
0

Network Signal Setting Design with
Stage Sequence Optimisation

Silvio Memoli, Giulio E. Cantarella*, Stefano de Luca, Roberta Di Pace

Department of Civil Engineering, University of Salerno Italy, EU

smemoli@unisa.it; g.cantarella@unisa.it;sdeluca@unisa.it;rdipace@unisa.it;

* Corresponding author.

REVISED MANUSCRIPT PAPER ‘TRB_2016_249’

Abstract

One of the most straightforward short term policies to mitigate urban traffic congestion is

control through traffic lights at a single junction or network level. Existing approaches for

single junction Signal Setting Design (SSD) can be grouped into two classes: Stage-based

or Phase-based methods. Both these approaches take the lane marking layouts as

exogenous inputs, but lane-based optimisation method may be found in literature, even

though for isolated signal-controlled junctions only. The Network Signal Setting Design

(NSSD) requires that offsets are introduced; a traffic flow model is also needed to compute

total delay. All existing methods for NSSD follow a stage-based approach; these methods

do not allow for stage matrix optimisation: it is shown that explicit enumeration of stage

sequences is only practicable for very small networks.

This paper focuses on Network Signal Setting Design introducing the so-called scheduled

synchronisation that includes green scheduling, green timing and coordination into one

optimisation problem. The paper proposes a stage-based method to solve such a

problem, as an extension of the synchronisation method and the traffic flow model

proposed in Cantarella et al. (2015): first a set of candidate stages is defined for each

junction, then the stage sequences, the stage lengths and the offsets are optimised all

together. To the authors’ knowledge, no other one-step optimisation method is available in

literature for scheduled synchronisation. Results of the proposed method to a small

network were compared with those from explicit enumeration of all stage sequences;

results for a larger network are also discussed.

Keywords: Network Signal Setting Design; Scheduled synchronisation; Stage Based

methods; Macroscopic Traffic Flow modelling; Meta-heuristics.

1

This is a post peer review, pre-copyedit version of an article published in Transportation Research

Part C. The final version is available on-line at: https://doi.org/10.1016/j.trc.2015.10.002

2

INTRODUCTION AND CONTRIBUTION

In order to mitigate urban traffic congestion, several policies can be adopted and may be

applied in the short or long time horizon. With regard to the short term policies, one of the

most straightforward is control through traffic lights at a single junction or network level.

With respect to this aim, existing approaches for single junction Signal Setting Design

(SSD) - in off-line or planning applications - can be grouped into two classes:

- Stage-based (e.g. Webster, 1958; Allsop, 1971 and 1975; Burrow, 1987) methods,

- Phase-based (e.g. Improta and Cantarella, 1984; Gallivan, and Heydecker; Silcock,

1997; Wong, 1996, 1997; Wong et al., 2002) methods.

Stage-based signal setting methods divide the cycle into stages, each one being a time

interval during which some mutually compatible approaches have green. Stage

composition (say which approaches have green in each stage), and their sequence are

traditionally represented through the so-called stage matrix. Once the stage matrix is given

for each junction, the stage lengths (and possibly the cycle length) can be optimised with

respect to several objective functions, such as minimization of total delay or maximisation

of capacity (well-known methods of this kind are SIGSET and SIGCAP).

Phase-based methods address the signal setting as a periodic scheduling problem: the

cycle length, the start and the length of the green period for each approach, and a binary

variable for each pair of incompatible approaches are considered as optimisation variables

see for instance the Binary Mixed Linear Program proposed by Improta and Cantarella

(1987). In this case, the stage composition and sequence may easily be obtained from

optimisation variables, thus, the stage matrix is an post-process result of the procedure.

Some commercial software codes following this methodology are available, for instance

OscadyPro®TRL (Burrow, 1987).

It is worth noting that all the above referred papers, both for the stage- based and the

phase-based approaches, take the lane marking layouts as exogenous inputs, thus not

included within the optimisation procedures proposed in this paper. On the other hand,

developments on the lane-based optimisation method, for isolated signal-controlled

junctions only, may be found in literature, from Lam et al. (1997) to more recently Wong et

al. (2000), Wong and Wong, (2003), Wong et al. (2006); Zhou and Zhuang (2014), Sun et

al. (2015), Yu et al. (2016).

