Stress-driven two-phase integral elasticity for torsion of nano-beams
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ABSTRACT

Size-dependent structural behavior of nano-beams under torsion is investigated by two-phase integral elasticity.
An effective torsional model is proposed by convexly combining the purely nonlocal integral stress-driven re-
lation with a local phase. Unlike Eringen's strain-driven mixture, the projected model does not exhibit singular
behaviors and leads to well-posed elastostatic problems in all cases of technical interest. The new theory is
illustrated by studying torsional responses of cantilever and doubly-clamped nano-beams under simple loading
conditions. Specifically, the integral convolution of the two-phase mixture is done by considering the special bi-
exponential kernel. With this choice, the stress-driven two-phase model is shown to be equivalent to a differ-
ential problem equipped with higher-order constitutive boundary conditions. Exact solutions are established and
comparisons with pertinent results obtained by the Eringen strain-driven two-phase mixture and by the strain
gradient theory of elasticity are carried out. The outcomes could be useful for the design and optimization of
nano-devices and provide new benchmarks for numerical analyses.

1. Introduction

Elastic torsion of cylindrical bars is a classical problem of the theory
of elasticity [1]. Notwithstanding this, such a topic is still of interest in
literature [2-5]. It is known that the theory of local elasticity is not able
to captiré scale phenomena in nano-striuctures [6,7]. Experimental
evidences demonstrate that size effects become dominant by deereasing
the structural scales [8,9].

Carbon nanotubes and graphene sheets are extensively employed in
Nanotechnology to fabricate modern Nano-Electro-Mechanieal Systems
(NEMS). Design of nano-sensors amd nano-actuators can be con-
veniently carried out by resorting to Continuum Mechanies [10-15].
Sometimes, micro-torsional tests are needed to assess constitutive
parameiers.

A variety of gradient theories of elasticity based on strain-driven
nonlocal models are employed in literature to examine the size de-
pendent torsional behavior of nanc-structures including the Eringen
differential law of elasticity [16-26], Eringen's differential law of visco-
elasticity [27], strain gradient theory [25-30], modified couple stress
theory [31-33], enhanced Eringen model [34], unified gradient elas-
ticity theory [35,36] and Eringen strain-driven two-phase integral
elasticity [37].
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In the strain-driven purely nonlocal integral model, introduced by
Eringen [35], the functional dependence of the stress tensor on the
elastic strain field, as the source field, is described by an integral con-
volution and a smoothing positive-decaying kemel dependent on a
characteristic length parameter, To study size-effects in nano-struc-
tures, the strain-driven integral convolution (equipped with the special
averaging kemnel proposed by Helmholtz) has been improperly and
extensively assumed in literature to be equivalent to a differential re-
lation. While in unbounded structural domains the strain-driven purely
nonlocal integral law can be substituted with a suitable differential
relation due to the tacit fulfillment of vanishing constitutive boundary
conditions at infinity, for nonlocal structural problems involving
bounded domains such constitutive boundary conditions are in contrast
with equilibrium requirements [39]. The strain-driven integral model
cannot thus be adopted to investigate bounded continuous nano-
structures due to the fact that the corresponding elastostatic problem
admits no solution in all cases of engineering interest [39-41].

The nonlocal differential formulation can lead to inconsistent results
regarding flexural and torsional behaviors of nano-beams of applicative
interest [39,40]. Specifically, the differential law associated with
Eringen's strain-driven purely nonlocal model for torsional analysis
provides local structural responses if either uniformly torsional loads
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[34] or only concentrated torques are applied [37]. Unlike Eringen's
differential model, in some structural problems, the strain gradient
theory of elasticity [42-44] can be used to capture scale effects.

A ground-breaking stress-driven purely nonlocal integral model has
been recently proposed by G. Romano and R. Barremta [45,46] to
overcome all the inconsistencies of strain-driven formulations. The
stress-driven model provides a mathematically and mechanically con-
sistent approach to study nano-structures. Such a theory has been
successfully adopted to investigate free transverse and longitudinal wi-
brations of Bernoulli-Euler nano-beams [47,45] and nano-beams under
torsion [49). Exact solutions of stress-driven inflected functionally
graded nano-beams have been recently established in Ref. [50].

