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ABSTRACT

Size-dependent vibrational behavior of functionally graded (FG) Timoshenko nano-beams is investigated by
strain gradient and stress-driven nonlocal integral theories of elasticity, Hellinger-Reissner's variational principle
is preliminarily exploited to establish the equations governing the elastodynamic problem of FG strain gradient
Timoshenko nano-beams. Differential and boundary conditions of dynamical equilibrium of FG Timoshenko
nano-beams, with nonlocal behavior described by the stress-driven integral theory, are formulated. Free vi-
brational responses of simple structures of technical interest, associated with nonlocal stress-driven and strain
gradient strategies, are analytically evaluated and compared in detail. The stress-driven nonlocal model for FG
Timoshenko nano-beams provides an effective tool for dynamical analyses of stubby compaosite parts of Nano-

Electro-Mechanical Systems.

1. Intreduction

MNumerous researches have been carried out in recent years on size-
dependent mechanical models which are capable of capturing small
scale effects exhibited by nanostructures [1,2]. Scale phenomena are
described by introducing characteristic lengths in constitutive relations,
In the framework of gradient elasticity theory, the material response at
a point of a continuous structure depends not only on the classical
material fields, but also on their gradients [3]. Several size-dependent
models have been recently proposed in literature, such as unified gra-
dient elasticity [4-7], enhanced nonlocal formulation [2] and homo-
genization theories [9-14]. Based on Mindlin's strain gradient elasticity
[15], valuable contributions were provided by Aifantis in Ref. [16] and
advanced to second-order strain gradient materials by Polizzotto [17].
The classical (strain-driven) nonlocal theory of elasticity was proposed
by Eringen [18,19], in which the stress field is the integral convolution
between elastic deformation field and a positive-decaying averaging
kernel. For unbounded structural domains, Eringen's integral law,
equipped with Helmholtz's averaging kernel, can be considered
equivalent to a suitable differential equation, due to tacit fulfillment of
vanishing boundary conditions at infinity [20]. Equivalence does not
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hold for bounded domains, since suitable higher-order homogeneous
constitutive boundary conditions have to be prescribed. Accordingly,
for bounded nanostructures, Eringen's strain-driven integral convolu-
tion cannot be replaced with a differential constitutive eguation
[21,22). As illustrated in Ref. [23], the strain-driven purely nonlocal
elastic problems defined on bounded domains are ill-posed due to in-
compatibility between the higher-order constitutive boundary condi-
tions and equilibrium requirements. These difficulties can be overcome
by adopting the stress-driven nonlocal integral theory, recently in-
troduced by G. Romano and R. Barretta [24]. This new methodology
has been successfully applied to investigate flexural [25-27] and tor-
sional static behaviors [25,29] and transverse and longitudinal free
vibrations [30-32] of Bernoulli-Euler elastic nano-beams.

The metivation of the present study is in investigating size-depen-
dent free vibrations of Timoshenko FG nano-beams by using the stress-
driven nonlocal integral theory of elasticity. The plan is the following.
Essential relations concerning FG linearly elastic materials are pre-
liminarily ecollected in Secr2. The elastodynamic problems of
Timoshenko FG nano-beams, with strain gradient and nonlocal stress-
driven elastic behaviors, are formulated in Sect.3 and Sect.4 respec-
tively. An effective analytical solution procedure is illustrated in Sect.5
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to assess size-dependent dynamical response of FG Timoshenko elastic
nano-beams. The main outcomes of the present paper are summarized
in Sect.6.

2. Functionally graded materials

A functionally graded (FG) straight nano-beam of length L, with
rectangular cross section £2 of width b and height h is considered. Cross-
sectional principal axes of geometric inertia originating at the geo-
metric centre O are denoted by 7 and £, as depicted in Fig. 1.

The FG nano-beam is assumed to be made of two different elasti-
cally homogeneous materials with material densities g, p;, Euler-
Young moduli E, E;, Poisson ratio v, =w; =% and shear moduli
Gy = Eif2(1 + v) and G, = E./2{1 + v). Effective material properties of
the FG nano-beam, continuously varying across the bending direction
(thickness) £, are described by density g(%), Euler-Young modulus E(Z)
and shear modulus G{Z)= E(Z)/2{1 + ¥) according to the rule of
mixtures. Accordingly, density p(Z) and Euler-Young modulus E(Z) are
assumed to vary along the thickness according to the power-laws [33],

E(Z) = E + (B - E,}(; ¥ .:)"
P®=p+ 6= + ) 5

where the subscripts 1 and 2 designate constituents 1and 2. The power-
law exponent n is the non-negative parameter describing the material
variation through the nano-beam thickness.

It is known that for FG cross-sections, the position of the elastic
centré C, where the neutral axis passes through it, depends on the
material distribution of Euler-Young moduli. Due to varying the effec-
tive material properties, the elastic cenire does not coincide with the
geometric centre, but it is shifted from the geometric centre as

I E@)zdA
]

= rEmaa
[

(2)

Accordingly, in the new Cartesian reference systemat C, 2= £ = I¢
and y = ¥. For FG rectangular cross-sections, the position of the elastic
centre C is given by Ref. [34].

2 = — "B~ E)
22 + m)(E; + nEy) 3

Furthermore, determination of the bending stiffness and shear area
of FG Timoshenko nano-beams is useful in subsequent relations,
Bending stiffness [ is defined by the second moment of elastic area,
weighted with the scalar field of Euler-Young moduli, about the y axis
and is evaluated considering the bending abscissa z = § — - origi-
nating at the elastic centre C. Similarly, the shear area A is defined by
the elastic cross-sectional area weighted with the scalar field of shear
missduli

= [ E@zda,  Ac= [f 6@)da
o o (4)
Utilizing the effective Euler-Young modulus E(z) and shear modulus
G(z) introduced above, bending stiffness and shear area are given by
Ref. [34].

