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ABSTRACT2 

Developing successful fuel cell hybrid vehicles (FCHVs), to be destined to the widest deployment within the 

entire transport sector, is nowadays considered as a highly strategic target to fully meet well known 

environmental and regulatory constraints at international level. This happens thanks to the intrinsic overall 

superior features of fuel cell propulsion when compared to both electric and hybrid vehicles, such as high fuel-

economy, reduced tank-to-wheel environmental impact and good ranges. Successful achievement of the above-

introduced challenging goal motivates the research activity presented and discussed in this paper, namely the 

development of an advanced mathematical tool featuring co-optimization capabilities. The reason for such a 

requirement lies in the well-known strong interactions and mutual influence between selected design criteria 

and adopted control strategies. Therefore, a comprehensive model of a generic FCHV architecture and a 

specification independent control strategy, thus adaptable to different fuel cell system and battery sizes, were 

preliminary developed. Then, they were integrated and embedded within a modular constrained optimization 

algorithm, which was conceived in such a way as to simultaneously find the optimal FCHV powertrain design, 

as well as real-time applicable control strategies. Suitable design and energy management criteria were 

investigated on a selected driving cycle, in such a way to explore several powertrain configurations (i.e. more 

hybrid, as well as more plugin and range-extender like FCHV). This allowed verifying the suitability of the 

proposed procedure to yield solutions ensuring low hydrogen consumption (i.e. fuel economy as high as 135 

km/kg) and full alignment with targeted energy management policies. Discussion of results, together with the 

physical meaning of main design and control variables provided as outcomes, underline the effectiveness of the 
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proposed tool in providing a solid support in the preliminary design of cost-effective fuel cell powertrains 

destined to a variety of applications and driving habits. 

 

Keywords: Fuel Cell, Hybrid Vehicles, Energy Management, Specification Independency, Control, Co-

optimization. 

1. INTRODUCTION 

The progressive depletion of primary energy resources reserves, together with air pollution and global warming 

issues, lead nations to impose progressively stringent regulations on greenhouse gas emissions, particularly on 

CO2 ones. Within this debate, the impact of conventional vehicles is a particularly hot topic as, in major industrial 

countries, pollution generated by transportation generally averages more than 15% of a nation’s total emitted 

pollution [1]. For instance, in 2010, the transport sector was responsible for over 30% of the final energy 

consumption of the EU27. Consequently, transport sector is widely recognised to be the major contributor to 

climate change, natural resource depletion and land fragmentation [2]. In fact, the direct combustion of fuel due 

to conventional transportation accounts for over half of greenhouse gas emissions and a significant fraction of air 

pollutant emissions [3], thus suggesting the development of alternative engineering solutions towards sustainable 

development. Hence, reducing the environmental impact of transport can be achieved by introducing new and 

cleaner technologies and shifting towards less environmentally damaging transport modes [1]. Particularly, the 

concepts of electrification and hybridization of cars are nowadays recognized as those to be pursued as soon as 

possible, because they represent the most viable way to reach the clean and sustainable development in 

transportation sector. In fact, according to different studies, hybridization has the potential to reduce the fuel 

consumption of gasoline ICE vehicles by 20-30% on standard U.S. drive cycles [4]. Hence, the sustainable 

transportation paradigm has become an increasingly popular solution, thanks to the favorable characteristics of 

high efficiency and low (or zero) emissions [5,6].  For instance, light duties vehicles impact for about 16% only 

[7] on global CO2 emissions. Therefore, a transition from internal combustion engines vehicles towards electric 

and hybrid ones is a vital step in reducing humanities carbon footprint, especially in those countries where yet a 

large percentage of CO2 is emitted from conventional vehicles [8,9]. When comparing all existing XEV 

powertrains, hydrogen fueled vehicles (either FCEVs or FCHVs) have more advantages over thermal hybrid 

vehicles (i.e. hybrid electric vehicles-HEVs), such as high fuel-economy (km/kg), related to the use of fuel with 

higher energy density, high efficiency and reduced environmental impact from a tank-to-wheel point of view. On 

the other hand, purely electric technology (i.e. electric vehicles-EVs) presents inferior autonomy and performance 

with respect to FCHV cars, due to the current technological limits of batteries, and may determine troublesome 
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issues on electrical grid infrastructure [10]. Specifically, FCHVs have similar architecture of series hybrid vehicles 

[11], but they are equipped with a fuel cell system (FCS) and an electric motor that provides mechanical energy 

to the wheels. Structurally two blocks can be easily identified in the vehicle architecture: the former includes the 

on-board hydrogen storage system (i.e. battery technology), which is one of the most critical components since it 

influences vehicle acceleration and pure-electric driving range; the latter includes the technological devices, 

whose task is the generation of mechanical energy and its transmission to the vehicle itself. In fact, an electric 

motor uses electric energy generated by the chemical reactions taking place inside the fuel cells, which are 

arranged in series to form the stack. This reaction combines the hydrogen contained in the tank inside the car with 

the oxygen present in the air. The most common type of fuel cell for vehicle applications is the polymer electrolyte 

membrane (PEM) fuel cell, which benefits of several advantages, such as environment friendly working, simple 

working mechanisms, faster response times and affordable maintenance [12]. On the other side, lithium-ion 

batteries are the most reliable option for hybrid and electric vehicles. This battery typology is among the most 

performing systems, since it includes a wider field of applicability and operation than the other types of storage 

systems (e.g. high energy and high power). High power technologies are the preferred solution for FCHVs, but 

costs and risks need always to be considered when choosing the proper battery to install in the vehicle structure 

[13]. Despite the fact that FCS and batteries are often considered competitive technologies, FC systems can indeed 

fruitfully complement batteries. In fact, the electrification of vehicles allows FCs to be used as range extenders to 

overcome the key barrier to EV commercialization and range anxiety. Particularly, FCs offer various 

improvements to pure electric vehicles, such as range extension to more than 300 miles on a single fill, lower 

system weight, extended battery lifetime [14] and reduced re-charge times (i.e. shorter refilling periods). In 

addition, hydrogen vehicles have a tailpipe, but the only thing that comes out is water vapor. Hence, the chemical 

processes behind FCS allow propulsion without noxious emissions and, if the energy carrier is produced from 

renewable sources instead of fossil fuels (e.g. steam methane reforming from natural gas), the conversion of 

energy is essentially cleaner. Nevertheless, FCHV technology has not yet had significant market development, 

mainly due to the currently very expensive hydrogen production, as well as the absence of distribution and 

refueling infrastructures that will ensure the dissemination and distribution in a large scale. To tackle the above 

constraints, governmental and research institutions are now increasing the cooperation with main OEMs, as 

demonstrated by the growing awareness of EU funding bodies towards the high potential offered by FCHV-based 

hybridization, even in a short-term prospective [15]. Moreover, recent proposals of major automakers (Toyota 

[16] and Honda [17] show that hydrogen technology is overall ready to start a minimal competition to alternative 

sustainable mobility [18]. In fact, fuel cell vehicles appear as serious candidates for the substitution of gasoline 

cars, due to their capability of supporting the accomplishment of Kyoto Protocol and, besides, solving the oil 
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dependence [19]. It is therefore important to focus on increasing the competitiveness of such vehicles in terms of 

fuel economy, thus overcoming the transitional problems related to hydrogen. In this context, the development of 

mathematical tools, which can potentially integrate in one single process the optimization of powertrain design 

and subsequent definition of real-time effective and applicable control strategies, can definitely contribute to 

speeding-up technological growth of XEVs [20], and particularly of FCHVs [15]. Moreover, the definition of 

development procedures, which are versatile enough to be deployed on FCHV powertrains with different degree 

of hybridization, are nowadays considered as a key factor to promote market penetration of hydrogen fueled cars, 

always taking into account various aspects concerning both the FC systems and the batteries technology (e.g. 

costs, reliability and durability [21]). Bizon [22] previously contributed on the development of online applicable 

optimization strategies, which are suitable to account for the impact of different and unpredicted road-load and 

driving conditions. Hu et al. [23] in their study stressed the importance of accounting for both battery size and 

real-time applicable control strategy definition, when aiming at achieving comprehensive optimization of FCHV 

functioning from both fuel saving and system durability point of view. Nevertheless, it is very important, in order 

to ensure fully considering the mutual interactions between components sizing and optimal management of hybrid 

vehicles, to co-optimize powertrain design and energy management, as addressed by Zhao and Sciarretta and Guo 

et al. in [24] and [25], respectively.  

