G

4
(m2

1 − m2
2)

∑
j

∫ t

0

1

d j,k(τ )
dτ ;

�̃ j,k = 1

t

∫ t

0

G

4dk, j (τ )
(m1 − m2)

2dτ . (25)

The time-evolution operator in Eq. (24) is, formally, equiva-
lent at that obtained in Sect. 4. Therefore, independently on
N and M , we can use the relations in Eq. (25) to generalize
the results obtained in Sect. 4 to the case of time-dependent
relative distances.

Before to conclude, it is worth to underline that this
surprising result holds only because [H(τ1), H(τ2)] = 0
∀τ1, τ2. In the general case this is not true and, hence, the
generalization to time-dependent relative distances cannot be
evaluated exactly. In these cases we are forced to use differ-
ent approaches as master equations, Dyson series expansions,
etc.
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6 Conclusions

We have shown that the gravity in a self-interacting particles
mixing system leads to the CPT violation. This violation is
related to the emergence of a non-zero entanglement among
the elements of the system induced by a difference of mass of
the free fields. Moreover, since the gravitational interaction
is additive, the CPT violation is proportional to the number
of elements of the system and to its density. Therefore, this
effect could play a crucial role in galactic objects and in the
first stage of the Universe where the densities and the number
of particles are very high.

The CPT -symmetry violation presented in this paper is
not the first one discovered in the context of neutral particle
oscillations. In neutrino physics, several studies have been
devoted to the analysis of symmetry violations induced by
dissipative dynamics [25–27]. However, our work presents
several aspects of novelty. In fact, instead to consider a single
particle as an open system affected by several uncontrolled
phenomena, we consider an ensemble of self-interacting par-
ticles as a closed system with all the physical quantities being
under control. As a consequence we have a difference CPT
violation. In fact, in the previous works, CPT violation was
generated by a CP-symmetry breaking and not, as in our
case, by a violation of the T -symmetry.

However, our results must not be considered in contrast
with the ones presented in Refs. [25–27]. Indeed, the non-
unitary dynamics includes a wide family of physical sources
of decoherence. On the contrary, we have limited our anal-
ysis to the effects due to the self-gravitational interaction so
neglecting all other possible sources of decoherence [43–47].
Nevertheless, our work paves the way to several other works,
in which a detailed analysis of each individual contribution
to decoherence can be realized.

Moreover, it is worth to note that the mechanism here pre-
sented is not only limited to gravitational interaction. In fact,
the two main requirements are: (1) the presence of neutral
particles whose flavor states are superpositions of the eigen-
states of a free field Hamiltonian; (2) The presence of an
interaction depending on the eigenstates of the free Hamilto-
nian. Within this hypothesis the interaction, not necessarily of
gravitational origin, among two or more of these particles will
generate entanglement and hence induce a CPT -symmetry
violation in the flavors oscillations.

Table–top experiments, based on Rydberg atoms confined
in microtraps and optically manipulated [48], can simulate
the mixing and the mutual interaction. In this system, the
two internal states, i.e. the ground state and the excited Ryd-
berg level can represent the mass eigenstates, whereas two
particular orthonormal superpositions can simulate the fla-
vor states, and the dipole–dipole interaction can play the role
of the gravity [49–51]. Thus, next experiments on atomic

physics could allow to test the fundamental laws and sym-
metries of nature.
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