An alternative constitutive strategy to the Eringen nonlocal integral
theory is in considering a two-phase mixture defined by a convex
combination of local and nonlocal contributions. The usual assumption
in literature consists in modeling the nonlocal fraction by means of
Eringen’s strain-driven integral convolution [51-60].

Yet, as shown in Ref. [39], Eringen's strain-driven mixture for
bounded structures is only a partial constitutive remedy to the in-
applicable Eringen's strain-driven purely nonlocal model, Indeed, in the
limit of a vanishing local fraction a singular behavior emerges, and
consequently, the structural ill-posedness of Eringen’s purely nonlocal
theory is not completely eliminated.

An advantageous two-phase stress-driven constitutive mixture has
been recently envisaged by Barretta et al. [61] to investigate the flex-
ural problem of functionally graded nano-beams, Such a nonlocal ap-
proach is introduced by a convex combination of local and nonlocal
phases wherein the nonlocal fraction is based on the well-posed stress-
driven model [46].

Motivation of the present study is in formulating a stress-driven
local/nonlocal two-phase mixture for nano-beams under torsion, ex-
tending the treatment in Ref. [49] conceived in the special context of
the purely nonlocal theory of elasticity. The plan is the following.
Torsional elastic mode] based on Eringen strain-driven local/nonlocal
two-phase mixture is preliminarily recalled in Sect.2. The corre-
sponding equivalent differential problem equipped with higher-order
constifutive boundary conditions is also presented. The new stress-
driven two-phase mixture model is illustrated in Sect.3. For comparison
sake, the strain gradient theory of elasticity for nano-beams under
torsion is formulated by making recourse to Hellinger-Reissner varia-
tional principle in Sect.4. The new stress-driven model presented in
Sect.3 is adopted in Sect.5 in order to establish exact solutions of can-
tilever and doubly-clamped nano-beams under uniformly distributed
torsional couples.

2, Eringen strain-driven mixture of elasticity

A cireular nano-beam of length L with cross-section =, subjected toa
distribution of torsional couples per unit length m, in the interval [0, L]
and concentrated couples M; is considered, as schematically depicted in
Fig. 1. The abscissa along the nano-beam axis will be denoted by x and
the pair of Cartesian axes (y, ) belongs to the cross-section, originated

at the center 0.

Cartesian components of the displacement field u,, uy, u,, up to an
inessential rigid body motion, of a nano-beam under torsion are given
by

e =0, uy=-0(x)z, u=00x)y (1)

where 8 denotes the cross-sectional torsional rotation function. Shear
stress vector T, shear strain vector ¥, position vector r and rotation
tensor R, respectively, write as

[zh o[ o) o fi 3] »

where the vector Rr is the 7/2 counterclockwise rotated of the position
vecior T,

The ensuing non-vanishing kinematically compatible strain field is
expressed by
¥ = Rexy, (3
where x, = d/dx is the torsional curvature.

Differential and classical boundary conditions of equilibrium write
as [62].

?E +m =0
(M, + M)861,., = (M, — M)30|,., =0 (4
with the twisting moment M, provided by

M, = wRrdA
J?- (5]
‘The symbaol “+" stands for inner product between vectors and J is the
polar moment of inertia about the center of the circular cross-section

J= sridd
Jg f (6)

Eringen’s strain-driven integral mixture is introduced as a convex
combination of local and nonlocal phases [63,64]. According to this
model, the torsional nonlocal elastic law for nano-beams provides the
twisting moment M, in terms of the torsional curvature y and the
elastic torsional stiffness K as

M) = aKig, () + (=) [ plx = {. LK )k @

where 0 < & < 1 represenis the phase parameter. The purely nonlocal
constitutive model can be recovered by setting @ = 0 and the local law
corresponds toa = 1.