Following the above considerations on available state of the art, in the current work a mathematical tool is thus 

developed and applied to simultaneously accomplish optimal powertrain design and the definition of effective 

and reliable on-board applicable control strategies for light duty FCHVs. To authors knowledge, this is the first 

contribution aiming at co-optimized design and control of fuel-cell powered automotive systems. In the tool, a 

specification independent rule-based control strategy [26] is embedded, with the final aim of extending its 

applicability to a variety of powertrains and configurations [27], by means of suitable 

normalization/denormalization techniques. Indeed, such versatile and multi-purpose tools, based on extensive use 

of normalized models [28] and maps, can provide substantial contributions toward a greener transportation 

paradigm in many research fields [29]. 

The article is thus organized as follows: first, the basic equations, here utilized to assess mass impact of vehicle 

hybridization, as well as related traction power demand and hydrogen consumption, are briefly recalled. 

Afterwards, the specification independent control strategy is described, followed by the introduction of needed 

normalization and denormalization techniques to extend control strategies validity to other powertrain 

configurations. Subsequently, the available modeling and control tools are suitably integrated within a 

comprehensive optimization task, proved to be effective in co-optimizing the design and energy management of 

a variety of FCHV configurations. 
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2. METHODOLOGY 

A procedure for the sizing of a fuel cell hybrid vehicle has been developed, mainly aiming at pointing out and 

promoting an alternative solution to traditional vehicles able to reduce their environmental impact. Particularly, a 

mathematical tool implemented in Matlab/Simulink® environment is used to design FCHVs guaranteeing same 

acceleration performance of reference conventional passenger cars, as well as the definition of control strategies 

that are appropriate to adequately account for the interaction with installed nominal power of involved powertrain 

components.  

Figure 1 shows the FCHV architecture under analysis. The arrangement is a series hybrid configuration: the 

vehicle is driven only by the electric motor, while FC system supplies power, through the electric node (EN), both 

for battery recharging and vehicle traction. Figure 1 also illustrates the direction of energy flows: the battery (B) 

discharges and supplies energy to the electric motor (EM), which transforms the input energy from the electrical 

node (EN) into mechanical energy useful for the wheels. Whenever turned on, the electric fuel cell generator 

recharges the battery and might also directly provide electrical power to the wheels to ensure traction. As for the 

braking phase, the bottom scheme of Figure 1 highlights how regenerative braking is fruitfully enabled through 

the motor-wheels transmission, so as to recharge the battery, eventually in conjunction with the FCS whenever 

allowed by the adopted control strategy.  

 

Figure 1: Fuel cell powertrain schematic (series architecture). Main experimental and literature-derived efficiency maps also are included and 

suitably associated to the specific powertrain component, for which they are used to model corresponding power flows and energy consumption in 

the FCHV comprehensive modeling structure (see section 2.1). 
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Figure 2 shows the mathematical tool structure for FCHV modeling. Particularly, it receives a large number of 

input variables, as described below: 

• control variables, as provided by the proposed specifications independent control strategy for FCHV 

powertrains; 

• design specifications, which consists in the hybrid fuel cell electric vehicle architecture and resulting power 

demand at wheels; 

• exogenous variables, including unit masses and costs, feed-in-tariffs etc.; 

All these fields interact with each other in order to achieve desired vehicle performance, while coping with energy 

savings and emissions reduction targets, by suitably determining installed FCS power and battery, specific energy. 

The last two design variables are selected through a suitable constrained optimization algorithm, which was 

conceived in such a way as to enable full exploration of most relevant FCHV powertrain architectures (i.e. full 

hybrid, plugin and/or range extender). 

 

Figure 2: Structure of the mathematical tool here proposed and deployed to carry-out co-optimization analyses on FCHVs. 
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Specifically, the algorithm consists in a three-level cascade structure. Indeed, at the lower level performance 

parameters are calculated, including the fuel economy (FE), defined as the ratio between the traveled distance in 

the reference cycle and total fuel consumption (hydrogen in FCHV case): 











kg

km

m

L
FE

H 2


                                                                                                                                  (1) 

This parameter has to be maximized in such a way as to determine optimal nominal FCS power and battery 

specific energy values. The mathematical tool is used to this end: the algorithm consists of a series of FCHV 

devices sub-models suitably integrated within a comprehensive hybrid vehicle simulator. Particularly, vehicle 

devices sub-models reproduce hybrid vehicle behavior subject to a given driving cycle. Indeed, a mass model 

determines the mass of the vehicle itself and a longitudinal dynamics model evaluates the power to be supplied 

to the wheels, instant by instant, in order to complete the assigned driving path. The outcomes yielded as for  

model configuration contribute to the definition of a control strategy placed at the higher level (Specification 

Independency, see section 2.2). Particularly, the proposed management strategy is a thermostatic control based on 

heuristic rules [11], whose reliability and effectiveness were suitably verified against dynamic programming and 

genetic algorithm offline reference benchmarks [26]: FC system switches on intermittently and recharges the 

battery in such a way as to meet the traction demand. Finally, at the top level, the optimization algorithm 

determines the value of the above-introduced design variables, thus contributing to the FCHV energy management 

and system design: 

• FCS power (𝑃𝐹𝐶𝑆
∗ ); 

• Specific energy of the battery (Espec). 

These values are identified by solving a constrained minimization problem using a specific Matlab® resolution 

algorithm. The definition and resolution of this problem is the subject of section 3. 

This section is divided into two sub-sections. The first proposes an overview of the mathematical tool under 

analysis by focusing on the design variables that the proposed algorithm investigates and by explaining how the 

FCHV devices modeling is accomplished. The latter describes the control strategy proposed for the FCHV energy 

management, conceived aiming at directly determining the heuristic rules, to be applied to suitably split the power 

demand between involved power sources, as a function of the optimal design variables. 
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2.1 Mathematical models 

2.1.1 Mass model 

A parametric model was used to assess the impact of hybridization on vehicle mass. Indeed, as detailed in the 

next sections, it is necessary to characterize vehicle mass and dimensions in order to finalize and implement its 

energy management strategy. The mathematical tool is based on a reference vehicle equipped with a thermal 

engine, defined as "conventional vehicle" (CV). Starting from the specifications of Table 1, a mass model is 

derived, aiming at evaluating the mass and other characteristics of the hydrogen vehicle by replacing conventional 

vehicle components by the devices required for its effective operation.  