12E§ 4 ni(7 + mid + nyWAEy By + nigf)
(2 + AY03 + AMEY + nEy)

iy = misy
Ag =304 (5)

where Iy = bi'/12 is the second geometric moment of area of the cross-
section about the ¥-axis about the geometric centre and A = bh is the
cross-sectional area. Similarly, effective cross-sectional mass A, and
rotatory inertia I, can be determined employing the previously in-
troduced effective material density o(z)

Ig = Iy
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It is inferred from BEgs. {5) and (6) that as m — 0 and n — co, the
aforementioned material quantities approach the corresponding mate-
rial quantities of constituent 2 and 1, respectively. A detailed analysis of
elastic properties of FG rectangular cross-sections is provided in Ref.
[34]. Recent papers on mechanics of FG Bernoulli-Euler, Timoshenko
and higher-order shear deformable nano-beams can be found in Refs.
[35-45] [46-51], and [52,53] respectively.

3. Strain gradient theory of elasticity for FG Timoshenko
nanobeams

The elastodynamic problem of a FG Timoshenko nano-beam in the
framework of the strain gradient theory of elasticity is formulated by
making recourse to Hellinger-Reissner's variational principle [54]. The
triplet (x, ¥, z) of axes is chosen along the length, thickness and width of
the nano-beam, originating at the elastic centre, The plane of flexure is
described by the pair x-z. Moreover, the beam ends, located at x =0
and x = L, are restrained preventing any global rigid body motion, The
Cartesian components of the displacement field of a Timoshenko nano-
beam (. b, ) is expressed by

wo=—gplx, 1), w=0, wm=wixt) o

Where @ix, I) is the eross-sectional rotation in the x-z plane and w(x, 1)
is the transverse displacement at time . The associated non-zero com-
ponents of the strain field and of its derivative along the beam axis are
then given by

=z AP=-e+
Yo o P e B, P
=g =t e ®

Let M™ and M be the dual fields of the bending curvature dg/dx
and of its derivative along the beam axis 8%p/dx?, respectively. Also, °0
and Q' are defined as dual fields of the shear strain ' and of its
derivative along the beam axis y.', respectively.

Hellinger-Reissner's functional ™ is introduced as [51,54].

S 7 e s 2

L (q“”w + q‘"%)—i{m‘"ﬁ + ém‘”)’]

. 1om
WRAg ((me e f)]dx (9)
where g™ and g'! are correspondingly dual fields of the transverse
displacement w and of its derivative along the beam axis dw/dx [15,55].
Furthermore, |; designates gradient length-scale parameter introduced
to establish the significance of the first-order strain gradient field. Ti-
moshenko beam model also requires the introduction of a shear cor-
rection coefficient 5 accounting for non-uniform shear stress dis-
tribution through the thickness and depending on the cross-section
geometry and Poisson's ratio [56]. The elasticity solution of Saint-Ve-
nant's problem [57-62] can be employed to set forth the formulation of
shear correction coefficient.

While all of the displacement components and the stress resultants
are selected as the primary variables subject to variation, performing
the first-order variation of the aforementioned Hellinger-Reissner
functional, followed by integration by parts, yields'

! An shstract treatment of variational principles, in the framework of con-
tinuum thermodynamics, can be found in Ref, [63].
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FIG 1

s gL [-!Hm:' o ,mu[ﬂ-ﬁ)

tﬂm”‘(—po; -% -rﬂf“[-?#%-*—k%]
(- e ) o) 58 o
8 [qiw_-“f-’}mt s s _»)E . umag-g 3 [mw_#g'?)u[

(10)

To more simplify the first-order variatdon of the Hellinger-Reissner
functional, analogous to the definition of the stress for 3D continuous
bodies [15,55], flexural moment, shear force and distributed transverse
load are introduced as

am
M= M- 5 Q=0"-

aQ q=qm_ﬂ
a dx (11)

As a result, the differential and boundary conditions of equilibrium
of a strain gradient FG Timoshenko nano-beam may be determined by
prescribing stationarity of Hellinger-Reissner functional 8% = 0, while
assuming arbitrary variations of curvature and shear strain flelds

g e
w: 3 +a= AT
s 5 + Q=453

mw'x-n.t. =10,
MWy =0,

MEp|,py =0
O WVyegr =10 (1)

where the effective cross-sectional mass A, and rotatory inertia I, are
introduced in Eq. (6). Inertial forces in the dynamic form of the dif-
ferential equation Eq. (12}, are taken into by following d'Alembert idea
of adding correspondingly the imertial body force per unit length
{—A, &*w/dt%) to the distributed transverse load q and the inertial body
moment per unit length (I.6%p/dt*) 1o the shear force @ [64]. As it is
expected from the Hellinger-Reissner variational principle, the desired
constitutive equations cast as ordinary differential equations and flex-
ural moment shear force can be rewritten by virtue of Eq. (10] in the
following form

e 52 ) £(2) -0 2):

0= 09 -5 - 5ag(5 -0) - BAok (25 - )
=Bao(1-45)(E -7) (13

where bending stiffness Iy and shear area Ag are introduced in Eq. (5).

The governing differential equations of a strain gradient FG Ti-

maoshenko nano-beam can be determined in terms of the deflection and
rotation variables w and ¢ as

0 2018, This manwseripi version is made available under the CC-BY-NC-ND 4.0 license.

Rao(1- 2 5)(5 - £) va=a%

(1-¢ ’j)["fﬁ + B3 “*’)) =43 (14)

The set of differential and boundary conditions of equilibrium
governing static and dynamic flexural behaviors of FG Timoshenko
nano-beams in the framework of strain gradient theory of elasticity is
the same as the established boundary-value problem in the literature by
a formal application of Hamilton's principle [34,46,47].

