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a b s t r a c t

In the present paper we propose a new class of analytical solutions for the equilibrium

problem of a prismatic sand pile under gravity, capturing the effects of the history of the

sand pile formation on the stress distribution. The material is modeled as a continuum

composed by a cohesionless granular material ruled by Coulomb friction, that is a material

governed by the Mohr–Coulomb yield condition. The closure of the balance equations is

obtained by considering a special restriction on stress, namely a special form of the stress

tensor relative to a special curvilinear, locally non-orthogonal, reference system.

This assumption generates a class of closed-form equilibrium solutions, depending on

three parameters. By tuning the value of the parameters a family of equilibrium solutions

is obtained, reproducing closely some published experimental data, and corresponding to

different construction histories, namely, for example, the deposition from a line source and

by uniform raining. The repertoire of equilibrated stress fields that we obtain in two spe-

cial cases contains an approximation of the Incipient Failure Everywhere (IFE) solution and

a closed-form description of the arching phenomenon.

© 2016 Elsevier Ltd. All rights reserved. s 
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1. Introduction

Granular piles in static equilibrium have attracted much

interest due to their rich physical phenomenology and the

number of curious effects that they exhibit. The most pop-

ular among these effects is the appearance of a stress dip

at the center of the pile, that was detected experimentally

and described and interpreted by several papers in the late

1990s . The main result of these studies (among which we

recall the comprehensive work of Wittmer et al. (1996) and

the extensive references cited therein) is that the dip is a

result of arching. Describing the degree of arching and pre-
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dicting its dependence on the construction history was, at

that time, still an open issue.

Such a challenge was taken up lately by a number

of researchers, among which we recall Michalowski and

Park (2004a, 2004b); 2005), Pipatpongsa and Siriteerakul

(2010), Pipatpongsa et al. (2010), which propose some an-

alytic stress solutions, and Bierwisch et al. (2009), Sibille

et al. (2015) and Zhu et al. (2008), which adopt numerical

approaches based on discrete element simulations.

In the present paper we propose a new analytical solu-

tion to the equilibrium problem of a prismatic sand pile

under gravity. Our main objective is to give closed-form

solutions of the equilibrium equations, capable of describ-

ing the different degrees of arching that are determined by

different construction histories. It is a fact, for example as

shown by Vanel et al. (1999), that the pressure dip beneath

the pile can have different profiles or even almost disap-

pear depending on the loading history. Such an effect is
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captured by our closed-form solution just by tuning three

parameters.

The material is modeled as a continuum composed by

a cohesionless granular material. The modeling strategy is

based on some simplifying assumptions:

• There is a stress tensor T which is well defined as a

local average over many grains.
• The particle are hard (that is are rigid), therefore no

elastic strain variable exists and the static frictional

forces are indeterminate.
• Friction is ruled by Coulomb linear law, that is the

stress is restricted by inequalities depending on a single

coefficient (see the inequalities (2) below).
• The construction history determines the grain arrange-

ment and packing, that is the local restrictions ruling

the stress.

In the model there is no trace of elasticity or of any

constitutive behaviour or dependence of the stress on the

strain or on the strain rate. The main tool that we use to

select a particular equilibrium solution is represented by

the choice of a special curvilinear system (θ1, θ2), with the

lines θ2 directed vertically and the lines θ1 directed along

curved trajectories. This family of curved lines can be cho-

sen, in principle, in an infinite number of different ways,

but we explore just the easiest possibilities namely: hyper-

bolas and parabolas. The closure condition that we adopt

to make the problem statically determined, consists in as-

suming that the tangential stress component, in this spe-

cial reference system, is zero, that is the vertical load (the

body load) is taken by normal stresses directed as the ver-

tical lines θ2 and as the curved lines θ1. The ratio between

the load that is taken by the columns, and the load that is

taken by the arches can be regulated by tuning three pa-

rameters.

In particular, in the case in which the curved lines are

parabolas, we find two special solutions that, in terms of

base pressures, resemble closely the experiments by Vanel

et al. (1999).

2. The Coulomb friction model

As a first approximation to the behaviour of dry granu-

lar masses, a cohesionless material ruled by Coulomb fric-

tion, that is a material governed by the Mohr–Coulomb

yield condition, can be adopted. This crude unilateral

model material that idealizes the real material as indefi-

nitely strong if compressed within the yield cone, but in-

capable of sustaining stresses outside the yield surface, is

perfectly rigid in compression, in the sense that no strain

rates can occur if the stress is inside the limit surface. The

material can exhibit unaccelerated flow when the stress

belongs to the limit surface and accelerated motion must

occur if the stress is outside the yield locus (see Lippiello,

2007).

If we restrict to statics, and exclude therefore the possi-

bility of accelerated motion, the stress state is restricted to

belong to the Mohr–Coulomb cone. In the plane case, de-

noting T the stress tensor, the Mohr–Coulomb restriction,

in terms of the first and second stress invariants

ι1(T) = tr T ι2(T) = det T, (1)

P o 
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can be written as follows:

det T − cos2(ϕ)
(

tr T

2

)2

≥ 0 , tr T ≤ 0, (2)

ϕ being the friction angle.