The scalar averaging kernel ¢ is a space weight function fulfilling
symmetry, positivity and limit impulsivity properties [45,46]. Fur-
thermore, the elastic torsional stiffness is given by

Ey= [f p(rerda
7 ®

with g shear modulus. The special bi-exponential law, proposed by

FIG. 1
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Helmholtz, is a well-known choice for the averaging kernel ¢ [39].

=) .

where [ = ;L is the characteristic length, expressing the amplitude of
the range of nonlocal action, along with g, being a material constant. It
can be shown that the aforementioned Eringen’s strain-driven mixture
model Eq. (7) employing the bi-exponential kernel Eq. (9) is equivalent
to the subsequent mixture Eringen differential model [39,65],

&M, (x) & (x)
i TE = kae - ak = (10)

equipped with the homogeneous constitutive boundary conditions, at
x=0andx= L, as

LM () —

B _ LM(0) = ak, B2 — Lok (0)
E‘%:—'-! + EM{L] = HKIJ%%-] Eﬁx:.l'. (L) [11)

Eringen's purely nonlocal strain-driven integral model and the
equivalent differential and constitutive boundary conditions, are re-
spectively recovered from Eq. (7) and Eqgs. (10) and (11] setting the
phase parameter o = 0. Nevertheless, since the elastostatic problem
associated with such a model admits no solution for bounded con-
tinuous nano-beams, consequently, the Eringen strain-driven mixture
model leads to an ill-posed structural problem as the phase parameter
a = 0 [40,46].

3. Stress-driven mixture of elasticity

Founded on the innovative nonlocal stress-driven integral law in-
troduced by G. Romano and R. Barretta [45,46], an effective stress-
driven integral mixture has been recently proposed by Barretia et al.
[51] for inflected Bernoulli-Euler nano-beams. Analogously, torsion of
nano-beams can be studied by assuming that the torsional curvature y,
is provided by the following stress-driven two-phase law

M;(x}) ﬁ}f olx - ¢, 1)) M:(()

{X}'W—'l'(l

e (12)
where the twisting moment M, fulfils the equilibrlm condition Eq. (4)
and 0 < & < 1 is the mixture parameter, As the stress-driven purely
nonlocal integral model corresponds to o = 0, the local constitutive law
can be recovered by setting & = 1. Employing the Helmholtz bi-ex-
ponential kermel Eqg. (9), it may be shown that the abovementioned
stress-driven mixture is equivalent to the subsequent second-order dif-
ferential equation

%) 1 Mx) d’* M;(x)
!3 o TR K Cad K [13)

supplemented with the constitutive boundary conditions, at x = 0 and
x= [, as

X () -

dg(0) 1 a dM(0) & M)
& 9% T TL K
dell) 1 _ o dM(L} o ML)
x AP e Lk (14)

While the Eringen strain-driven mixture exhibits a singular behavior
when the local part vanishes [39], the proposed stress-driven mixture
Eq. (12) does not lead to inconsistencies.

4. Strain gradient model of elasticity

To compare the results of the two-phase constitutive integral models
with the counterpart results of the classical strain gradient theory of

I© 2018, This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

elasticity, size-dependent torsion of nano-beams is formulated wvia
Hellinger-Reissner variational principle [66].
Hellinger-Reissner's functional M is introduced as

n= [ [MWJ“ + MYZE _mo - [m}”f + tfm*"}]]

)i

- MoE (15)
where the fields M™, M are defined as the dual mathematical objects
of the elastic torsional curvature and of its derivative
¥ = 36idx, ¥V = #8/3x?, respectively. The nano-beam is also as.
sumed to be subjected to distributed torsional couples m;, and in ad-
dition, I; is a length-scale parameter.