However, in the case of Bernoulli-Euler beam theory ¢ = dw/dx and
thus ¥ = ¢ = 0. As a result, the governing differential and boundary
mnﬂ]uom cﬁ‘ equilibrium Eg. (12) degenerate to the cormresponding
boundary-value problem of a strain gradient FG Bernoulli-Euler nano-
beam, while assuming arbitrary variations of curvature

i Y e Ay
oo - g=n(1-0E)E - a= b i - A
- a =
Méw,|_o, =0, Mowl_,, =0

MOy = _rs{,‘:?.a"

(15)

4. Stress-driven nonlocal integral model of elasticity for FG
Timoshenko nanobeams

A straight beam under flexure with the same geometry, material
properties and coordinate system as introduced in the preceding section
is considered here, According to Timoshenko kinematics Eq. (7), cur-
vature x{x) and shear strain y(x) are related to the transverse dis-
placement wix) and the rotation of the cross-section p(x) by

do dw

In the innovative nonlocal integral theory by G. Romano and R.
Barretta [23,24], the nonlocal elastic strain field is got by convoluting
the stress field with an averaging kernel. For Timoshenko nano-beams,
elastic curvature x and shear strain fields y are introduced as outputs of
integral convolutions between the local elastic curvature Cp M and local
elastic shear strain Co) with an averaging kernel i dependent on a
nonlocal parameter 4 > 0 as

xix) = [ pix -y, ACeM(y)dy
yx) = [ $(x - 3. DCQU)dy (17)

with x =0 and x = [ beam ends abscissas ands M and Q designate
bending moment and shear foree interactions, respectively. Also, Cp and
Cy are the local elastic flexure and shear compliances defined by

Cs' = I, C5' = FAg (18)

where bending stiffness Iy and shear area Az are introduced in Eq. (5)
and F; is the shear correction coefficient [56]. Similar to Eringen's
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strain-driven nonlocal integral model, the scalar kernel ¢ fulfils the
properties of symmetry and limit impulsivity [23,24].

where §(x) is the Dirac distribution, corresponding to an unit impulse at
the origin.

For one-dimensional nonlocal integral formulations, Helmholtz's
special kernel is conveniently adapted [23,24].

o] I
v = enf-41) »
with I, nonlocal characteristic length defined by [, = AL, where L is the
nano-beam length.

The output of the set of special integral constitutive laws introduced
as Eq. (17) provides the unique set of solution of the constitutive dif-
ferential equation [65].

= (2 - S0)

m = KA (Lm h’m) (21)

if and only if the following homogeneous higher-order constitutive
boundary conditions, located at x = 0 and x = [, are satisfied

Z(0) - —'x{m =0, S+ Exm =0

T - fro) = T+

1 —

:.‘r"{ﬂ =0 (22)
According to the PG Timoshenko beam model, differential and

classical boundary conditions of dynamic equilibrium to be enforced

write ag

ﬂw.f +q=A,'%,':
s+ Q=153
stlj:-lll. ='u- Mﬁﬂ;.u =0 EZS:I

where the effective cross-sectional mass A, and rotatory inertia [, are
introduced in Eq. (6). Enforcement of the differential conditions of ki-
nematic compatibility Egq. (16) provides the dynamic differential
equation governing flexure of FG Timoshenko nano-beams in terms of
deflection and rotation fields w and ¢ as

i B D)3 1
(4 -25)(e 2 + Bao(E - 0)) = 537 -

It can be inferred from Eq. (24) that the set of differential equations
governing FG Timoshenko nano-beams for both the stress-driven non-
local integral model and the strain gradient theory of elasticity are the
same provided that the gradient length-scale parameter |, is replaced
with the nonlocal characteristic length .. Such an assumption is feasible
only for positive values of the nonlocal characteristic length [, Indeed,
while in the strain gradient theory it is possible to set the gradient
length-scale parameter [ =0, the stress-driven nonlocal model
equipped with the bi-exponential kemnel Eq. (20) is not defined when
the characteristic length is vanishing. Only a limit evaluation as [, tends
to zero is permissible.

Nevertheless, there exist profound differences in the assumptions
between the stress-driven nonlocal integral model and strain gradient
theory. The strain gradient theory of elasticity is fundamentally estab-
lished on the postulate that the material response at a point is depen-
dent not only on the local strain, but also on the strain gradients of
various order, up to a value characterizing the non-simplicity grade of
the material and the expected extent of physics to be captured [16,17].
However, in the stress-driven fully nonlocal theory the elastic strain
field is presumed to be an integral convelution of the stress field in the
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continuum. Furthermore, while the differential equation stemming
from the stress-driven nonlocal approach is identical to the one exposed
in the context of a strain-gradient model of elasticity (for positive
characteristic parameters), the required higher-order boundary condi-
tions are completely different.

Once more, in the case of Bernoulli-Euler beam theory ¢ = dw/dx
and thus ¥ = 0. Consequently, the constitutive differential equation Eq.
(21)y and constitutive boundary conditions Eq. (22}, degenerate to the
corresponding constitutive boundary-value problem of FG Bernoulli-
Euler nano-beams, provided that the elastic curvature is substituted by
x = Fwidxd,

5. Free vibration analysis

The differences in free vibration analysis associated with the stress.
driven nonlocal integral model and the strain gradient theory of elas-
ticity are illustrated through the examination of vibrating nano-beam
problem with the Timoshenko kinematics. The differential conditions of
dynamic equilibrium, Eq. (14) or Eq. (24), can be also uncoupled em-
ploying some straightforward mathematics. To get the uncoupled dif-
ferential equation for the rotation @, the second equation of dynamic
equilibrium, Eq. (14)5 or Eq. (24}, should be first solved for transverse
displacement w in terms of the rotation and its higher-order derivatives.
Differentiating first equation of dynamic equilibrium, Eq. (14); or Eq.
(24, with respect to x and then substituting from the resulted equation
for transverse displacement w, on rearranging terms, the desired un-
coupled differential equation for the rotation ¢ can be olvtained. Fol-
lowing the similar mathematical procedure for transverse displacement
w, the uncoupled differential conditions of dynamic equilibrium are

obtained
s [(1;‘%)%:) (- 25 ) (- 4%) - v
:-et"][ —I”“]i’;p) %445 (*’*m.;};:-;:] sty

(25)

where [ is a positive characteristic length, | = |; gradient length-scale
parameter and [ = [ > 0 nonlocal characteristic length, in the frame-
work of strain gradient theory of elasticity and siress-driven nonlocal
integral model, respectively.