With Coulomb friction there is a linear relation be-

tween the normal component of stress and the maximum

admissible tangential component that can be exerted on

a given surface. When shear stress reaches this maximum

value sliding on that surface becomes possible. Such a slid-

ing is geometrically similar to the slipping occurring along

discontinuity lines (concentrated shearing) in some per-

fectly plastic metallic materials, say plastic materials gov-

erned by the Mises yield condition. Energy is dissipated

into heat during flow in both cases.

Unfortunately whilst the slipping flow rule of Mises

materials is associative, the slipping of a Mohr–Coulomb

material is not, since, for any value of the friction angle ϕ
in the open interval (0, π ), such a strain rate is not orthog-

onal to the limit surface. Therefore the statics of frictional

materials cannot be treated within the frame of Limit Anal-

ysis, unless the friction angle is π /2 (No-Tension materials,

see Heyman, 1966; Angelillo, 1993; Fortunato, 2010; An-

gelillo et al., 2010, 2014a, 2014b, 2014c) or 0 (perfect uni-

lateral fluids, see Chorin and Marsden, 2000; Dostal, 2009;

Schechter and Bridson, 2012).

This means that, if, for a given structure under given

loads, we find a stress field that is equilibrated with the

loads and within the yield limits (that is a statically admis-

sible stress field), we are not sure that the same structure,

under the same loads, would not collapse for some special

loading histories.

In the application we present here, we focus on the

statical approach, namely, on assuming some closure re-

strictions on stress, we obtain statically admissible stress

fields, that, in principle, can be attained by performing

special loading histories. Actually, for granular masses the

loading history is determined by the construction history,

which determines the arrangement of grains and, therefore,

the way in which the grains interact, that is, in the contin-

uum model, the special material restrictions that are lo-

cally valid.

3. Formulation of the problem

The equilibrium of a prismatic sand pile of height h and

base 2a (Fig. 1), and standing on a perfectly rigid rough

plane, is considered. The angle of repose ψ = arctan(h/a)

of the pile is usually assumed coincident with the friction

angle of the material ϕ, though the case of a repose angle

less than ϕ can be considered.

The typical construction history for a prismatic sand

pile consists in pouring the material from a line source. An-

other typical construction history considers the pile con-

structed through uniform deposition (uniform raining).

3.1. Geometry and curvilinear coordinates

The relevant geometrical dimensions of a prismatic pile

are its height h and its width 2a. By reducing the problem

to the plane case, the density ρ of the material is defined
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Fig. 1. Perspective view of a prismatic sand pile in planar equilibrium (a). Cross section and relevant notation (b).

a b

Fig. 2. Forms A and B of the function f(a) plotted as a function of θ1, for θ2 = const . form A in (a), form B in (b).
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per unit area, and the stress is a generalized stress (that is

a force per unit length). A schematic perspective view of a

sand pile supported on a rigid base is depicted in (Fig. 1a).

For simplicity, the density of the material, actually vari-

able along the height due to the changing porosity of the

material on moving from the free surface to the base, is

considered as a constant.

By denoting {.,.} the components of vector quantities

with respect to the Cartesian frame shown in (Fig. 1b),

the special curvilinear coordinate system (θ1, θ2) defined

through the relations

x(θ1, θ2) = {θ1, f (θ1, θ2)} (3)

is introduced to describe the problem. In (3) the function f

is a generic smooth function of θ1, θ2, even with respect to

θ1, strictly monotonic with respect to θ2, and such that

f (θ1, 0) = h − h

a
|θ1| f (0, a) = 0. (4)

In particular, we assume that θ1 ∈ [−a, a] and restrict to

the values of θ2 ∈ [0, a] such that x is into the sand pile,

that is belongs to the triangular domain � comprised from

the pile free surface and the rigid base.

A typical arrangement of the curvilinear lines θ1, de-

scribed at θ2 = const, by hyperbolas (that is sections of

a circular cone, centered at the vertex of the pile, with

planes parallel to the cone axis) is shown in Fig. 2a.

The idea behind the choice of this special curvilinear

system is better clarified by the closure assumption that

we make later, to render the equilibrium problem stati-

cally determined. All we can say here is that, with our

assumption, the self-load is carried partly by elementary

columns delimited by two closely spaced vertical lines θ ,

P o 
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2

and partly by elementary arches delimited by two closely

spaced curved lines θ1.

The natural (covariant) base vectors associated to the

curvilinear system defined on S by the couple (θ1, θ2),

are

a1 = {1, f,1},
a2 = {0, f,2}, (5)

where a comma followed by an index, say α, stands for

differentiation with respect to xα .

The reciprocal (contravariant) base vectors are

a1 = {1, 0},
a2 =

{
− f,1

f,2
,

1

f,2

}
. (6)

The basic elements of differential geometry, necessary

to render this analysis self-contained, are summarized in

Appendix A.