‘While the torsional rotation of cross-sections & and the fields
M™, M™ are selected as the primary variables subject to variation,
performing the first-order variation of the Hellinger-Reissner func-
tional, followed by integration by parts, we get

1
o= [ [mm @,M_““]+Mu(ﬂ-m_]
_ an™ JFM,‘ !
i
+ M“-’ﬁaﬁ[
(18]

Imposing stationarity of the Hellinger-Reissner functional, differ-
ential and boundary conditions of strain gradient nano-beams under
torsion take the form

in
o
(1] (i}
(m“h"’—;’i— - E]saL =(mm—ﬁ,,- - E]mL =0
L
M,‘“aﬂ L.n - h{r[l}ﬂﬂ =0
(M%) ( “‘} =) (17

The governing equations can be further simplified introducing the
twisting moment field by M, = M™ — aM"/éx and assuming arbitrary
variations of torsional curvatures
% + m = 0
(M; + M)861,., = (M; = M)58|,., =0
M0y =M"L)=0 (18)

As it is expected from the Hellinger-Reissner stationary variational
principle, the desired constitutive relations cast as ordinary differential
equations and the static fields M;, M[™, M{", respectively, are given by

8 &

- 0 _ ] - 2
te K‘ - MY =Ko, M K’[ =% ax’)éx (19)

In the present study the stress-driven mixture model is utilized to
derive exact solutions for torsional analysis of nano-beams and the re-
sults are then compared with the Eringen strain-driven mixture model
as well as the classical strain gradient theory of elasticity.

5. Case studies, exact torsional solutions and comparisons

The size-dependent nonlocal models illustrated in the previous
sections are here adopted to examine the torsional behavior of cant-
lever and doubly-clamped nano-beams of length L subjected to a uni-
form distribution /, of couples per unit length. Hereafter, the acronyms
CC and CF stand for clamp-clamp and clamp-free kinematic boundary
conditions.
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The acronyms MEIM, M5DM and SGT denote the mixture Eringen
strain-driven integral model, the mixture stress-driven integral model
and the strain gradient theory of elasticity.

The differential conditions of equilibrium, Eq. (4); or Eq. (18),, can
be integrated to get an explicit expression of the twisting moment M,.
Accordingly, for a uniform distribution , of couples, twisting moment
is determined in terms of an integration constant T, as

M(x) = =Fx + 1 (200

As a result of substituting Eq. (20) in Eringen's differential mixture
model Eq. (10) and employing the differential condition of kinematic
compatibility, the governing equation for elastic torsional rotation
function writes as

6(x) _ 1
e L { x4+ 1j) @n

equipped with the constitutive boundary conditions Eq. (11)

- = 1% = aK 30 - Lak, 2 (0)

=y + LML + %) = ak, 25(L) + Lok, 2 (1) 22)
The general solution of Eq. (21) is expressed by

Bum () = Yo + I V& w[-rf,:][-n + T;up[ﬁg]]

(r‘x f] (23)
where the 4 unknown constants (1, 15, o, ) can be determined ap-
plying the two constitutive boundary conditions Eq. (22) and the two
classical boundary conditions given in Eq. (4)z or Eq. (18)2. The kine-
matic boundary conditions for doubly-clamped and cantilever nano-
beams are expressed by 8(0) = (L) = 0 and 8(0) = M. (L) = 0, respec-
tively, Therefore, the elastic torsional rotations according to Eringen's
strain-driven mixture for doubly-clamped and cantilever nano-beams
are given by

Eﬁm(xlsm{m“& .:.,a:ﬂh L ][H' xlx(m

J‘slnhg,;'-f—*)
L L-—32x
+iu—1]L{L+2H(—mhﬁ +mh&'ﬁ ]
CF(x) = .. [ - x)x[ 2/ cosh -
Bk (%) m{hinﬂgf.;*{ﬂ*"ﬂfi] (2L J( [

+ {x + 1)sinh E_f-'i)

+4(a ~ 1l sinhﬁ[—l,{mh:: =X 4 Jasinh 2=X)

L=x L L
=2 zinh T (xﬁﬁ)ﬁh T sinh Fr }]]

(24)

Introducing the expression of the twisting moment Eq. (20) in the
stress-driven integral mixture model and employing the differential
condition of kinematic compatibility, the governing equation on the
elastic torsional rotation is given by