For free vibration analyses, the applied distributed loading terms
vanish. Also, natural frequencies and mode shapes of vibrations may be
determined with the aid of separation of spatial and time variables as
[B6].

wix, 1) = W(x)expliot), Flx, 1) = P(x)expliot) (26)

withi = =1 and = is the natural frequency of vibrations. Substitution
of the aforementioned separation of variables into the goveming
equation (25) leads to the same governing equation for either flexural
deflection base function W(x) or rotation base functions *(x) as

dt o2 Aulg
(- )| (- () (e + 4ot - |
LA,
£ T =0
* B 27)

where T{x) may be replaced with either base functions W (x) or @(x).
The analytical solution of the preceding equation governing the spatial
base functions can be expressed by

L] B
Wix)= Y Wi exp(Gx). ®x)= Y o exp(Gx)
Em] Emi [23}

where B, &, (k = 1..8) are unknown constants needed to be determined
by suitable boundary conditions, along with § that are the roots of the

The final version ofthis manuscripd is available in COMPOSITES. PART B, ENGINEERING, DOI: 10, 10067 composilesh 301 8.07.036



following characteristic equation

B o Vo[ Rk ] : 2
[F.-;Acm! A,.]m +[ E‘Aﬂ-}fp +IA.,)n.-’§'

_pf Al — OPL LA =
+[:L- o g w}nﬁ]c* Qg =0

However, the unknown constants W, $(k = 1.8) are not in-
dependent and can be related to each other employing Eq. (14)4 or Eq.
(247, by virtue of Eqs. (26) and (28) as

Aot
L P L -
[ﬂ G + &Aﬂ]“i DG - P (30)

To numerically assess the fundamental natural frequency of
Timoshenko nano-beam, four different set of boundary conditions in-
cluding simply-supported, clamped-simply supported, doubly-clamped
and cantilever are considered. For each set of boundary conditions, a
homogeneous algebraic system in terms of the unknown constants
Wik = 1.£) can be found by employing the abovementioned boundary
conditions in the solution form of the spatial base function as Eq. (28],
It is known that to obtain a non-trivial solution, the system of algebraic
equations should be singular, and consequently, the determinant of the
coefficients of the homogeneous algebraic system should vanish. As a
result, this solution procedure leads to the highly nonlinear character-
istic equation for each set of boundary conditdons in terms of the fun-
damental natural frequency that should be numerically solved.

Also for consistency, in all of the illustrative results, the subsequent
dimensionless fundamental natural frequency @ is introduced

= ot P
ot = wtl &, a1

Pricr to performing the parametrie study of free vibration analysis
of FG Timoshenko nano-beams, the fundamental natural frequency of
an elastically homogeneous Bernoulli-Euler nmanc-beam is examined.
The vibration results for Bernoulli-Euler nano-beams based on the
stress-driven nonlocal invegral model, recently contributed by Apuzzo
et al. [30], are recovered as a special case. The effect of rotatory inertia
is ignored in the results contributed by Apuzzo et al. [30] but examined
in the present study according to Eq. (15). As a result, the fundamental
natural frequency is determined in terms of both the dimensionless
nonlocal parameter A and the aspect ratio L'k of Bernoulli-Euler nano-
beamm.
The effects of the nano-beam aspect ratio L/h on the dimensionless
fundamental natural frequency of elastically homogeneous Bernoulli-
Euler nano-beams associated with the strain gradient theory of elasti-
city (SGT) and the stress-driven nonlocal integral model (SDM) are
provided in Figs. 2-5 for simply-supported, clamped-simply supported,
doubly-clamped and cantilever boundary conditions, respectively,
While the aspect ratio L/h is assumed to range in the set {10,20, cof, the
dimensionless characteristic parameter A is ranging in the interval
Jo.e1[. In all illustrative examples, the acronyms 88, €S8, CC and CF
stand for simply-supported, clamped-simply supported, doubly-
clamped and cantilever, respectively. As it can be observed from
Figs. 2-5, for large aspect ratio L/h there is slight difference between
the results of Apuzzo et al, [30] and that which includes rotatory in-
ertia. However, for stubby nano-beams, the rotatory inertia effects can
be significant. Also, while the fundamental natural frequencies of Ber-
noulli-Euler nano-beams with 55, G5 and CC ends underestimate the
counterpart results of Apuzzo et al. [30], the fundamental natural fre-
quencies of nano-beams with CF ends overestimate them. Numerical
evaluations of dimensionless fundamental natural frequency o (d)
evaluated by the stress-driven nonlocal integral model and the strain
gradient theory of elasticity are tabulated in Tables 1-4 for simply-
supported, clamped-simply supported, doubly-clamped and cantilever
boundary conditions, respectively.

0 3015, This manuscript version is made available under the OC-BY-MNC-MND 4.0 license.

FIG. 2

FIG. 3

FIG. 4

In Figs, 6-9, the effect of the aspect ratio L/h on the dimensionless
fundamental natural frequency @ is demonstrated for 55, C5, CC and CF
boundary conditions, respectively. The power-law exponent, elastic
modulus ratio, material density ratio and dimensionless characteristic
parameter are set to ben = 1, BJ/E = 1/4, pofp, = 1/2 and 4 = (L1, As
demonstrated in Figs. 6-9, dimensionless fundamental natural fre-
quencies according to the strain gradient theory of elasticity (SGT)
underestimate the counterpart results based on the stress-driven
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FIG. 5

Table 1
Fundamental natural frequency of a simply supported isotrople Bernoulli-Enler
namo-beam versus the characteristic parameter 4.

-

i Lik =10 Lih=20 Apuzo et al, [20]
S0 5GT SDM SGT DM SGT

o* Q9.82937 9.82927 G.85947 9.85047 9. 8666 D.BE0G
0.01 983402 983352 9.56424 986414 SET438 ETIZE
0.02 Q.84787 2.2471 GETAI4 QBTG 9. 88829 9_BETS]
0.03 957022 SBETE] 900055 9B 991072 90811
0.04 B.90042 98947 093084 9.9Z468 9.94105 Q93487
0.05 9.93783 9.9259 G.06837 9.95641 S.9TEG1 9060664
0.06 998183 99614 10,0125 9.9%501 10,0228 10,0023
0.o7 10,0318 99997 100,626 10,0004 10,0729 10,0407
0.08 100871 10,0358 101181 10,0707 10,1285 10,0811
0.09 10,1472 10.081 101784 10112 10,1868 10,1224
0.1 102115 10,123 102420 10.1535 10.2534 101630

Table 2

Fundamental natural frequency of a clamped-simply supported sotropic
Bernoulli-Euler nano-beam versus the characteristic parameter 4.