3.2. Equilibrium

The generalized stress in �, is defined by the stress

tensor T. In the covariant base, by adopting summation

convention on repeated Greek indexes, α,β, γ , . . . = 1, 2, it

can be represented as follows

T = Tαβaα ⊗ aβ, (7)

Tαβ being the contravariant components of T. Notice that

the basis (a1, a2) is neither unit nor orthogonal, then

though the contravariant components are useful and con-

venient, they are non-physical components of stress, and a

bit of conversions is needed to transform them into Carte-

sian stress components.
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Internal equilibrium is dictated by the condition that

the divergence of the generalized surface stress T balances

the load b = {0, −ρg}, defined per unit area on �. Such

a vector/differential condition can be written, explicitly, as

follows (see Appendix A)

∂

∂θγ
(Tαβaα ⊗ aβ )aγ + b = 0. (8)

Indeed, by projecting Eq. (7) into the two non-collinear

directions a1, a2, after some simple transformations (and

considering that f, 2 is never zero by assumption) one ob-

tains

(T 11 f,2),1 + (T 12 f,2),2 = 0,

(T 12 f,2
2),1 + (T 22 f,2

2),2 + T 12 f,2 f,12

+ T 11 f,2 f,11 − ρg f,2 = 0. (9)

We consider traction boundary conditions at the free

surface that is

T(θ1, 0)n = 0, (10)

n being the unit outward normal to the free surface. Tak-

ing into account the material restrictions (2), that is the

fact that the material is strictly unilateral, the stress itself

must vanish at the free surface, and we obtain three scalar

conditions:

T 11(θ1, 0) = 0, T 12(θ1, 0) = 0, T 22(θ1, 0) = 0. (11)

3.3. Closure assumption

The closure restriction on stress that we assume is that

the stress component T12 in this special reference system is

zero everywhere in �. With this assumption we consider

that the load due to gravity is balanced in part by a ver-

tical normal stress component, and, for another part, by a

normal stress tangent to the arch-like curvilinear lines θ2

= const, defined by the function f.

Then the system (8) is closed and we may integrate it

to find the two non-vanishing stress components T11 and

T22.

On assuming T12 = 0, the equilibrium equations (8) re-

duce to the form

(T 11 f,2),1 = 0,

(T 22 f,2
2),2 = −T 11 f,2 f,11 + ρg f,2, (12)

where f is a given function, to be integrated with the fol-

lowing boundary conditions:

T 11(θ1, 0) = 0 , T 22(θ1, 0) = 0. (13)

3.4. A restricted family of balanced stress fields

The form of the solution that we obtain depends on

the choice of the form of f. Of course, if we accept nu-

merical solutions, there exist an endless repertoire of pos-

sible functions f that could be explored. In the present pa-

per, confining ourselves to analytical solutions, we consider

only the simplest choices, namely the forms A and B:

f A = h − h

a2

√
r2 − a2 − h

a2

√
a2θ2

1
+ r2θ2

2
,

P o 
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f B = − h

2a

(
θ2 +

√
4θ2

1
+ θ2

2
− 2a

)
, (14)

shown graphically in Fig. 2a and b, for comparison. Forms

A and B can be produced by interesting cones based on the

triangular domain � (in the sense that the vertex of the

cone coincides with the vertex {0, h, 0} of the triangle, and

the slanted sides of the triangle are two of the generating

half-lines of the cone) with planes parallel to the plane of

�, that is orthogonal to the axis x3 perpendicular to (O;

x1, x2). Form A is obtained by considering as the diretrix

curve a circle of radius r contained in the plane (O; x3, x1)

and passing through the points {−a, 0, 0}, {a, 0, 0}. Form B

is obtained by considering as the diretrix curve a parabola

contained in the plane (O; x3, x1) and passing through the

points {−a, 0, 0}, {o, a, 0}, {a, 0, 0}. Forms A (in the special

case r = a) and B are reported pictorially in Fig. 2.

On integrating the first of Eqs. (12) one obtains

T 11 = m(θ2)

f,2
, (15)

m(θ2) being an unknown numeric function of θ2, that we

develop in a power series retaining the cubic terms only:

m(θ2) = k0 + k1θ2 + k2θ
2
2 + k3θ

3
2 . (16)

At this point we have to choose the more convenient

form of f. In the present paper we have exploited the most

elementary choice, namely f = f B. This choice leads eas-

ily, as we shall see, to a closed-form representation of a

restricted class of equilibrated stress field depending on

three parameters. The different experiments we made with

the form fA, corresponding to different choices of r (though

limited in number), were not successful. In particular the

form fA, for r = a, cannot be used since f, 2 diverges for r

→ a. The other choices of r that we tested produce stresses

that are not admissible, in the sense that do not satisfy the

Mohr–Coulomb inequalities (2) for any value of the three

parameters, within the sand pile.