© 2018, This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
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1d8(x) _ d%00x) _ x4+ %
E e o 12K, (25)

equipped with the constitutive boundary conditions Eg. (14)

ral) = =% + (g0 - 1m) (26)
The general solution to Eg, (25) is given by

i = Iy Fea

Busou () = nw( Yo +'ﬁﬂplr]+ %x - Dixt) -

Once more, the unknown constants (1, . T, Yy} can be determined
applying the two constitutive boundary conditions Eq. (26) and the two

classical boundary conditions given in Eq. (4)z or Eq. (18)z Applying
the classical boundary conditions for doubly-clamped and cantilever
nano-beams, the elastic torsional rotations associated with the stress-
driven mixture for CC and CF are provided by

Brison (x) = %[I[L- x)x + (L o+ 2 — 1}[.@%‘ E m:'f](-l
o)
Biison () = [m' ~ x4 L@ - D-LepT + @+ LepT)(

-1+ en)]
(28)
As expected, the elastic torsional rotations associated with the

stress—driven purely nonlocal integral model can be recovered by set-
ting a = 0 as

B = &2 - 0xs €+t (-enF 4 p (14 em])]
= 210 -0e+ o - r o)1+ ow )]

(29)

where the elastic torsional rotations of doubly-clamped nano-beam
corresponding to the stress—driven purely nonlocal integral model 655,
are in full agreement with the results introduced by Barretta et al, [49].

Finally, substitution of the twisting moment Eqg. (20) in the con-
stitutive relation of the total, twisting moment field Eq. (19) leads to the
governing equation on the torsional rotation associated with the clas-
sical strain gradient theory of elasticity as

(300
equipped with the hlghemrder natural boundary conditions Eq. (18]

K,.[l - E%]E = =fx+ 1

K} E“‘} Kl {L] @1
The general solution of Eq. (30) may be written as

(- )

oot enen)o
o 1

(32)

Due to applying a uniform distribution %, of couples, the general
solution of the torsional rotation of nano-beams for both the stress-
driven mixture and the strain gradient theory of elasticity are the same
provided that the gradient length-scale parameter I, is substituted with
the characteristic length [.. Nevertheless, such an assumption is only
feasible for positive values of the characteristic length L. Indeed, while
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in the classical strain gradient theory it is possible to set the gradient
length-scale parameter [, = 0, the stress-driven mixture, equipped with
the bi-exponential kernel Eq. (9), is not defined when the characteristic
length is vanishing. Only a limit evaluation as L. tends to zero is per-
missible.

Yet again, the unknown constants (1, 1, ;. ¥y} can be determined
imposing the two higher-order natural boundary conditions Eq. (31)
and the two classical boundary conditions given in Eq. (4)3 or Eq. (18]
Imposing the kinematic boundary conditions for doubly clamped and
cantilever nano-beams, the elastic torsional rotations corresponding to
the strain gradient theory of elasticity are expressed by

855 (x) = [{L x]-x+1!,’{ 1+msh‘3----sech )]

85F (x) = ﬂt[(zt.-x}xuif( l+msh5'-u’—’mhu]] -

where the elastic torsional rotations of doubly-clamped nano-beam
associated with the strain gradient theory of elasticity 855 are in full
agreement with the results established in Ref. [49].

The following dimensionless characteristic parameter 4 = I/L is
adopted here, in which the characteristic parameters of sirain gradient
theory and of nonlocal integral mixtures are assumed to be coincident
and denoted by L. Such an assumption is only feasible for positive values
of the characteristic length, due to the fact that nonlocal integral
models are characterized by a positive small-scale parameter.