Table 1: Technical specifications of the reference conventional vehicle. 

 

 

 

 

 

 

 

 

 

 

By referring to the vehicle architecture shown in Figure 1, the mass of a FCHV (MFCHV) can be obtained by adding 

the mass of major hybridizing devices to the vehicle body mass (Mbody). This latter is derived from the mass of 

the reference conventional vehicle (MCV), by subtracting three contributions, due to the installed thermal engine, 

the original gear-box and the initial fuel tank, as follows: 

 
TGBICECVICECVbody

MmmPMM 
*

,                                                                                           (2) 

Then, the vehicle mass can be determined by adding the hybridization devices that need to be installed on the 

hybrid vehicle, namely the fuel cell system, electric motor, battery pack and hydrogen tank:  

HTBCBCEMEMFCFCSbodyFCHV
MNMmPmPMM 

**
                                                              (3) 

Where P* and m symbols correspond to nominal power and unit mass variables, respectively. Further details on 

value and meaning of each variable populating the right-hand side of Eq. (3) are retrievable from both paper 

nomenclature and Table 2. It is worth pointing out that hydrogen tank mass was estimated following the 

Lenght [m] 4.445 

Width [m] 1.77 

Height [m] 1.55 

Wheel radius [cm] 28 

Mass [kg] 1300 

ICE power [kW] 75 

MT [kg] 8 

Power to weight ratio (ρPtW) [kW/kg] 0.06 
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indications available in [30] and assuming a maximum driving range of 300 km, which conservatively 

corresponds to 3 kg of stored Hydrogen [17]. 

Table 2: Components unit specifications (i.e. masses and battery cell power) [10, 31]. 

mICE [kg∙kW-1] 2 

mGB [kg∙kW-1] 0.48 

mEM (mass of electric motor plus inverter) [kg∙kW-1] 1 

mFCS = [kg∙kW-1] 3.7 

MHT = [kg] 50 

PBC = single battery cell power  [W∙cell-1] 1250 

 

The number of battery cells (NBC) is determined as follows (see Table 2):  

*

**

BC

FCSEM

C
P

PP
N


                                                                                                                                  (4) 

It is finally worth remarking that a performance constraint shall be introduced, by imposing that the FCHV 

power to weight ratio (i.e. ρPtW) equals conventional vehicle one, thus ensuring FCHV guarantees the same CV 

acceleration performance: 

FCHV

EM

CV

ICE

PtW
M

P

M

P
**

                                                                                                                         (5) 

2.1.2 Longitudinal vehicle model 

The adopted model investigates the dynamic behaviour of a vehicle that travels in a straight line by applying the 

second law of dynamics: 

   

       

m res e

res g r a

dv
F t F t M

dt

F t F t F t F t


  


   

                                                                                                             (6) 

where Fm(t) is the driving force, Fres(t) is the resultant of the resisting forces that work against the motion and the 

last term of Eq. (6) represents the inertial action defined by the acceleration times the equivalent mass of the 

vehicle (Me). Particularly, Me equals HFCEV
M1.1 to suitably account for rotational inertia [10]. During the 

acceleration phase, a driving force will be required, greater than the resistant one, while the reverse occurs in 

deceleration. Traction power is then estimated as follows, by multiplying each term of the first equation in (6) by 

the instantaneous speed: 
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    3
cos sin 0.5

tr FCHV r x v e

dv
P M g v C C A v M v

dt
                                                                    (7) 

in which the different forces opposing the motion appear: weight force (Fg), rolling resistance (Fr), which is the 

frictional force opposing the rolling motion of the wheels, and aerodynamic resistance (Fa), which is the resistance 

opposed by air to the vehicle movement. Particularly, some of the variables depicted into Eq. (7) need to be 

clarified. MFCHV  represents the mass of the vehicle and, α is the slope angle of the road surface, 𝑣 is the actual 

speed of the vehicle and 𝐴v represents the frontal area calculated from the vehicle dimensions. Furthermore, 𝑔 is 

the gravitational acceleration, Cr represents the coefficient of rolling friction of the tires, ρ is the air density and 

𝐶𝑥 is the drag coefficient, whose values are included in Table 3. 

Table 3: Main  variables used in the battery model for traction power estimation. 

Cr [-] 0.01 

Cx [-] 0.33 

ρ [kg/m3] 1.18 

2.1.3 Battery model 

The operation of a hybrid technology is closely linked to storage batteries. A compromise between costs, mass 

and capacity of the accumulators need to be found in the design of the vehicle itself. In fact, the choice of the 

right battery technology is fundamental in the sizing of hybrid electric vehicles. Particularly, one of the main issue 

is the need to increase the battery capacity and, at the same time, decrease the overall vehicle weight, in such a 

way as to optimize the vehicles performances and extend their range autonomy. Obviously, it is also important to 

consider the economic aspect, so as to guarantee a non-excessive cost of the energy storage system. Furthermore, 

batteries lifetime and ageing phenomena are relevant aspects, which should always be taken into account when 

designing the battery system and, therefore, implementing a battery model. In fact, batteries are usually subject 

to different abuse conditions during their usage in EVs (e.g. temperature variations, humidity, vibrations, driving 

operating conditions etc.). Specifically, several factors may affect negatively their life cycle. For instance, multiple 

charge and discharge cycles undergoing during batteries operation, as well as deep discharge phases, may shorten 

battery lifetime, thus causing a possible premature failure or reducing their performances and durability. Hence, 

an appropriate control device should be integrated in the vehicle structure in such a way as to monitor critical 

parameters and ensure safe battery operation. The following design variables are used in the mathematical tool: 

• Specific energy [Wh/kg], which is calculated by comparing the energy that can be stored in the battery to its 

mass. Particularly, a high specific energy value allows to increase the energy that can be stored in a system, with 

the same mass, and consequently a greater autonomy is met; 
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• Specific power [W/kg], which is obtained by comparing the power that the accumulator is able to deliver to its 

mass. High discharge power ensures high driving performance. 

Specific energy and specific power are linked to each other through a particular chart, called Ragone plot. It 

consists in a plan used for performance comparison of various energy-storing devices; in fact, on such a chart the 

values of specific energy [Wh/kg] are plotted versus specific power [W/kg]. Both axes are logarithmic, which 

allows comparing performance of very different devices (i.e. extremely high and extremely low power). 

Specifically, lithium ion batteries are the most performing ones because they include a wider field of applicability 

and operation than the other types of accumulators, as shown on the right side of the green rectangle in Figure 1. 

In fact, Li-Ion batteries are used in the mathematical model for the hybrid traction; 

• Capacity [Wh], which represents the energy accumulated in the battery. Analytically it is the product of number 

of cells per capacity of the single cell; 

• Capacity [Ah], which is the amount of charge that a battery can deliver at a rated voltage. Particularly, it is 

defined as the product of the current intensity supplied for the time needed to completely discharge the battery to 

a definite current value. Analytically it is calculated as the ratio between the capacity of the single cell [Wh/cell] 

and the discharge voltage [V], fixed at a defined value; 

• State of charge (SOC), which is the percentage of residual energy stored in the batteries instant by instant, 

normalized with its total capacity [Ah]. Particularly, the mathematical tool can estimate its value following a 

specific physical model, which relies on Kirchhoff’s laws. Indeed, the battery system may be represented by an 

ideal open-circuit voltage generator in series with an internal resistance Rin, as shown on the left side of the green 

rectangle in Figure 1. Since OCV and Li-Ion internal resistance mathematically depends on the state of charge, 

the algorithm evaluates battery voltage (Vbatt) value by applying Kirchhoff’s laws to the equivalent circuit as 

follows, once the initial SOC value is known: 

IROCVV
inbatt

                                                                                                                                (8) 

Then, battery electric power is estimated by multiplying each term of (8) for the current variable, thus obtaining 

the following formula: 

2

batt batt in
P V I OCV I R I                                                                                                                 (9) 

Once battery power and initial SOC values are known, the battery model in real time usage is able to estimate the 

current value by solving Eq. (9) and, consequently, the SOC on the basis of the real electric power, whose value 

is positive for discharge phase and negative for the charge one. Particularly, the reference equation for battery 

SOC evaluation is given above: 
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                                                                                                       (10) 

where QTOT is the overall capacity of battery in Coulomb.  