On assuming for f the form B, since

f,2 = − h

2a

(
1 + θ2√

4θ1
2 + θ2

2

)
, (17)

the first boundary condition on the stress gives k0 = 0,

that is

T 11 f,2 = m(θ2) = k1θ2 + k2θ
2
2 + k3θ

3
2 , (18)

and then

T 11 = −
2aθ2

√
4θ2

1
+ θ2

2

(
k1 + k2θ2 + k3θ

2
2

)
h

(
θ2 +

√
4θ2

1
+ θ2

2

) . (19)

Taking into account (18), from the second of Eq. (12),

one obtains

T 22 f 2
,2 =

∫ (
ρg f,2 −

(
k1θ2 + k2θ

2
2 + k3θ

3
2

)
f,11

)
dθ2. (20)

Recalling Eq. (17) and taking into account that for the

form B of f

f,1 = − 2hθ1

a
√

4θ2
1

+ θ2
2

,
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f,11 = − 2hθ2
2

a
(
4θ2

1
+ θ2

2

)3/2
, (21)

one obtains

T 22 f 2
,2 = ghρ

2a

(
2a − θ2 −

√
4θ2

1
+ θ2

2

)
+ 2 h

a

(
−6k2 log

(
θ2 +

√
4θ2

1
+ θ2

2

)
θ2

1 + 48k1θ
2
1 − 256k3θ

4
1

12
√

θ2
1

)
+ n(θ1), (22)

n(θ1) being an unknown numeric function of θ1.
On imposing the second of the boundary conditions

(13), one finally obtains

T 22 f 2
,2 = − ghρ

2a

(
2a − 2

√
θ2

1

)
− 2 h

a

(
−6k2 log

(
2
√

θ2
1

)
θ2

1 + 48k1θ2
1 − 256k3θ4

1

12
√

θ2
1

)

+ ghρ

2a

(
2a − θ2 −

√
4θ2

1
+ θ2

2

)
− 2 h

a

⎛⎝k2 log

(
θ2 +

√
4θ2

1
+ θ2

2

)
θ2

1√
4θ2

1
+ θ2

2

⎞⎠
+ 2 h

a

(
6k1

(
8θ2

1 + θ2
2

)
+ 3k2θ2

(
12θ2

1 + θ2
2

)
− 2k3

(
128θ4

1 + 16θ2
1 θ2

2 − θ4
2

)
6
√

4θ2
1

+ θ2
2

)
(23)

The physical stress components, denoted T(αβ), and rep-

resenting the Cartesian components of stress in the given

Cartesian frame (O; x1, x2), can be obtained from the con-

travariant components Tαβ through the formula

T(αβ) = (Tμνaμ ⊗ aν ) · êα ⊗ êβ, (24)

where êα are the unit base vectors associated to the Carte-

sian frame (O; x1, x2), that is, with the notation adopted

for Cartesian components in the global frame, ê1 = {1, 0},
ê2 = {0, 1}.

In particular, recalling (5) and (6), one has

T(11) = (T 11a1 ⊗ a1 + T 22a2 ⊗ a2) · ê1 ⊗ ê1 = T 11,

T(12) = (T 11a1 ⊗ a1 + T 22a2 ⊗ a2) · ê1 ⊗ ê2 = T 11 f,1,

T(22) = (T 11a1 ⊗ a1 + T 22a2 ⊗ a2) · ê2 ⊗ ê2

= T 11 f 2
,1 + T 22 f 2

,2, (25)

that is

T(11) = −
2aθ2

√
4θ2

1
+ θ2

2

(
k1 + k2θ2 + k3θ2

2

)
h

(
θ2 +

√
4θ2

1
+ θ2

2

) ,

T(12) =
4
(
k1 + k2θ2 + k3θ2

2

)
θ1θ2

θ2 +
√

4θ2
1

+ θ2
2

,

T(22) = − ghρ

2a

(
2a − 2

√
θ2

1

)

+ 2h

a

⎛⎝6k2 log

(
4

√
θ2

1

)
θ2

1 − 48k1θ2
1

− 256k3θ4
1

12

√
θ2

1

⎞⎠
+ ghρ

2a

(
2a − θ2 −

√
4θ2

1
+ θ2

2

)

− 2h

a

⎛⎜⎝ 4θ2
1
θ2

(
k1 + k2θ2 + k3θ2

2

)√
4θ2

1
+ θ2

2

(
θ2 +

√
4θ2

1
+ θ2

2

)
⎞⎟⎠
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− 2h

a

⎛⎜⎝ k2 log

(
2

(
θ2 +

√
4θ2

1
+ θ2

2

))
θ2

1√
4θ2

1
+ θ2

2

⎞⎟⎠
+ 2h

a

⎛⎝6k1

(
8θ2

1
+ θ2

2

)
+ 3k2θ2

(
12θ2

1
+ θ2

2

)
+ 2k3

(
−128θ4

1
− 16θ2

1
θ2

2
+ θ4

2

)
6

√
4θ2

1
+ θ2

2

⎞⎠.

(26)

The stress fields described by expression (26) define a

class of equilibrated solutions depending on the three pa-

rameters k1, k2 and k3. By choosing {k1, k2, k3}/(ρg) in the

interval � = {[0, 1], [−1, 1], [0, 1]}, a family of stress fields

is obtained whose admissibility, in the sense of the Mohr–

Coulomb condition (2), has to be verified.