Also, the dimensionless torsional rotation & is introduced in all of
the illustrative results

© 2018, This mamuscripd version is made avalable under the CC-BY-NC-NI 4.0 license,

fi(x) = ﬂixl (34)

Plots of the dimensionless maximum torsional rotations &, cor-
responding to the mixiure Eringen strain-driven imtegral model, mix-
ture stress-driven integral model and strain gradient theory of elasticity
for doubly-clamped and cantilever nano-beams are given in Figs. 2 and
3. As the characteristic parameter 4 is ranging in the interval ]0,0.1[, the
phase parameter @ is assumed to range in the set {0.01, 0.1, 0.5, 1}. It is
noticeably inferred from Figs. 2 and 3 that, for a given value of the
phase parameter o, while both the mixture stress-driven integral model
and strain gradient theory of elasticity exhibit a stiffening behavior on
rotation solutions in terms of the dimensionless characteristic para-
meter 4, the mixture Eringen strain-driven integral model reveals a
softening behavior. Nevertheless, the stiffening effect of the mixture
stress-driven integral model is more noticeable in comparison with the
one of the strain gradient theory of elasticity. Additionally, while the
phase parameter & has the effect of stiffening the structural response
obtained by Eringen's strain-driven mixture model, the stress-driven
model mixture reveals a softening behavior in terms of the phase
parameter. Both mixture models and strain gradient theory provide the
local elastic solution for vanishing dimensionless characteristic para-
meter 4 — 0, no matter what the value of the phase parameter o is.
However, discrepancy between the torsional results obtained by the
size-dependent models is enhanced by increasing the characteristic
parameter 4. As the phase parameter @ — 1, both mixture nonlocal
integral models coincide with the local model independently of the
value of 4. The stress-driven mixture tends to the corresponding stress-
driven purely nonlocal integral model for a vanishing phase parameter
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| rotations Sma of doubly clamped nang-beam versus the nonlocal parameter 1,

-
i ME MSDM BGT
o= 00l a=01 o =05 =l =001 a=01 o =05 =]
o* 0125 0.125 0.125 0125 0125 0.125 0125 0,125 0125
0.01 0.12959 D.12E487 0126404 0135 O1Z2476 0.1Z2ZF05 0123725 0125 01245
0.02 013436 0132111 0128046 0125 0.115852 012032 01224 0.125 01246
0.03 013931 OL135872 D.129657 01325 011713 0117845 0121035 0125 01241
0.04 014444 0139769 0131326 0.135 0.114308 011528 01196 0.125 01234
0.05 014975 0143604 0.133055 015 0111389 0.11 266 011813 0.125 01225
0.06 0.15524 0147975 0134841 0125 0108376 0. 109887 0.1 16604 0125 0.121402
o.o7 0, 16091 0152283 0136685 0125 0.1052481 010073 0.115041 0,125 0,120108
0.08 0. 16676 D567 0138586 0135 oaoz121 0104201 0113445 0125 0.11B6625
0.08 01739 0161308 0140541 0135 0.068918 0101289 0111827 0.125 0.116563
(6N | oare 01 66025 0142544 0125 0.095699 0098363 o.110201 0125 0115135
Table 2
o il | rotations Bpe of cantilever nano-beam versus the nonlocal parameter 1.
B
A MEIM MSDM 56T
= 0 =0l a=0.5 a=] = 0,01 =0l a=05 g=i
o* 05 05 0s 05 0.5 05 (5] 05 0.5
0.01 0509 0.506838 0.502929 05 049505 0.45955 04975 05 0.5
0.02 0518 0513675 0505858 05 04901 0,491 0,495 05 0.5
0.03 0.527 0520513 0.508787 05 0.48515 0.4865 0.4925 05 0.5
0.04 0536 0.527151 0511716 05 0.4802 0.482 049 05 0.5
0.05 0.545 0.534189 0.514645 05 0.47525 0.4775 0.4875 05 0.5
0.06 0554 0.541026 0517574 05 04703 0473 QL4855 05 0.5
o.o7 0563 0.547 854 0520503 05 046535 0.4685 04835 05 05
0.08 0.572 0.554702 052341 05 04604 0.464 048 05 0.5
0.09 0581 0.56154 0.52636 05 0.455451 0.459501 0.4775 05 0.5
0.1 059 0.568377 0.529289 05 0450502 0.455002 0475001 05 05