• Number of cells, which is calculated through the following balance equation at the electric node of the vehicle 

with nominal powers: 

EMFCSB
PPP                                                                                                                                     (11) 

FCSEMBBCC
PPPPN                                                                                                                    (12) 

Where PEM is the power demand to be met by the electric motor, PBC is the nominal power of the battery single 

cell and PB is the battery stack power. Therefore, the number of cells is reduced when PFC increases, thus requiring 

a higher propulsion demand to the engine but also a lower capacity of the battery pack, that behaves as a buffer. 

2.1.4 Electric motor model 

The efficiency of the selected AC induction electric motor technology is computed by means of normalized maps 

derived from the model based library proposed in Rousseau [31]. Indeed, an energy balance at the electrical node 

allows evaluating, instant by instant, the electrical power arriving to the EM or departing from it and the respective 

mechanical power, supplied (motor behavior) or recovered (generator behavior for the battery). The analysis of 

the power balance at EN (see Eq. (11) in 2.1.3) clearly shows that the positive traction power shall be equal to the 

useful one of the electric motor; in fact, for non-negative Ptr values, the mechanical power to be supplied by the 

EM is (see Figure 1):  

tr

EM

tr

P
P


                                  if 0

tr
P                                                                                              (13) 

PEM  can also be expressed as a function of fuel cell system and battery power, as follows: 

 
BFSCEMEM

PPP                if 0
tr

P                                                                                           (14) 

On the other hand, when Ptr is negative, the regenerative braking mode is active, resulting in the following 

expression for the electrical energy delivered by the EM: 

trEMtrEM
PP                      if 0

tr
P                                                                                             (15) 

where the η variables correspond to efficiency terms. During regenerative braking, battery can be charged by the 

fuel cell system, thus the following equation holds for negative Ptr values: 

FCSEMB
PPP                           if 0

tr
P                                                                                            (16) 
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2.1.5 PEM fuel cell system efficiency model 

The general definition of FC system efficiency is the one resulting from the following formula, which considers 

the stack power and the one absorbed by auxiliaries, both function of the FC system power:  

2 2 2 2

*

stack aux FCS

FCS

H H H H

P P P

m HHV m HHV



 

 
                                                                                                                            (17) 

where 
2H

m represents the hydrogen flow [kg/s] required for the FC operation and HHVH2 is the higher heating 

value of hydrogen, equal to 141.9 MJ/kg. The FCS was modeled using a specific efficiency map, developed and 

presented in (see red rectangle in Figure 1) [10].   

 

2.2 Versatile specifications independent control strategy 

This section describes the control strategy used for the energy management of a hybrid fuel cell vehicle; 

particularly, it allows selecting the control variables in order to guarantee proper, highly efficient and GHG 

friendly FCHV driving. Indeed, at the highest level of the optimization algorithm the control strategy acts, thus 

allowing creating maps according to variables normalization/denormalization rules by using model data and 

optimal vehicle design outcomes (i.e. design variables and vehicle-adapted energy management strategies). 

2.2.1 Rules definition 

Hybrid vehicle energy management is determined through a rule-based algorithm, defined as "specifications 

independent control strategy", which follows the two heuristic rules proposed in [26] and then extended to fuel 

cell vehicles in [10], relying on thermostat-based management of FCS. Particularly, the vehicle normally starts 

in electric mode and keeps being powered this way until the battery state of charge status reaches a minimum 

threshold SOClo (i.e. charge-depleting phase, as shown in Figure 3). When this latter value is reached, the FCS 

is turned-on to supply power for both propulsion and battery pack recharging. As soon as the state of charge 

reaches the upper limit SOCup, the FCS is switched off and the vehicle gets back to electrical mode.  
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Figure 3: Qualitative description of typical thermostat-based management of FCS in FCHV powertrains.   

During this phase, an oscillation of the state of charge (dSOC) occurs around a fixed SOCf value, thus resulting 

in an overall charge sustaining management of the battery pack. Particularly, SOCf is usually set to 0.7 [32] for 

the light duty vehicle range (LDV), so as to guarantee, together with a proper choice of the oscillation window 

dSOC, a safe and efficient us of the battery pack. The described procedure continues until the end of the driving 

cycle. 

The control variables to be selected from the strategy are the two following ones: the instantaneous electric power 

provided by the FC system (PFCS,supply) and the dSOC (maximum allowable oscillation around targeted battery 

state of charge-SOC). The optimal values of PFCS,supply and dSOC are estimated online as functions of the average 

traction power demand: 

 
trplyFCS

PfP 
sup,                                                                                                               (18) 

 
tr

PgdSOC 
                                                                                                               (19) 

The selection of the optimized parameters is carried-out by identifying the minimum hydrogen mass consumed 

over an assigned timeframe, obtained by concatenating two consecutive time-windows, during which FCS is 

active and inactive, respectively. Indeed, by solving the following minimization problem over an extended range 

of average traction-power demand, it is possible to find the optimal f and g functions: 

 
,sup , 2 ,sup

min ,
FCS ply FC OFFP t H FCS ply FCS OFF

m P t dt
 

                                                           (20) 

Subject to the constraint: 

fSOCendSOC )(                                                                                                       (21) 
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Solving the above minimization problem corresponds to identifying the best engine intermittency (i.e. ΔtFCS-OFF, 

which is the time interval, during which FCS is kept off) and the power level at which the fuel cell system should 

work for a given average traction power demand 𝑃𝑡𝑟
̅̅ ̅̅ . This latter variable is estimated, exploiting the increasing 

reliability of a-priori speed prediction-based methods [33], over an assigned timeframe [26], here set to th=10 min 

as shown in Figure 4. 

 

Figure 4: schematic representation of the proposed SOC indirect determination from the optimal SOC trajectory, for an assigned 𝑃𝑡𝑟

̅̅ ̅ 
value (see Eqs. 

19-20). 