-
A Lik =10 Lih =20 Apuzzo et al. [30]
S0 SGT SDM SGT SO 5GT
o* 15,3448 15,3445 153997 153997 154182 15.4182
0.01 155104 15.3649 155665 1542 15.5854 15.4385
0.02 157016 15,4229 157589 154783 15,7781 154969
0.03 159176 15.5151 159761 15571 15.9958 15.5897
0.04 16.1574 156383 162172 15,6947 16.2373 15.7137
0.05 16.4199 15.7893 164811 15.6465 16,5016 15.8657
0.06 167038 15,9651 16.T664 16,0232 16,7874 16.0427
o.07 170076 16,1631 17076 6,222 17,0831 162419
0.08 173298 16.3805 173954 164405 17.4174 164606
0.08 176689 16,6149 17.736 16,676 17.7586 16,6965
0.1 160235 166641 180921 16,9264 18.1152 16,9473

nonlocal integral model (SDM) for both Timoshenko beam model (TM)
and Bernoulli-Euler beam model (BEM). Moreover, difference between
Timoshenko and Bernoulli-Euler nano-beam model tend to vanish for
increasing values of the aspect ratio L/h. Numerical evaluations of di-
mensionless fundamental natural frequency ar(L/h) associated with the
stress-driven nonlocal integral model and the strain gradient theory of
elasticity are tabulated in Table 5 for 55, CS, CC and CF boundary
conditions, respectively.
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Table 3
Fundamental natural frequency of a doubly clamped isotropic Bemoulli-Euler
nanc-beam versus the characteristic parameter A,

o

4 Lih = 10 Lih = 30 Apuazzo ef al. [30]
sDM 6T sDM SGT SD 86T

" 22,2594 13594 22.3447 223447 22733 223733
0.0 22,7334 23126 22,8221 22.3581 228518 224268
0.2 23.2mm 214657 23.3622 22,5521 23,9932 225812
0.03 23,8697 227111 23.9654 227989 239976 22 E284
0.04 24,5316 30424 246308 2301219 246443 31619
0.05 25,2541 X454 2535732 23.5454 253918 23.5762
0.06 26,0346 119408 26,1415 24.0845 261775 24006
0.07 26,87 24,498 26,9808 245943 270181 24,6266
008  27.7564 12 278713 2522 279099 252532
0.09 28,6899 25805 2B.8085 25907 28,8489 259412
LN 20,6662 26,5456 20,7894 26.6508 198309 26,6861

Table 4

Fundamental natural frequency of a cantilever isotropic Bernoulli-Euler nano-
beam versus the characteristic parameter 1.

w
4 Lik=10 Lih =20 Apazzo et al, [30]
SO 5GT S0 SGT sDM SGT
o* asizy 35177 3.51633 351633 351602 351602
0o 3.55281 51808 3.55185 351713 3.55153 3.51682
.02 358905 B5HME 258806 351949 35ETTI 351918
0.03 3.63597 150429 362495 352333 36461 352301
0. 3.66352 152954 366247 352856 D662 1.52824
0.5 370169 3.5361 3.7006 3.53511 370024 353478
006 374041 325439 3.73008 3.5420 37391 354256
007 377964 3.55286 3.TTEA7 355183 A.TTa08 355149
0.08 3.81934 156289 ama12 356184 3BITT1 156149
0.09 3.85943 15730 385816 3572831 3.8577M4 357247
01 3.89968 3.58583 3 BOESS 358471 369811 358434

FIG. 6

A=0l, Ex/E; = /4, 8 = 1, pifp; = 1/2.

Figs. 10-13 provide the effect of the elastic moduli ratio Ey/E; on
the dimensionless fundamental natural frequency @ for 55, C5, CC and
CF boundary conditions, respectively. The dimensionless characteristic
parameter, power-law exponent, material density ratio and the aspect
ratio are given by A =01, n=1, pyfp, = 1/2 and Lfk = 10, The di-
mensionless fundamental natural frequency of the FG Bernoulli-Euler
and Timoshenko nano-beam increase as values of the elastic moduli
ratio E:/E; increases. As before, the fundamental natural frequency of
the strain gradient theory of elasticity is always less than the results of
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Table 5
Fundamental natural frequency of a nano-beam versus the aspect ratio Lih for
A=01, E/E =114, n =1, p4/p, = 12,

Boundary Conditions

Lih Bernoulli-Eaber Timeoshenko
FIG . 7 50 5GT 5DM 5GT
Simply-Supported 5 BS462 85601 B3S68 820057
10 B.74593 B.6695T 8.66653 B.57572
15 B76509 G6BEST  B7I0H  B.64602
0 BF7IST 869525 B75ISE  BETIIS
25 B77495 G694 BT6ISS  B.GHIET
30 BTM6E4 870003 BTETE  B6ROZG
Clarrped-Simply 5 152165 14.2439 13.5244 TL6427
10 154373 144442 149302 13.9646
15 154792 14.4822 15.2451 142608
20 154939 144956 153605  14.3604
n 15.5008 14.50158 15.4148 14.4205
30 155045 145051 154446 144485
Doubly Clamped 5 250146 2 3ar 19.8936 179004
10 254098 27T JAGTFT  21.0201
15 25485 228009 246601 220847
20 355115 22825 350354 24106
25 2m537 22EM B 225666
30 255304 el ] 25.3148 26528
FIG . 8 Cantilever 5 334397 307437 32374 296244
10 3.33046 307067 331191 3. 04684
15 333879 306999 332639 305033
20 3.33851 306975 333152 3.06374
25 33138 306964 33339 306579
30 33IL 306956 339519 306691

FIG. 9

the stress-driven nonlocal integral model. Also, the numerical results of
dimensionless fundamental natural frequency w(E./E,) according to
the stress-driven nonlecal integral model and the strain gradient theory
of elasticity are tabulated in Table & for 88, CS, CC and CF boundary
conditions, respectively.