a =0 [45,46]. On the contrary, the parameter &« cannot vanish in
Eringen’s strain-driven mixture since the corresponding Eringen's
strain-driven purely nonlocal law leads to ill-posed structural problems
[40]. Analogous size-dependent phenomena have been also observed
for flexural analysis of Bernoulli-Euler nano-beams based on the stress-
driven mixture model [61]. As it can be interestingly deduced from
Fig. 3, for cantilever nanobeams, the maximum torsional rotations 8.,
based on the strain gradient theory of elasticity are independent of the
characteristic parameter A and coincide with the ones of the local
theory. While the demonstrated results in Fiz. 3 reveal some drawbacks
of the strain gradient theory, such drawbacks are absent in the results
associated with the stress-driven integral mixture model. The numerical
values of dimensionless maximum torsional rotations &,, evaluated by
Eringen strain-driven mixture model, stress-driven mixture theory and
strain gradient theory for doubly-clamped and cantilever nano-beams
are tabulated in Tables 1 and 2.

6. Conclusions

In the present study, torsional static behavior of elastic nano-beams
has been investigated utilizing two-phase constitutive mixtures, defined
by convex combination of local and nonlocal inputs, associated with the
strain-driven and stress-driven purely nonlocal laws. Firstly, the clas-
sical strain-driven mixture (MEIM) by Eringen [63] has been recalled.
Secondly, the stress-driven purely nonlocal law [46] has been exploited
w conceive an innovative mixture model (MSDM) for nano-beams
under torsion. Lastly, for comparison sake, the strain gradient model
(5GT) has been formulated by Hellinger-Reissner principle. Exact

© 2018, This manuscript version iz made available under the CC-BY-NC-ND 4.0 license,

torsional rotation solutions of doubly-clamped and cantilever nano-
beams, corresponding to MEIM, MSDM and SGT, have been also es-
tablished.

The main cutcomes of the present study can be enumerated as fol-
lows.

# Elastic torsional rotations, evaluated both by the stress-driven two-
phase model and the strain gradient theory, expose a stiffening be-
havior with respect to the scale parameter. On the contrary,
Eringen's strain-driven mixture model provides an elastic torsional
rotation increasing with the scale parameter,

® The stiffening effect of the stress-driven mixture model is more
noticeable in comparison with the one of the strain gradient theory
of elasticity.

® The mixture parameter has the effect of decreasing the elastic tor-
sional rotations obtained by Eringens strain-driven two-phase
model.

® The stress-driven two-phase model leads to elastic torsional rota-
tions which increase with the mixture parameter.

& Both the two-phase models and the strain gradient theory provide
the local response as the nonlocal parameter tends to zero, in-
dependently of the mixture parameter.

# As the mixture parameter tends to 1, both two-phase models provide
local structural responses independently of the nonlocal parameter.

® The stress-driven two-phase model tends to the corresponding well-
posed stress-driven purely nonlocal model for a vanishing mixture
parameter. On the contrary, for bounded beams, the mixture para-
meter cannot vanish in Eringen's strain-driven two-phase law since
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the ensuing purely nonlocal law leads to ill-posed elastic problems.
# The maximum torsional rotation of a cantilever nano-beam, eval-

uated by the strain gradient theory of elasticity, is independent of
the nonlocal parameter and coincides with the local one. Such a
result is not physically acceptable. The proposed stress-driven mix-
ture model does not present such drawbacks.

The contributed results could be also useful for the design and op-
timization of modern nanc-scaled devices, extensively employed in
Nano-Electro-Mechanical-Systems (NEMS).

Appendix A. Supplementary data

Supplementary data related to this article can be found at hitp://dx
dol.org/10.1016/j.compositesh. 2018.02.020.
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Fig. 1. Coordinate system and configuration of a nano-beam under torsion.
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Fig. 2. Doubly clamped nano-beam: dimensionless maximum torsional rotations Omax versus the characteristic parameter 4.
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Fig. 3. Cantilever nano-beam: dimensionless maximum torsional rotations &max versus the characteristic parameter 1.
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