As a result of the optimization strategy, the battery state of charge is linear (see Figure 4). In fact, after a certain 

value of required traction power is set, the fuel cell system charges the battery by delivering a specific power for 

a certain period of time. Then, the charge sustaining procedure ensures a final SOC value not excessively reduced, 

thus avoiding an extreme discharge depth and, consequently, contributing not to compromise the useful life of the 

battery. The optimization algorithm yields on output two maps associated to Eqs. (18) and (19), as shown in 

Figure 5. They express the power that FCS shall supply and the dSOC drift to be realized before engine is turned 

off/on, depending on an average traction power required to the wheels. Particularly, in this study several maps 

pairs were obtained through the above described optimization, each corresponding to a different degree of 

hybridization (DH), defined as follows:  

*

* *

batt

FCS batt

P
DH

P P



                                                                                                                                 (22)                               

Specifically, this variable corresponds to the ratio between rated battery and electric motor power, which is defined 

as the sum of both fuel cell system and battery contributions. In fact, both energy sources contribute to drive the 

electric motor of the series vehicle, as the powertrain schematic of the implemented vehicle model clearly shows 

in Figure 1. Indeed, different FCHV specifications are assumed to derive the optimized rules maps for varying 
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nominal fuel cell system power, while keeping constant the power to weight ratio. Each optimized map is 

normalized, in such a way as to become potentially extendable to different degrees of hybridizationm, because 

variables standardization technique allows obtaining solutions that are congruent from the physical point of view 

for any choice of the variables to be optimized, even if they are of different orders of magnitude, as discussed 

later on. Specifically, y-axis normalization of the map relating to PFCS,supply is obtained as the ratio of Eq. (18) 

data divided by nominal fuel cell system power (see Eq. 23), whereas Eq. (24) is here proposed to account for the 

impact of larger/smaller battery size when extending a map optimized on different FCS power values: 

,sup

,sup , *

FCS ply

FCS ply norm

FCS

P
P

P
                                                                                                                          (23) 

   kWhCapdSOCdSOC BATTrefnorm  %                                                                                                    (24) 

It is worth noting that in Eq. (24) CapBATTref represents the battery capacity [kWh] of the powertrain, on which 

the optimization was performed. Thus, Eq. (24) allows introducing specification independency in optimal 

thermostatic management of FCHV, provided that rule extension is accomplished by appropriately rescaling the 

dSOCnorm with respect to new powertrain specifications. The latter aspect, which actually corresponds to the 

denormalization phase, is described in detail in the following (see section 2.2.2). 

 

Figure 5: Normalized maps of FCHV powertrain control variables [34]. 

 

For all vehicles, normalized fuel cell power exhibits a monotonic increase. This behavior could in principle appear 

unexpected, as commonly fuel cell systems work at best efficiency at relatively low power. Nevertheless, the fact 

that fuel cell system efficiency falls quite close to its optimal value, in a wide range [35], justifies the above-

noticed general load following behavior for fuel cell supply power map. Moreover, right-hand side plot in Figure 
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5 indicates that fuel cell power supply does not differ significantly at low traction power, whereas the discrepancy 

between one map and another becomes larger as 𝑃𝑡𝑟
̅̅ ̅̅  increases. This is mostly due to the normalization effect (see 

Eq. 23). More interesting, from the physical point of view, is the dSOCnorm map behavior, illustrated in the left 

side of Figure 5. Particularly, at low traction power the optimization algorithm proposes, independently from 

degree of hybridization, monotonically increasing behavior. This happens thanks to the sudden increase in fuel 

cell power supply in these conditions, as shown in the right-hand side graph, which particularly guarantees easily 

achieving charge sustaining behavior. Then, varying DH impact starts increasing beyond 𝑃𝑡𝑟
̅̅ ̅̅ =3 kW and continues 

up to significantly high 𝑃𝑡𝑟
̅̅ ̅̅  values. In fact, vehicles with a low degree of hybridization can afford working with 

higher dSOCnorm excursions, thanks to the higher power that can be supplied by the FC system. Then, after 𝑃𝑡𝑟
̅̅ ̅̅ =15 

kW the increasing trend reduces and the dSOCnorm sets on a plateau region. On the other hand, vehicles with 

higher degree of hybridization can afford an increasing dSOCnorm trend within a smaller 𝑃𝑡𝑟
̅̅ ̅̅  range, as well as with 

reduced slope (e.g. P*
FCS=40 kW). After reaching a maximum, for such powertrains it is necessary to reduce 

dSOCnorm excursions to meet charge-sustaining constraint (see Eq.18). The values of dSOCnorm for P*
FCS =20 kW, 

however, are very close to zero when 𝑃𝑡𝑟
̅̅ ̅̅  values are high (e.g. over 10 kW). This behavior leads to a physical non-

sense because the power given by the fuel cell system becomes lower than that required. As a result, the dSOCnorm 

slope is significantly reduced. In fact, urban/suburban driving are mostly characterized by 𝑃𝑡𝑟
̅̅ ̅̅  lower than 10 kW 

on average.  

2.2.2 Maps normalization and denormalization 

Once vehicle specifications are determined, extension of one of the optimal rules maps, presented and discussed 

in the previous section, firstly entails normalizing the x-axis, which represents traction power demand. X-axis 

normalization is accomplished according to Eq. (25), by dividing average traction power demand the reference 

FC power (P*
FCref), which assumes values between 20 and 60 kW as discussed above: 

, *

tr

tr norm

FCSref

P
P

P
                                                                                                                                      (25) 

Then, the respective denormalization can be obtained by simply multiplying the right hand side of Eq. (25) by the 

P*
FCS of the vehicle, which the map is extended to:  

*

*, FCS

FCSref

tr

denormtr
P

P

P
P                                                                                                                              (26) 

As for maps ordinates (see Figure 5), such values are denormalized by referring to the normalization definitions 

given above (see Eqs. 23 and 24): 

*

,sup ,sup ,FCS ply FCS ply norm FCS
P P P                                                                                                                     (27) 
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   

 kWhCap

kWhCapdSOC
dSOC

BATT

BATTref

denorm




%
                                                                                          (28) 

 

3. CO-OPTIMIZATION OF FCHV DESIGN AND CONTROL STRATEGIES  

This section describes the mathematical procedure, through which the scenario analysis of the powertrain and the 

FCHV design were conducted. Specifically, the optimization algorithm ensures that a series of solutions, which 

are parameterized for each value of the maximum recharge time of the battery (tmax), are attained by applying the 

appropriate initial conditions on the variables to be optimized. Indeed, a specific scenario can be defined for each 

tmax value, thus analyzing the FCHV behavior through the identification of a specific control strategy for each 

solution, as described below (see section 4). Particularly, once the system under examination and all its 

components have been defined, the constrained optimization problem has to be numerically solved in order to 

establish the best possible energy mix and the design associated with the vehicle's propulsion sources. The 

numerical resolution allows searching the global maximum of a defined mathematical function and, consequently, 

the optimal values of the nominal FCS power, as well as the battery specific energy of the battery: an appropriate 

objective function, which depends on the design variables, is thus defined. In this specific case study, the objective 

function corresponds to the fuel economy: 

* *
, ,

2

max max
FCS spec FCS specP E P E

H

L
FE

m
                                                                                                                        (29) 

Optimization deals with selecting, overall, the best option among a number of possible choices that are feasible 

and do not violate constraints. In fact, this optimization problem, defined by Eq. (29), has an objective that the 

algorithm attempts to maximize: fuel consumption has to be minimized, by modifying the two design variables 
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in accordance with specific constraints. Indeed, the variables values for the optimal solution are subject to an 

unilateral constraint condition on the battery charging time during post-driving (PD): 

maxarg, tt echPD                                                                                                                                        (30) 

where the maximum PD charging time of the battery (tmax) assumes the values of 100, 200 and 300 s in the 

analysis. Moreover, Eqs. (31) and (32) introduce both lower and upper bounds for the design variables, so that 

the optimal solution is found in accordance with the following ranges: 

 *
5,60               [kW] 

FCS
P                                                                                                                  (31) 

   
kg

Wh
         180,40 










spec
E                                                                                                                 (32) 