For example, by taking k1 = k2 = k3 = 0, a compressive,

uniaxial vertical stress field is obtained, and the stress is

statically admissible only if the friction angle of the ma-

terial is π /2. By taking {k1, k2, k3}/(ρg) in the range �,

a compressive biaxial stress field is obtained and the ad-

missibility of the stress must be verified by checking that

inequality (2), that is, in components form

T(11)T(22) − T 2
(12) − cos2(ϕ)

(
T(11) + T(22)

2

)2

≥ 0, (27)

is satisfied.

To look at the admissibility of the equilibrated stress

states that we produce, and measure their degree of safe-

ness, we introduce the non-dimensional distance

d(T) = det T(
tr T
2

)2
− cos2(ϕ), (28)

defined for any T such that tr T < 0. Such a distance is pos-

itive, and has actually a maximum for T = σ I (σ > 0), of

value d(−σ I) = 1 − cos2(ϕ); d(T) is positive if T is safe, is

zero when T is a yield state, and becomes negative when

T is outside the cone.

4. A simple example

4.1. First case: ψ = 45◦, ϕ = 45◦, k1 = 0.1287 ρg,

k2 = k3 = 0

To fix ideas we first consider the case in which a = h,

that is the angle of repose ψ = 45◦, and the friction angle

ϕ coincides with ψ . By assuming k2 = k3 = 0 and changing

the value of the parameter k1 in the range [0, 1] we find

that the stress satisfies the Mohr Coulomb constraint, in a

narrow neighborhood around a single value of k1, namely

k1 = 0.12827 ρg. The results in terms of stress, correspond-

ing to such a choice are summarized in Figs. 3–5, in a scale

normalized by taking ρg = 1, a = 1. In particular, in Fig. 3

the contour plot of the physical stress component T(11)

is reported. Analogous plots of the shear component T(12)

and of the normal component T(22) are depicted in Figs. 4

and 5.

In Fig. 9a, the contour plot of the distance d(T) intro-

duced in (28) is represented. From such a plot we see that

the yield function is strictly positive all over the triangu-

lar domain, though the value of it is rather small being

less than 10−3, all over the domain. This means that the
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Fig. 3. Physical stress component T(11) as a function of θ1, θ2, for the first

example: ψ = 45◦, and ϕ = 45◦ . Contour plot of T(11) in the right hand

side of the pile.

Fig. 5. Physical stress component T(22) as a function of θ1, θ2, for the first

example: ψ = 45◦, and ϕ = 45◦ . Contour plot of T(22) in the right hand

side of the pile.
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stress is very close to the limit surface that is close to the

limit state at each point of �; therefore the equilibrium

is highly unstable and such stress state can be maintained

only admitting a very careful and smooth construction his-

tory. Any small vibration of the base of the pile or any

other energy input from the outside due to an outside dis-

turbance, would produce a sudden loss of stability with a

small change of the profile of the pile and a corresponding
Fig. 4. Physical stress component T(12) as a function of θ1, θ2, for the first

example: ψ = 45◦, and ϕ = 45◦ . Contour plot of T(12) in the right hand

side of the pile.

P o 
s t
loss of potential energy, at the price of interface frictional

energy (heat).

In Fig. 10a the profile of the stresses T(22), T(12), and of

the stress component T(11), emerging at the base of the pile

is depicted. Notice that we adopted the sign convention for

stress in the stress matrix, then the negative sign of the

normal stress means that T(22) points upward, and the pos-

itive sign of the shear stress means that T(12) points toward

 p 
r

the left.

Fig. 6. Physical stress component T(11) as a function of θ1, θ2, for the

second example: ψ = 45◦, and ϕ = 46◦ . Contour plot of T(11) in the right

hand side of the pile.
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Fig. 7. Physical stress component T(12) as a function of θ1, θ2, for the

second example: ψ = 42◦, and ϕ = 46◦ . Contour plot of T(12) in the right

hand side of the pile.

Fig. 8. Physical stress component T(22) as a function of θ1, θ2, for the

second example: ψ = 45◦, and ϕ = 46◦ . Contour plot of T(22) in the right

hand side of the pile.
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4.2. Second case: ψ = 45◦, ϕ = 46◦, k1 = 0.19 ρg,

k2 = k3 = 0

As a second case, we then consider h = arctan 45◦,
namely that the angle of repose is ψ = 45◦, whilst we as-

sume for the friction angle ϕ = 46◦. The idea is that the

pile has suffered a less smooth construction history, with

the result that the angle of repose is less than the friction

angle. By assuming k2 = k3 = 0 and changing the value of

the parameter k in the range [0, 1] we find that the stress t 
1

a

Fig. 9. Contour plot of g = 1 − cos2(ϕ)(tr T/2)
2
/ det T as function

P o 
s

satisfies the Mohr Coulomb constraint, over an interval

of values of k1, whose maximum is k1 = 0.17 ρg. The re-

sults in terms of stress, corresponding to such a choice are

summarized in Figs. 6–8 in a scale normalized by taking

ρg = 1, a = 1. In particular in Fig. 6 the 3d plot and the

contour plot of the physical stress component T(11) is re-

ported. Analogous plots of the normal component T(12) and

of the shear component T(22) are depicted in Figs. 7 and 8.