The dimensionless fundamental natural frequency @ of FG
Bernoulli-Euler and Timoshenko nano-beams versus the power-law
exponent n is examined in Figs. 14-17 for 88, CS, CC and CF boundary

& 2018, This manuscripd version is made available under the CC-BY-NC-ND 4.0 license.
The final version ofthis TipL is availabk

FIG. 10

conditions, respectively, The dimensionless characteristic parameter,
elastic moduli ratio, material density ratio and the aspect ratio is as-
sumedas 4 = 0.1, E/E, = 1/4, p,/p, = 1/2 and L/h = 10. As the power-
law exponent varies from 0 to oo, the elastic material properties change
from the material properties of constituents 1 to constituents 2, re-
spectively. Since the elastic moduli ratio is assumed as E;/E;, = 1/4, the
dimensionless fundamental natural frequency increases for increasing
values of the powerlaw exponent n. Numerical evaluations of di-
mensionless fundamental natural frequency @r(n) determined em-
ploying the stress-driven nonlocal integral model and the strain gra-
dient theory of elasticity are tabulated in Table 7 for 88, CS, CC and CF
boundary conditions, respectively.

Influences of the material density ratio g,/p, on the dimensionless
fundamental natural frequency @ corresponding to the stress-driven
nonlocal integral and the strain gradient models are provided in
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FIG 11

FIG 12

FIG 13

Figs. 18-21 for 58, CS, CC and CF boundary conditions, respectively.
The dimensionless characteristic parameter, elastic modulus ratio,
power-law exponent and the aspect ratio are given by A =01,
EJE,=1/4, n=1 and L/h=10, As it can be observed from
Figs. 18-21, the fundamental natural frequency of FG Bernoulli-Euler
and Timoshenko nano-beams tend to decrease depending on the in-
crease in the material density ratio. Also, the numerical resulis of di-
mensionless fundamental natural frequency @ (2, /g, ) according to the
stress-driven nonlecal integral model and the strain gradient theory of

© 201 8. This manuscript versbon is made availsble under the CC-BY-NC-ND 4.0 license.
The final version ofthis

Table &
Fundamental natural frequency of a nano-beam versus the elastic modulus ratio
ExEifor A=01, Ltk =10, n =1, pyfpy = 1/2.

Boundary Conditions o

ExlBy Bernoulli-Ealer Timoshenko
S0 5GT oM 8GT
Simply-Supported 174 B74593  BAGOST  BAEAS3  AETETR
112 lo22l 9.93463 9.92319 981712
1 11.793 11.69 11.6722 11.5465
2 141734 140497 140335 138835
4 17.4919 17.3391 17.3339 17.1514
Clarmped-Simply 14 154373 14.4442 14.9302 13.9646
1.2 17.6898 16.5519 17.0568 15.9531
1 206156 194766 200436 187463
2 x0Tz 234079 122 Iz 5611
4 I.ET4S 280884 298605 2 279202
Doihbly Clamped 1/4 X5 4098 227367 B6TTT 21.2291
172 MAITE 260544 260652 241804
1 3426325 30.6582 31.643 2B ETT
2 411784 368466 381346 31962
4 S0.B196 454734 473555 404581
Cantilever 1/4 33396 307067  3.3119 304684
1/2 38260 351674 3T0G09 348985
1 4.50311 4.1405 446223 410531
2 541207 497626 535425 49351
4 6.6792 6.14135 662381 6.09369

FIG 14

FIG 15
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FIG.16

FIG.17

elasticity are tabulated in Table 8 for 88, CS, CC and CF boundary
conditions, respectively.

Figs, 22-25 depict the plots of the dimensionless fundamental nat-
ural frequency @ associated with the stréss-driven nonlocal integral
model and the strain gradient theory of elasticity versus the di-
mensionless characteristic parameter A, for both Timeshenko and Ber-
noulli-Euler beam models while 8, €5, CC and CF boundary conditions
are imposed, respectively. As the elastic modulus ratio, power-law ex-
ponent, material density ratio and the aspect ratio are given by E./E;,
n=1, pfpy =1/2 and L/h =10, the dimensionless characteristic
parameter 4 is assumed to range in the set ]0,0.1[. It is noticeably de-
duced from Figs. 22-25 that both the stress-driven nonlocal integral
model and the strain gradient theory of elasticity exhibit a hardening
behavior in terms of the dimensionless characteristic parameter. How-
ever, the hardening effect of the stress-driven nonlocal model is more
noticeable in comparison to the strain gradient theory. While both size-
dependent models provide the results of local beam theory for van-
ishing dimensionless characteristic parameter 4 — 0, discrepancy be-
tween the natural frequencies of two size-dependent models is en-
hanced by increasing wvalues of the dimensionless characteristic
parameter. Finally, the results of fundamental natural frequency ac-
cording to the Bernoulli-Euler beam theory overestimate the funda-
mental natural frequencies of the Timoshenko beam model. Also, the
numerical results of dimensionless fundamental natural frequency o (4)
according to the stress-driven nonlocal integral model and the strain
gradient theory of elasticity are tabulated in Table 9 for 88, CS, CC and
CF boundary conditions, respectively.

The effect of different sets of boundary conditions on the

© 2018, This manuscripl version is made availsble ander the OC-BY-NC-ND 4.0 license.

Table 7
Fundamental natural frequency of a nano-beam versus power-law exponent i
for 4 = 0.1, Likh = 10, Ex(Ey = 1/4, py/p, = WL

Boundary Conditions =

n  Bernoulli-Ealer Tirnoshenko
SO 5GT S0 BGT
Simply-Supported 0  T22063 715758 T14668  T.O06HTT
1 B.74593  B.G695T B.G66I3 B5757T2
2 B.9339T  BESSG7 BA5S504 876326
5 929107  9.20995 920833 R11166
10 959727 951347 Q0816 G40763
e 10.21151 1012235 1010653 9998166
Clarrped-Simply L1} 127445 11.9247 122721 11.4779
1 154373 14,4442 14,9302 13,9646
2 15.7697 14.7552 15.3683 14. 2805
5 164001 15345  15.8680 14,8425
10 169403 158506 16.369 15.3101
@ 180X5 16,8641 17,3854 16,2322
Doubly Clamped L1} 209772 187706 19.5744 17.3748
1 254008 227367 236777 21.2201
2 259573 23.2265 24.2416 21.7332
5 269951 24155 251784 22,5741
10 27.8841 24,9506 25935 23,2539
@ 6662 26.5456 I7.3906 24.5717
Cantibever 0 275763 2.53556 2.5 25138
1 3.3306 3.07067 331191 3684
2 341089 303623 338356 anrn
5 3.5471 326147 35136 323674
10 36643 3360X3 363353 334276
@ 389988 358583 386411 355505