It is worth remarking that the inclusion of eq. (30) among all constraints is motivated by the interest towards 

exploring both pure- or mostly-hybrid configurations, i.e. capable of ensuring final state of charge as much 

close to the target SOCf as possible, as well as plugin or even range extender like configurations. Such a choice, 

beyond being motivated by the increasing awareness worldwide of the need of providing auto-makers with the 

most versatile simulation tools, so as to reliably verify cost effectiveness of different FCHV solutions and 

configurations, also enables the assessment of the opportunities linked to range extender like sizing strategies 

[36]. Figure 6 shows a qualitative example of the described numerical procedure, obtained from the resolution 

of the optimization problem. Particularly, the battery SOC trend in time is illustrated. It is assumed that the 

vehicle under examination travels along a certain driving path with a fixed length (L) and the time required to 

complete the cycle is called tdrive. The path along which the optimization takes place is obtained from the union 

of 10 ECE15-EUDC cycles, 11700 s long. Each cycle consists of four urban cycles where the peak speed 

reaches 50 km/h and an extra-urban cycle with a maximum speed of 120 km/h. The optimization algorithm 

verifies the final value of the battery state of charge at the end of the driving cycle: if SOCf value is lower than 

the reference one, equal to 0.7, it is possible to recharge the battery in post-driving phase. With this respect, is 

worth remarking that the objective function to minimize is calculated as the length of the driving path, 

expressed in km, divided by the hydrogen consumption, which is not evaluated simply as the fuel mass depleted 

during the cycle. In fact, the denominator variable of fuel economy is calculated as the sum of the hydrogen 
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mass used to complete the reference driving path (mdrive) and the hydrogen consumption linked to battery 

recharge during post-driving (mcharge): 

echdriveH
mmm

arg2
                                                                                                                             (33) 

 

Figure 6: Physical meaning of the PD battery charging time. 

Battery state of charge initially keeps close to the targeted value final (i.e. 0.7), then it drops considerably before 

the end of the driving cycle. Soon after vehicle stops, the battery is fully recharged at constant FCS power. 

Particularly, SOC value at the end of the cycle decreases as the maximum recharge time increases: if charging 

time is longer, battery does not need to be recharged excessively during the cycle, since the achievement of the 

reference SOC will be reached off-line when the vehicle has stopped after the driving cycle.  

The effective charging time of the battery (tPD,charge) is defined as the ratio between the energy needed to recharge 

the battery (Echarge) and corresponding power that the fuel cell system shall provide (Pcharge) for this recharging 

process, as expressed in the following formula: 

arg

, arg

, arg

3600       [s]
ch e

PD ch e

FCS ch e

E
t

P
                                                                                                          (34) 

Where both Echarge and Pcharge are calculated according to the optimal values of the two optimized variables (PFCS
* 

and Espec) obtained from the problem resolution. Specifically, Echarge is calculated as follows: 

 
[Wh]     1000

7.0
arg





Batt

Battf

ech

CapSOC
E


                                                                                     (35) 
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where SOCf is the final state of charge value of the battery at the end of the cycle, CapBatt is battery capacity in 

kWh, 𝜂̅BATT is battery average efficiency (here assumed equal to 0.97). On the other hand, Eq. (36) is here proposed 

to express the charging power definition: 

*

, arg
0.45 1000         [W]

FCS ch e FCS
P P                                                                                                     (36) 

Therefore, the power at which the battery is charged corresponds to a percentage of FCS power, which identifies 

its maximum efficiency operating condition (see Figure 1). 

 

4. RESULTS AND APPLICATION-ORIENTED OUTCOMES 

The powertrain design performed through the optimization algorithm determines the optimal values of the 

above introduced 𝑃𝐹𝐶𝑆
∗  and Espec variables, by solving a two degrees of freedom constrained problem. The 

objective function to be maximized is the fuel economy, as described in section 3, and is subject to different 

initial conditions. Therefore, considering the constraint introduced via Eq. (30), a double parametric analysis is 

accomplished: the former examines the influence of initial conditions on design and performance variables, 

whereas the latter studies the change in the solutions resulting from relaxing the constraint on post-driving 

battery charging time (see Eq. 34). Moreover, the influence of versatile control rules selection was assessed. As 

shown in Figure 5, 5 pairs of normalized control maps are available. A previous study [34] indicated the maps 

developed assuming FCS nominal power of 20 and 30 kW as the most energy-effective ones. Therefore, the 

optimization task was repeated twice, one per each pair of normalized control maps embedded in the overall 

optimization framework sketched in Figure 7, as underlined in Table 4. Particularly, Figure 7 aims at providing 

a general overview of the proposed co-optimization algorithm. Starting from the assigned initial conditions, an 

iterative process based on the Matlab® fmicon tool is initiated towards convergence to the cost function 

minimum. In parallel, the versatile rule-based energy management strategy is continuously adapted to current 

design variables, in such a way as to directly embed, in the current driving cycle simulation, the control maps 

that are candidate to be optimal for the configuration under investigation. Afterwards, the resulting outcomes, 

both in terms of design (i.e. 𝑃𝐹𝐶𝑆
∗  and Espec) and operating (i.e. tPD,charge) variables are verified against assigned 

cost-function and constraints (see section 3). Upon successful assessment, the optimization task can be safely 

terminated; associated outcomes will thus be recorded as the solution of the set co-optimization task, aimed at 

determining vehicle best configuration and related real-time applicable control strategies. 
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Table 4: Main assumptions and input data considered in the two optimization tasks run in the presented research activity. 

 

The outcomes of the Figure 7 accomplished optimization tasks, as yielded on output by the above-introduced 

co-optimization algorithm when applied to the new European driving cycle (NEDC), are synthesized and deeply 

analyzed in Figure 8 through Figure 11. It is worth remarking that a series of 10 NEDC driving mission was 

assumed, in such a way as to test a realistic case where hybrid vehicles are definitely more useful than pure 

electric ones, i.e. when requested distance range is high. 

The comparison between the two adopted normalized maps, illustrated in Figure 8, highlights how the one 

developed with reference to a 20 kW FCS (see section) always outperforms the 30 kW one in terms of fuel 

economy (see Figure 8a). This happens either considering the best case or the value averaged on all the initial 

conditions pairs listed in the fourth column of Table 4. Such an outcome can be explained considering that a 

larger FCS tend towards a more full-power like fuel cell vehicle configuration, thus being capable of meeting 

the highest acceleration request mostly with the fuel cell system, as confirmed by Figure 11b. This will 

inevitably sacrifice the higher FCS efficiency guaranteed by plugin or range extender like configurations [36]. 