In Fig. 9b, the contour plot of the distance d(T) is rep-

resented. From such a plot we see that the yield function is

 p 
r

b

of θ1, θ2, for the first (a) and the second (b) examples.
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a b

Fig. 10. Plot of the stress profiles at the base for the first (a) and the second (b) examples as functions of x1, in the interval [0, a]. Dotted-dashed line:

T(12), dashed line: T(11), solid line: T(22).

Fig. 11. Physical stress component T(11) as a function of θ1, θ2, for the

first example: ψ = 35◦, and ϕ = 35◦ . Contour plot of T(11) in the right

hand side of the pile.

Fig. 12. Physical stress component T(12) as a function of θ1, θ2, for the

first example: ψ = 35◦, and ϕ = 35◦ . Contour plot of T(12) in the right

hand side of the pile. o 
s t
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strictly positive all over the triangular domain. The value of

it is rather large, being less than 0.1, only in a narrow band

located in proximity of the free surface. Such a state of

stress of lower potential energy with respect to the previ-

ous one, could be reached either perturbing the limit equi-

librium of the first case with a small vibration, or directly

by adopting a more dynamic way of construction, namely

the construction from a line source.

In Fig. 10b the profile of the stresses T(22), T(12), and of

the stress component T(11), emerging at the base of the pile

is depicted. Notice that we adopted the sign convention for

stress in the stress matrix, then the negative sign of the

normal stress means that T(22) points upward, and the pos-

itive sign of the shear stress means that T(12) points toward

the left.

A pronounced central dip can be seen in the graph

representing the pressure at the base in this second

example.

P
 5. A second example

5.1. First case: ψ = 35◦, ϕ = 35◦, k1 = 0.116 ρg,

k2 = −0.104 ρg, k3 = 0.220 ρg

In this second numerical example we explore the case

of a smaller friction angle. We first consider the case

in which the angle of repose ψ = 35◦ and the friction

angle ϕ coincides with ψ . By assuming k2 = −0.104 ρg,

k3 = 0.220 ρg and changing the value of the parameter

k1/(ρg) in the range [0, 1] we find that the stress satisfies

the Mohr Coulomb constraint, in a narrow neighborhood

around a single value of k1, namely k1 = 0.116 ρg. The re-

sults in terms of stress, corresponding to such a choice are

summarized in Figs. 11–13, in a scale normalized by tak-

ing ρg = 1, a = 1. In particular, in Fig. 11 the contour plot

of the physical stress component T(11) is reported. Analo-

gous plots of the shear component T(12) and of the normal

component T(22) are depicted in Figs. 12 and 13.
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Fig. 13. Physical stress component T(22) as a function of θ1, θ2, for the

first example: ψ = 35◦, and ϕ = 35◦ . Contour plot of T(22) in the right

hand side of the pile.

Fig. 14. Physical stress component T(11) as a function of θ1, θ2, for the

second example: ψ = 33◦, and ϕ = 35◦ . Contour plot of T(11) in the right

hand side of the pile.

Fig. 15. Physical stress component T(12) as a function of θ1, θ2, for the

second example: ψ = 33◦, and ϕ = 35◦ . Contour plot of T(12) in the right

hand side of the pile.

Fig. 16. Physical stress component T(22) as a function of θ1, θ2, for the

second example: ψ = 33◦, and ϕ = 35◦ . Contour plot of T(22) in the right

hand side of the pile.
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In Fig. 17a, the contour plot of the distance d(T) in-

troduced in (28) is represented. From such a plot we see

that the yield function is positive all over the triangular

domain, though the value of it is rather small being less

than 10−1, all over the domain.

In Fig. 18a the profile of the stresses T(22), T(12), and of

the stress component T(11), emerging at the base of the pile

is depicted. Notice that we adopted the sign convention for

stress in the stress matrix, then the negative sign of the

normal stress means that T(22) points upward, and the pos-
itive sign of the shear stress means that T(12) points toward

the left.

5.2. Second case: ψ = 33◦, ϕ = 35◦, k1 = 0.08 ρg,

k2 = 0.12 ρg, k3 = 0.22 ρg

As a second case, we then consider h = arctan 33◦,
namely that the angle of repose is ψ = 33◦, whilst we as-

sume for the friction angle ϕ = 35◦. The idea is that the

pile has suffered a less smooth construction history, with

the result that the angle of repose is less than the friction
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a b

Fig. 17. Contour plot of g = 1 − cos2(ϕ)(tr T/2)
2
/ det T as function of θ1, θ2, for the first (a) and the second (b) examples.

a b

Fig. 18. Plot of the stress profiles at the base for the first (a) and the second (b) examples as functions of x1, in the interval [0, a]. Dotted-dashed line:

T(12), dashed line: T(11), solid line: T(22).