FIG. 18

dimensionless fundamental natural frequency @ of FG Bernoulli-Euler
and Timoshenko nano-beams evaluated by the stress-driven nonlocal
integral model and the strain gradient theory of elasticity versus the
dimensionless characteristic parameter A is shown in Figs. 26 and 27,
respectively. The elastic moduli ratio, power-law exponent, material
density ratic and the aspect ratio are given by EJ/E, =1/4, n=1,
ffey = 1/2 and L/h = 10. As demonsirated in Figs. 26 and 27, both the
stress-driven nonlocal integral model and the strain gradient theory of
elasticity reveal a hardening behavior both in terms of the dimension-
less characteristic parameter 4 and of the number of kinematic
boundary constraints. As expected [20], the softest structural response
with respect to the considered boundary conditions is revealed by
cantilever nano-beams,
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Table 8
Fundamental natural frequency of a nano-beam versus the density ratio g/,
for A=01, Lik =10, ExfEy = 1/4. n = 1.

Boundary Conditions @

ool Bernoulli-Euler Timoshenko
FIG . 1 9 SDiM SGT SDM SGT
Simply-Supported 14 95834  G.50026 949724 S.05FV4

172 8.74593 B.6E695T7 866693 B.57572
1 757306 7.50604 750468 7.42571

2 618431 613031 612844 606395
4 4.TNST 475013 4. 74862 4. 69864
Clamiped-Simgphy 174 169178 15.8293 163614 15.303

172 15,4373 144442 14.9302 13.9646
1 13,3666 115068 12,9278 10817

2 109158 102136 10.5573 987445
4 545888 79463 B1BOGG 765148
Daishly Clasmped 1/4 278477 240177 25.9466 23.263

12 254008  I2TIF  1ETTT I1L.2I90
1 22001 15,6867 20.5024 18,3822
2 17.9674 160073 16.7427 15.0112

4 139250 124588 129733 116315
Cantilever 144 365821  3.36364 362863 333819

172 33396 307067 331191 304684

FIG. 20 1" dem e w s
. 2 236145 217129 234187 215444

4 1.8291 1.68182 1.81432 L.6G00

FiG. 22

FIG. 21

FIG. 23

6. Concluding remarks

The elastodynamic problems of functionally graded (FG)
Timoshenko straight nano-beams have been formulated by strain gra-
dient and stress-driven nonlocal theories of elasticity. Rectangular
cross-sections have been examined, Material density and Euler-Young
modulus have been assumed to vary only along the bending axis
(thickness) according to a power law. Size-dependent free vibrations of
FG slender and stubby nano-beams have been analytically investigated

0 2018, This manuscript version is made available under the OC-BY-NC-ND 4.0 license.
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The final

fig. 24

fig. 25

for different kinematic boundary conditions of engineering interest.
The main outcomes of the present study may be summarized as
follows.

# The through-thickness functional variation of material properties
significantly affects vibrational responses of nano-beams. Natural
frequencies can be thus controlled by tailoring appropriately the
material properties.

# A hardening behavior of the natural frequencies in terms of the
small-scale parameter has been pointed out for both stress-driven
nonlocal and strain gradient models.

# For both FG Timoshenko and Bernoulli-Euler nano-beams, strain
gradient theory of elasticity underestimates the natural frequencies
associated with stress-driven nonlocal theory.

# Fundamental natural frequencies increass with the increase of scale
parameters.

# As the small-scale parameter tends to zero, natural frequencies de-
termined by both strain gradient and stress-driven nonlocal models
coincide with the local ones.

# The discrepancy between the vibrational results corresponding to
stress-driven nonlocal and strain gradient theories increases as the
small-scale parameter increases,

# While the effects of transverse shear deformation are noteworthy for
small values of aspect ratio, the gap between the vibrational re-
sponses of FG Timoshenko and Bernoulli-Euler nane-beams tends to
vanish for increasing values of the aspect ratio.

® The effect of the rotatory inertia on the fundamental natural

€ 2018, This manuscript version is made available under the CC-BY-NC-ND 4.0 license,
ot ofthis m

Table 9
Fundamental natural frequency of a nano-beam versus the characteristic
parameter 4 for Lih = 10, Eo/E, = 114, n = 1, pfp, = 12,

Boundary Conditions =

i Bernoulli-Euler Timothenko
soM SGT S0 5GT
Simply-Supported o 841855  B41855  B32418 832418
0.0z B.434949 B.43383 B.34366 B.33932
0.04 B 47040 BAT423 B.30192 B.3T046
006 854922 BSINTIZ B.464GT B 43685
008  B63937  B.59E91 BLSSTGT B.50429
(iR} 874593  BG6EIST  B.6GEID B.5T572
Clarrped-Simply ot 13.1428 13.1428 127475 127475
0,02 13.4485 13,2007 13,0394 12.81
0.04 13,8389 133942 134115 129824
0,06 14,3060 136742 13.8568 132442
0.08 14.8431 14,0299 14.3663 13.5769
o1 154373 14,4442 14,9302 13.9646
Doubly Clamped o* 19,0654 19,0654 180617 180617
0.0z 19.9312 19,2421 18,8378 18.2161
004 210118 19.73561 196011 18,6467
008 22992  HS056 20,9424 19.3143
008 23774 215165 22,2428 20,1855
01 25,4098 I2TIHT I36TFT 21.2391
Cantibever o* 3019w 301197 L9B919  Z9B919
n.o2 307344 3014569 3.04973 299186
004 3132 30E247 311254 299951
0.06 320305 303478 317739 30116
008 327063 305103 3.24397 3.02757
o1 33396 307067 3nm 304684

fig. 26

fig. 27
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frequencies of Bernoulli-Euler nano-beams predicted by either of
size-dependent models is more significant for lower aspect ratios.