Another positive feature of the 20 kW-derived normalized map, also emerging from Figure 8, resides in the 

lower sensitivity of both best case and averaged solutions to the change in tmax, whereas the relaxation of 

tPD,charge constraint (see Eq.34) has a more evident impact when the 30kW-derived map is adopted. A further 

aspect, to be underlined when analyzing Figure 8c and Figure 8d, is linked to the extremely low values of 

battery capacity and Espec yielded on output in all analyzed scenarios. Such a result is strictly related to the 

specific high-power battery technology considered in this paper [31]. Sticking to the high-power region of the 

Ragone plot (see Figure 2) enables the optimization procedure to limit vehicle mass increase due to 

hybridization. This occurs while moving towards highly electrified (i.e. high degree of hybridization) solutions, 

as also confirmed by the ordinate values of Figure 10c. Figure 8b shows indeed that, despite the expected 

increase in 𝑃𝐹𝐶𝑆
∗  resulting from strengthening the tPD,charge constraint, yet the installed optimal 𝑃𝐹𝐶𝑆

∗  keeps 

relatively low. The latter comments are surely specific of assumed hypotheses on battery technology; 

OPTIMIZATION 

TASK 

P*FCS,ref of normalized 

control maps 
tmax 

Initial conditions Number of 

optimization 

analyses 
PFCS*,0 Espec,0 

1 20 [kW] 100 [s]                                                                           

200 [s]                                                                             

300 [s] 

8.5          

9           

9.5        

10 

65           

85          

105       

125 

48 

2 30 [kW] 48 
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nevertheless, the discussed physical meaning of optimal solutions confirms the effectiveness and reliability of 

the proposed design procedure. 

 

Figure 7: Flow-diagram illustrating the logic and  main input to outcomes paths characterizing the proposed 

model-based co-optimization tool for real-world effective design of FCHV powertrains. 
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Focusing on Figure 8b and Figure 8c, two opposite trends characterize the variation of the two design variables 

as a function of assigned maximum tPD,charge. To better appreciate the consequences of these trends in terms of 

design guidelines, Figure 9 shows all the configurations yielded by the co-optimization tool in case 1 of  

Table 4, thus allowing concentrating the analysis on the most effective normalized versatile control strategy. As 

expected, smaller tmax values cause 𝑃𝐹𝐶𝑆
∗  to increase significantly (i.e. to double in the specific case dealt with in 

this paper) and battery capacity to shrink appreciably, thus allowing fully meeting the post-driving charging 

constraint. Such a behavior actually consists in moving from a plug-in-like configuration towards a more hybrid 

one, as limiting or even eliminating the opportunity of completing battery re-charging in post-driving means 

that the battery itself has to be designed as an energy buffer.  

Figure 10 shows the relationship between a key simulated variable, i.e. the final SOC achieved at the end of the 

driving phase (SOCf), and both design (𝑃𝐹𝐶𝑆
∗  and DH) and operating (i.e. effective tPD, charge) variables. As 

expected, the more charge sustaining the strategy (i.e. the higher the SOCf), the higher the installed FCS power 

(Figure 10a) and the lower the tPD,charge (Figure 10b) and DH (Figure 10c). Therefore, recalling the trend shown 

in Figure 9, the shift towards the lower 𝑃𝐹𝐶𝑆
∗  and the higher battery capacity, induced by the explored range of 

tmax values, suggests the designer to work on the progressive transition from a hybrid to a more electric 

configuration, with a consequent increase in the degree of hybridization. 

Finally, Figure 11 shows the time trajectories of the main powertrain variables, namely battery SOC (Figure 

11a) FCS power contribution (Figure 11b) and vehicle power demand (Figure 11c). As mentioned above, the 

powertrain configuration determined in case of stringent tPD,charge constraint is able to supply a larger 

contribution by the FCS, especially in correspondence of most significant vehicle accelerations (see Figure 

11c). Such an aspect, together with the tendency of the control strategy to increase FCS contribution at the very 

end of the cycle (see Figure 11b), demonstrates the successfulness of combining a-priori estimation of vehicle 

power demand at the wheels with the proposed versatile rule-based energy management. Such a strategy indeed 

allows fully exploiting available installed power, especially in case of the more hybrid solution (i.e. the one 

obtained setting tmax=100 seconds), with the aim of reducing as much as possible the post driving charging 

phase duration and successfully meet all constraints introduced in section 3. As for the fuel economy, it is clear 

from Figure 11a and Figure 11b that the more plugin solutions (i.e. corresponding to tmax=200 s and 300 s) tend 

to let the FCS work for a longer time as compared to the more hybrid one. From Figure 11a, it particularly 

emerges that such an energy management strategy allows increasing the operating time in which the FCS work 

close to the maximum efficiency point, even at the end of the driving cycle, where the need of bringing the SOC 

as close as possible to the desired value (i.e. 0.7) is more relevant. On the other hand, in case of the more hybrid 

configuration the minimum FCS power (around 4 kW, one fourth of 𝑃𝐹𝐶𝑆
∗ ) is farther from the maximum 



   25 

efficiency point as compared to the other best cases. This aspect, which explains the lower fuel economy of 

more hybrid powertrain configurations, should be assessed in conjunction with the fact that the 𝑃𝐹𝐶𝑆
∗  value is 

obtained only in case of more plugin configurations. The fact that the maximum power is never exploited by the 

more hybrid solution indicates that the optimal configuration satisfies the performance constraint introduced in 

the mass model (see Eq. 3), but it is not capable of finding the best trade-off with battery-related added mass 

limitation. Such a trade-off is instead perfectly met by the plugin-like configurations. This is a relevant finding, 

to be carefully accounted for by FCHV developers during preliminary design of such innovative powertrains. 

Another positive feature of the more plugin configurations emerges from Figure 11a: SOC derivative in 

charging mode is always smoother than the more hybrid solution, thus ensuring better battery energy 

management from the lifetime viewpoint. It is finally worth remarking that the optimization algorithm (see 

Figure 7) yields on output vehicle configurations of similar overall mass in the three analyzed best cases, as it 

emrges from the comparion of power demand trajectories in Figure 11c. 

 

 

 

Figure 8: Average (over the entire set of initial conditions explored (see  

Table 4) and Best FE values of main optimized variables: a) Fuel economy [km/kg], b) Fuel cell system power [kW], c) Battery capacity [kWh], d) 

Battery specific energy [Wh/kg]. It is worth remarking that   
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Figure 9: Results related to optimization of the versatile strategy for P*
FCref 20 kW and for the three different limit values set for the battery charging 

time. 
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Figure 10: Main control strategies outcomes related to battery final state of charge: a) Optimal fuel cell power [kW], b) Post-driving battery 

charging time [s], c) Degree of hybridization [/]. Optimization outcomes populating the graphs a-c refer to the optimization task 1 in  

Table 4 

 

 

Figure 11: Main time trajectories yielded on output by the simulation of the best case resulting from the optimization task 1 of  

Table 
4

: SOC (a), FCS power supply (b), FCHV power demand (c).
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5. CONCLUSIONS 

A mathematical procedure for the co-optimization of the design and energy management of fuel cell hybrid 

vehicles was developed and tested on a number of design criteria. Initially, a predefined path travelled by the 

FCHV was selected and two main variables, that is the FCS power and battery specific energy, were identified. 

These variables values were obtained by maximizing the hydrogen fuel economy, a performance parameter 

optimized through a suitable mathematical algorithm, whose development and subsequent assembling activities 

represent major contributions of current article. Various computational models (i.e. mass model, longitudinal 

model, battery model, electric motor and FCS models) were used in such a way as to simulate the main FCHV 

devices behavior. In parallel, a specification independent rule-based control strategy was implemented to 

determine the vehicle energy management that matches the FCHV design under investigation. Particularly, an 

intelligent thermostatic control approach (e.g. intermittent operation of the FCS) guided by heuristic rules was 

initially used. Then, different normalized maps were created. The optimization algorithm used both the 

component models and the specification independent control strategy, the latter adapted to current powertrain 

configuration under investigation through suited denormalization of control rules. This way, final outcomes of 

the optimization consisted not only in determining the optimal values of FCS installed power and battery 

specific energy, but also in defining the final control policy to be subsequently implemented on-board. 