Fig. 19. Comparison of the stress profiles at the base corresponding two the first (a) and the second (b) analytical solutions, with the experimental results

of Vanel et al. (1999).
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angle. By assuming k2 = 0.12 ρg, k3 = 0.22 ρg and chang-

ing the value of the parameter k1/(ρg) in the range [0, 1]

we find that the stress satisfies the Mohr Coulomb con-

straint, over an interval of values of k1, whose maximum is

k1 = 0.08 ρg. The results in terms of stress, corresponding

to such a choice are summarized in Figs. 14–16 in a scale

normalized by taking ρg = 1, a = 1. In particular in Fig. 14

the contour plot of the physical stress component T(11) is

reported. Analogous plots of the shear component T(12) and

of the normal component T(22) are depicted in Figs. 15

and 16.
In Fig. 17b, the contour plot of the distance d(T) is rep-

resented. From such a plot we see that the yield func-

tion is strictly positive all over the triangular domain. The

value of it is rather large, being less than 0.1, only in

a narrow band located in proximity of the free surface.

Such a state of stress of lower potential energy with re-

spect to the previous one, could be reached either per-

turbing the limit equilibrium of the first case with a

small vibration, or directly by adopting a more dynamic

way of construction, namely the construction from a line

source.
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- 
In Fig. 18b the profile of the stresses T(22), T(12), and of

the stress component T(11), emerging at the base of the pile

is depicted. Notice that we adopted the sign convention for

stress in the stress matrix, then the negative sign of the

normal stress means that T(22) points upward, and the pos-

itive sign of the shear stress means that T(12) points toward

the left.

A pronounced central dip can be seen in the graph rep-

resenting the pressure at the base in this second example.

6. Comparison with test results and conclusions

In Figs. 10 and 18 the profile of the normal stress at the

base, predicted by our analysis, for the four cases studied

in the previous section, is reported. Notice that the nor-

mal stress emerging at the base for the second case of both

examples (ψ = 45◦ and ϕ = 35◦), shows a pronounced dip

beneath the apex of the pile. Such a dip is not present in

the first case. The results obtained in terms of base pres-

sure with our theory, are compared with an experimental

test reported in the literature, namely the test performed

by Vanel et al. (1999). The results reported by Vanel et al.

(1999) refer to the measurement of the base pressure of

prismatic sand piles (composed of granular materials with

a repose angle of approximately ϕ = 35◦), constructed with

two deposition procedures: through uniform raining (a)

and from a line source (b).

Deposition from a line source is intuitively more shaky

than uniform raining, since, in pouring the material from a

stationary line source, each element of sand arrives at the

apex of the pile, rolls down the slope disturbing the other

grains, and finally comes to rest and is finally buried.

This idea is confirmed by comparing the results of

the experiments with our analytical results. In particular,

the first case that we presented in the second example

(ψ = 35◦, ϕ = 35◦), namely the state of stress close to the

limit state all over the pile, is very well reproduced by

the experimental case (a) (uniform raining), whilst the sec-

ond case of the second example (ψ = 33◦, ϕ = 35◦) repro-

duces closely the experimental case (b) (line source). The

comparison of the experimental results in terms of pres-

sure measured at the base, with the base pressure corre-

sponding to the two statically admissible solutions derived

through our analysis, are reported in Fig. 19a and b.

Appendix A. Curvilinear coordinates in 2d

Let (θ1, θ2) be a curvilinear coordinate couple defined

over the plane domain �, through the relation

x = x̂(θ1, θ2). (A.1)

x being the position vector of a point of �.

The natural bases associated to the curvilinear lines {θ1,

θ2} are

a1 = ∂x

∂θ1

,

a2 = ∂x

∂θ2

, (A.2)

and the dual bases a1, a2, defined through the relation

aα · aβ = δα
β , (A.3)
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s t

 

δα
β

being the Kronecker symbol, are

a1 = ∂θ1

∂xα
êα,

a2 = ∂θ2

∂xα
êα, (A.4)

The component forms of vectors and tensors in this

curvilinear system and in the global Cartesian frame are

u = uαaα = uβaβ = uγ êγ ,

T = Tαβaα ⊗ aβ = Tαβaα ⊗ aβ = Tα
β aα ⊗ aβ

= T(αβ)êα ⊗ êβ, (A.5)

where ⊗ denotes the tensor (dyadic) product. Such vector

and tensor components can be obtained by other compo-

nent forms through scalar products, namely

uα = u·aα, uα = u·aα, uγ = u·̂eα,

Tαβ = T·(aα ⊗ aβ ), Tαβ = T·(aα ⊗ aβ ),

T(αβ) = T·(̂eα ⊗ êβ ), (A.6)

The gradient of a scalar field ϕ(x) defined over � can

be computed in curvilinear coordinates through the chain

rule. Since

gradϕ(x) = ∂ϕ

∂xβ
êβ (A.7)

then

gradϕ(x) = ∂ϕ

∂θα

∂θα

∂xβ
êβ = ∂ϕ

∂θα
aα (A.8)

Analogously, if u is a vector field and T is a tensor field

on �, the gradient and the divergence of the vector field u

and the right divergence of the tensor field T are

grad u = ∂u

∂θα
⊗ aα,

div u = ∂u

∂θα
· aα,

div T = ∂T

∂θα
aα. (A.9)

References

Angelillo, M., 1993. Constitutive equation for no-tension materials. Mec-
canica 28 (2), 195–202.