Az a final comment, it can be concluded that the stress-driven
nonlocal integral model provides an effective approach to characterize
size-dependent vibrational behavior of FG Timoshenko nano-beams.
The contributed results could be conveniently employed for the design
of modern stubby beam-like components of Nano-Electro-Mechanical

Systems,
Appendix A. Supplementary data

Supplementary data related to this article can be found at hitps//
doi.org/ 10.1016/j.compositesh. 201 8.07.036,
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Fig. 7. Clamped-simply supported nano-beam: effects of the aspect ratio L/h on
the dimensionless fundamental natural frequency o for

A=01,E/E=1/4,n=1,p,/p, =1/2.
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Fig. 8. Doubly clamped nano-beam: effects of the aspect ratio L/h on the di-
mensionless fundamental natural frequency @ for

A=01,E/E =1/4,n=1,p,/p, =1/2.
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mensionless fundamental natural frequency @ for
A=01,E/E =1/4,n=1,p,/p, = 1/2.
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Fig. 10. Simply supported nano-beam: effects of the elastic modulus ratio E,/E,
on the fundamental natural frequency @ for
A=01,L/h=10,n=1,p,/p, = 1/2.
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Fig. 11. Clamped-simply supported nano-beam: effects of the elastic modulus
ratio E,/E; on the fundamental natural frequency w for
A=01,L/h=10,n =1, p,/p, = 1/2.
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Fig. 12. Doubly clamped nano-beam: effects of the elastic modulus ratio E,/E;
on the fundamental natural frequency @ for
A=01,L/h=10,n=1,p,/p, = 1/2.
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Fig. 13. Cantilever nano-beam: effects of the elastic modulus ratio E,/E, on the
fundamental natural frequency @ for 2 = 0.1, L/h =10,n =1, p,/p, = 1/2.
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Fig. 14. Simply supported nano-beam: dimensionless fundamental natural
frequency @ versus n for A = 0.1, L/h = 10, E»/Ey = 1/4, p,/p, = 1/2.
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Fig. 15. Clamped-simply supported nano-beam: dimensionless fundamental
natural frequency @ versus n for A = 0.1, L/h = 10, E,/E, = 1/4, p,/p, = 1/2.
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Fig. 16. Doubly clamped nano-beam: dimensionless fundamental natural fre-
quency @ versus n for A = 0.1, L/h = 10, E,/E, = 1/4, p,/p, = 1/2.

28/ — SDM-TM

, —_— SGT-TM
26! === SDM-BEM||

— = == SGT-BEM

0 2 1 6 8 10

Fig. 17. Cantilever nano-beam: dimensionless fundamental natural frequency
@ versus n for A = 0.1, L/h = 10, E,/E, = 1/4, p,/p, = 1/2.
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Fig. 18. Simply supported nano-beam: variations of the dimensionless funda-
mental natural frequency @ versus the material density ratio p,/p, for
A=01,L/h =10, E,/E, =1/4,n= 1.
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Fig. 19. Clamped-simply supported nano-beam: variations of the dimensionless
fundamental natural frequency @ versus the material density ratio p,/p, for
A=01,L/h =10, E/E,=1/4,n=1.
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Fig. 20. Doubly clamped nano-beam: variations of the dimensionless funda-
mental natural frequency w versus the material density ratio p,/p, for
A=01,L/h=10,E/E =1/4,n=1.
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Fig. 21. Cantilever nano-beam: variations of the dimensionless fundamental
natural frequency @ versus the material density ratio p,/p, for
A=01,L/h=10,E/E =1/4,n=1.
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Fig. 22. Simply supported nano-beam: dimensionless fundamental natural
frequency @ versus  the  characteristic =~ parameter 4 for
L/h =10, Ey/E, = 1/4,n =1, p,/p, = 1/2.
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Fig. 23. Clamped-simply supported nano-beam: dimensionless fundamental
natural frequency w versus the characteristic parameter 1 for

L/h =10, Ey/E, =1/4,n =1, p,/p, = 1/2.
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Fig. 24. Doubly clamped nano-beam: dimensionless fundamental natural fre-
quency w versus the characteristic parameter A for

L/h =10, Ey/E; =1/4, n =1, p,/p, = 1/2.
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Fig. 25. Cantilever nano-beam: dimensionless fundamental natural frequency
w versus the characteristic parameter A for
L/h =10, E2/E; =1/4,n =1, p,/p, = 1/2.
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Fig. 26. Bernoulli-Euler nano-beam: effects of the boundary conditions on the
dimensionless fundamental natural frequency @ versus the characteristic
parameter A.
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Fig. 27. Timoshenko nano-beam: effects of the boundary conditions on the
dimensionless fundamental natural frequency @ versus the characteristic
parameter A.
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Fig. 5. Cantilever Bernoulli-Euler nano-beam: dimensionless fundamental nat-
ural frequency @ versus the characteristic parameter A for different aspect ratio
L/h.
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Fig. 6. Simply supported nano-beam: effects of the aspect ratio L/h on the di-
mensionless fundamental natural frequency w for

A=01,E/E =1/4,n=1,p,/p, = 1/2.



FIGURES

=" SGT L /h=10
= SGT L/h=20

i — ST Apuzzo el al,

sms SDM L/ h=10

== a S0M Lks20

[| = SDM Apazzo el al.

10.1

100

0.02 0.04 0.06 0.08 0.10 A
Fig. 2. Simply-supported Bernoulli-Euler nano-beam: dimensionless funda-

mental natural frequency @ versus the characteristic parameter 4 for different
aspect ratio L/h.

T -
18.0/ ==+ SGT L/ h=10
== BGT L/ =20
— SGT Apuzzo et al,
175|| e ms SDM L /0 =10
== SDM L/ k=20
— DM Apuczo e al.

17.0

0.02 0.04 0,06 0.08 Cl.-lﬂ A

Fig. 3. Clamped-simply supported Bernoulli-Euler nano-beam: dimensionless
fundamental natural frequency @ versus the characteristic parameter 4 for
different aspect ratio L/h.
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Fig. 4. Doubly-clamped Bernoulli-Euler nano-beam: dimensionless funda-
mental natural frequency @ versus the characteristic parameter A for different
aspect ratio L/h.
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