Particularly, the procedure was proven effective in accounting for the impact of battery typology (i.e. high-

power and high-energy) on fuel economy depending on the working characteristics of selected fuel cell 

technology (i.e. PEM). Moreover, it was proven suitable to adapt the solution to different control policies, i.e. 

charge depleting vs. charge sustaining. Particularly, higher post-driving charging time, which was assumed 

possible to stimulate the procedure in exploring plugin like configurations potentialities, are expected in the CS 

approach, whereas the CD strategy is characterized by reduced charging periods. Indeed, each scenario offers 

the possibility of implementing a charge-depleting or charge-sustaining strategy: it is always up to the designer 

to decide how to realize the interaction between the energy sources in the FCHV. However, the charge-depleting 

strategy is more useful with powertrain characterized by the highest hybridization level (i.e. plugin), whereas 

the charge-sustaining is more suitable for a configuration with a lower DH (i.e. hybrid). Hence, when the 

constraint on the maximum tPD,charge is stricter, the optimization algorithm is oriented towards solutions that are 

less plugin type. On the contrary, a softer constraint directs the optimization outcomes towards more range-

extender (or plugin) configurations, with a consequent preference for a charge-depleting control strategy. 

After discussing the procedure and analyzing the obtained solutions, it is worth remarking that it is possible to 

choose between multiple powertrain configurations that guarantee high performance for the vehicle. Indeed, the 

optimization algorithm has been conceived considering that the design mostly influences the choice of a 
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solution rather than another. However, this decision could be guided more effectively by resorting to clustering 

techniques and compaction of the scattered data, in order to direct the designer towards the choice of a single 

configuration that meets the design constraints and ensures high performance. Additionally, since there is a 

functional dependence between the masses and the powers of the FCHV components, FE results also influence 

the other control variables necessary for energy management of the vehicle. In fact, the proposed optimization 

procedure has allowed to decouple sizing and control problems, thus enhancing a potential comparison with 

different types of powertrain (e.g. HEVs, FCHVs, BEVs, PHEVs), even in case of different battery or fuel cell 

technologies. The adoption of the above described algorithm is thus expected to significantly contribute towards 

the resolution of other problematic issues related to the design of fuel cell hybrid vehicles. For instance, the 

operating parameters of the control strategy could be modified, (e.g. the times of intervention of the fuel cell 

during the vehicle travel), in such a way as to follow, as much as possible, the instantaneous power demand at 

the wheels. Furthermore, an economic analysis could be carried out, thus allowing the possibility of choosing 

one component rather than another on the basis of technological and production costs, with the same nominal 

power. Other future tests are aimed to improve results and, above all, obtain solutions that guarantee the highest 

possible vehicle autonomy.  

Vehicle models and control strategy were assembled through a modular approach, thus leaving room for 

subsequent update and/or upgrade of proposed optimization and control approaches and architectures. 

Moreover, the cost-function was initially defined aiming at guaranteeing the most efficient functioning of 

selected battery and fuel cell technologies. Nevertheless future applications can include the addition of further 

technologies (e.g. both relating to primary propulsion system, e.g. advanced internal combustion engines and 

solid oxide fuel cells, as well all hybridizing devices, e.g. less expensive batteries, supercapacitors etc.), as well 

as the analysis of other factors (i.e. components degradation and aging). Therefore, the cost function can be 

improved and extended in such a way as to extend the validity and applicability of the proposed tool to an 

extended range of candidate powertrains (hybrid vehicles, solar hybrid cars, pure electric powertrains and so on) 

and final applications (i.e. not only light duty vehicles, but also buses and heavy duty tracks).   
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BEV 

CD 

CS 

CV 

DH 

EM 

EN 

EU 

FC 

FCEV 

FCHV 

FCS 

GB 

GHG 

H2 

HEV 

HT 

ICE 

LDV 

Li-ion 

NEDC 

OCV 

OEM 

PD 

SOC 

XEV 

Battery Electric Vehicle 

Charge Depleting 

Charge Sustaining 

Conventional Vehicle 

Degree of Hybridization 

Electric Motor 

Electric Node 

European Union 

Fuel Cell 

Fuel Cell Electric Vehicle 

Fuel Cell Electric Vehicle 

Fuel Cell System 

Gear box 

Greenhouse Gas 

Hydrogen 

Hybrid Electric Vehicle 

Hydrogen Tank 

Internal Combustion Engine 

Light Duty Vehicle 

Lithium-Ion 

New European Driving Cycle 

Open Circuit Voltage 

Original Equipment Manufacturer 

Post-driving 

State of charge 

Hybrid and Electric Vehicle 

  

Roman symbols  

Av 

Cap 

Cr 

Cx 

Vehicle frontal area, (m2) 

Capacity, (Wh) 

Coefficient of rolling friction, (-) 

Drag coefficient, (-) 
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Echarge 

Espec 

Fa 

FE 

Fg 

Fm 

Fr 

Fres 

g 

I 

L 

Mbody 

MCV 

Me 

mEM 

mFCS 

MFCHV 

mGB 

MHT 

mICE 

NBC 

Paux 

PB 

Pbatt
* 

PBC 

PBC
* 

PEM 

PEM
* 

PFCS 

PFCS
* 

PFCS,charge 

PICE
* 

Battery recharge energy, (Wh) 

Specific energy of the battery, (Wh/kg) 

Aerodynamic resistance, (kg·m/s2) 

Fuel Economy, (km/kg) 

Weight force, (N) 

Driving force, (N) 

Rolling resistance, (N) 

Resisting force, (N) 

Gravitational acceleration, (m/s2) 

Electric current intensity, (A) 

Length of vehicle path, (m) 

Vehicle body mass, (kg) 

Conventional vehicle mass, (kg) 

Equivalent mass, (kg) 

Electric motor mass, (kg) 

Fuel cell system mass, (kg) 

FCHV mass, (kg) 

Gear box mass, (kg) 

Hydrogen tank mass, (kg) 

Internal combustion engine mass, (kg) 

Number of battery cells, (-) 

Auxiliaries power, (W) 

Battery pack power, (W) 

Battery nominal power, (W) 

Single battery cell power, (W) 

Single battery cell nominal power, (W) 

Electric motor power, (W) 

Electric motor nominal power, (W) 

Fuel cell system power, (W) 

Fuel cell system nominal power, (W) 

Fuel cell system recharge power, (W) 

Internal combustion engine nominal power, (W) 



   32 

Pstack 

Ptr 

QTOT 

Rin 

tdrive 

th 

tmax 

tPD,charge 

v 

V 

Battery stack power, (W) 

Traction power, (W) 

Battery overall capacity, (C) 

Internal resistance, (Ω) 

Driving time, (s) 

Time horizon, (s) 

Maximum battery recharge time, (s) 

Battery charging time, (s) 

Vehicle speed, (m/s) 

Voltage, (V) 

  

Greek symbols  

ρair 

ρPtW 

ηBatt 

ηEM 

ηtr 

Air density, (kg/m3) 

Power to weight ratio, (W/kg) 

Battery efficiency, (-) 

Electric motor efficiency, (-) 

Traction efficiency, (-) 

  

Subscripts  

aux 

Batt 

BC 

Denorm 

f 

lo 

Norm 

Ref 

Up 

Auxiliaries 

Battery 

Battery Cell 

Denormalized 

Final 

Lower 

normalized 

reference 

upper 
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