Angelillo, M., Babilio, E., Cardamone, L., Fortunato, A., Lippiello, M., 2014.

Some remarks on the retrofitting of masonry structures with compos-
ites. Composites B 61, 11–16.

Angelillo, M., Cardamone, L., Fortunato, A., 2010. A numerical model for
masonry-like structures. J. Mech. Mater. Struct. 5, 583–615.

Angelillo, M., Fortunato, A., Fraternali, F., 2014. Structural capacity of ma-
sonry walls under horizontal loads. Ing. Sismica 1, 41–49.

Angelillo, M., Fortunato, A., Montanino, A., Lippiello, M., 2014. Singular

stress fields in masonry walls: Derand was right. Meccanica 49 (5),
1243–1262.

Bierwisch, C., Kraft, T., Riedel, H., Moseler, M., 2009. Three-dimensional
discrete element models for the granular statics and dynamics of

powders in cavity filling. J. Mech. Phys. Solids 57, 10–31.
Chorin, A., Marsden, J., 2000. A Mathematical Introduction to Fluid Me-

chanics. Springer.

Dostal, Z., 2009. Optimal Quadratic Programming Algorithms: With Ap-
plications to Variational Inequalities, 1st edition Springer Publishing

Company, Incorporated.
Fortunato, A., 2010. Elastic solutions for masonry-like panels. J. Elast. 39,

87–110.
Heyman, J., 1966. The stone skeleton. Int. J. Solids Struct. 2, 249–279.

 p 
r i 

n t

http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0001
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0001
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0002
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0002
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0002
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0002
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0002
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0002
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0003
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0003
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0003
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0003
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0004
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0004
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0004
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0004
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0005
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0005
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0005
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0005
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0005
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0006
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0006
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0006
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0006
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0006
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0007
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0007
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0007
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0008
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0008
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0009
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0009
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0010
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0010
Antonio Gesualdo
Rettangolo



M. Angelillo et al. / Mechanics of Materials 95 (2016) 192–203 203

 -  
p r

 i n
 t
Lippiello, M., 2007. Approximationof the quasi-static evolution of granular
masses (Ph.D. thesis), Realprint s.r.l., Napoli.

Michalowski, R.L., Park, N., 2004. Admissible stress fields and arching in
piles of sand. Geotechnique 54 (8), 529–538.

Michalowski, R.L., Park, N., 2004. Arching in granular media. In: Proceed-
ings of ICTAM04, Warsaw, Poland.

Michalowski, R.L., Park, N., 2005. Arching in granular soils. In: Proceed-

ings of the first Japan–U.S. Workshop on Testing, Modeling, and Sim-
ulation, vol. 143. ASCE Geotechnical Special Publication, pp. pp.255–

268.
Pipatpongsa, T., Heng, S., Iizuka, A., Ohta, O., 2010. Statics of loose triangu-

lar embankment under Nadai’s sand hill analogy. J. Mech. Phys. Solids
58, 1506–1523.

Pipatpongsa, T., Siriteerakul, S., 2010. Analytic solutions for stresses in
conical sand heaps piled up with perfect memory. J. Appl. Mech. 13,

343–354.

P o 
s t
Schechter, H., Bridson, R., 2012. Ghost SPH for animating water. ACM
Trans. Graph. 31 (4), 61–68.

Sibille, L., Hadda, N., Nicot, F., Tordesillas, A., Darve, F., 2015. Granu-
lar plasticity, a contribution from discrete mechanics. J. Mech. Phys.

Solids 75, 119–139.
Vanel, L., Howell, D., Clark, D., Behringer, R.P., Clement, E., 1999. Memories

in sand: experimental tests of construction history on stress distribu-

tions under sandpiles. Phys. Rev. E 60 (5), 5040–5043.
Wittmer, J.P., Cates, M.E., Claudin, P., 1996. Stress propagation and arching

in static sandpiles. J. Phys. I 7, 1–38.
Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B., 2008. Discrete particle simulation

of particulate systems: a review of major applications and findings.
Chem. Eng. Sci. 63, 5728–5770.

http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0011
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0011
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0011
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0012
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0012
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0012
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0013
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0013
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0013
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0014
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0014
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0014
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0014
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0014
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0015
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0015
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0015
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0016
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0016
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0016
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0017
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0017
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0017
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0017
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0017
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0017
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0018
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0018
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0018
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0018
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0018
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0018
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0019
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0019
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0019
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0019
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0020
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0020
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0020
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0020
http://refhub.elsevier.com/S0167-6636(16)00024-7/sbref0020
Antonio Gesualdo
Rettangolo


	Analytic solutions for the stress field in static sandpiles
	1 Introduction
	2 The Coulomb friction model
	3 Formulation of the problem
	3.1 Geometry and curvilinear coordinates
	3.2 Equilibrium
	3.3 Closure assumption
	3.4 A restricted family of balanced stress fields

	4 A simple example
	4.1 First case:    
	4.2 Second case:    

	5 A second example
	5.1 First case:     
	5.2 Second case:     

	6 Comparison with test results and conclusions
	Appendix A Curvilinear coordinates in 2d
	 References