3

The Network Signal Setting Design (NSSD) requires that further variables are introduced:

the offsets that define when the signal setting plan of each junction starts with respect to a

given clock reference. A traffic flow model is also required to compute total delay.

All existing methods for NSSD follow a stage-based approach. These methods do not

allow for stage matrix optimisation thus, the effects of stage composition and sequence on

network performance are not considered. It is worth noting that explicit enumeration of

stage sequences is only practicable for very small networks (as shown in section 3).

For instance, TRANSYT15®TRLand TRANSYT-7F®FHWA allow to compute the cycle

length, the green times and the offsets by combining a traffic flow model and a signal

setting optimiser. In particular, TRANSYT15® generates several, but not all, significant

stage sequences to be tested but the optimal solution is not endogenously generated,

while TRANSYT-7F® is able to optimise the stage sequence for each single junction

starting from the ring and barrier NEMA (i.e. National Electrical Manufacturers Association)

phases. Still, these methods do not allow for complete stage matrix optimisation;

moreover, the effects of stage composition and sequence on network performance are not

analysed.

Other analyses may be also found in Hadi and Wallace (1993; 1994) which studied the

possibility of introducing a phase sequence optimisation capability to TRANSYT-7F® using

Genetic algorithms and the Cauchy simulated annealing. Moreover, with respect to the

stage sequence optimisation Park et al. (2000) developed a simulation framework made

up of a mesoscopic flow simulator and Genetic Algorithm optimiser, and showed that the

simulator provided better results than those obtained using the software TRANSYT-7F®.

More recent contributions based on binary variables have been proposed by Friesz et al.

(2013), Liu and Smith (2015), Smith et al. (2015) for switch-on / switch-off signals in the

case of within-day dynamic traffic assignment; some authors have introduced the

continuum signalised junction model (Han et al., 2014; Han and Gayah, 2015) to avoid

discrete variables.

The existing phase-based methods are available for single junctions only. Currently, in

practical applications, once the green timing and scheduling have been carried out for

each junction through a phase-based method, offsets can be optimised (coordination)

using the stage matrices and greens obtained from single junction optimisation or using

the stage matrices only to optimise both greens and offsets (synchronisation), through a

stage-based method, as those above described.

4

This paper focuses on Network Signal Setting Design (NSSD) introducing the so-called

scheduled synchronisation that includes green scheduling, green timing and coordination

into one optimisation problem. The paper proposes a stage-based method to solve such a

problem (see section 2.). In this method, first a set of candidate stages is defined for each

junction, then the stage sequences, the stage lengths and the offsets are optimised all

together. To the authors’ knowledge, no other one-step optimisation method is available in

literature for scheduled synchronisation

The proposed method, called CENEO (ComplEte NEtwork Optimisation), is an extension

of the synchronisation method and the traffic flow model proposed in Cantarella et al.

(2015) that requires the stage sequence as input data and optimises stage lengths and

offsets only (called ENEO in the rest of the paper for easy reference).

As already said, existing phase-based methods are not available for networks of junctions.

These methods might be formally extended to specify one-step methods for NSSD (offsets

are quickly obtained the start and the length of the green period of each approach).

Nonetheless, the resulting Mixed Optimization Program is hard to solve since several

equivalent local optima exist; this condition may quite easily be dealt with for a single

junction, but it is still unclear how it can effectively be circumvented for a network (with

loops). So far stage-based methods for single junctions can more simply be extended to

scheduled synchronisation by explicitly including the stage sequencing within the

optimisation method, after the stage generation step, as said above. Resulting methods

are simpler to specify than those derived from phase-based methods. These reasons and

others discussed in subsection 2.4 support the stage-based approach pursued in this

paper.

The paper is organised as follows: section 2 describes the proposed method CENEO, and

some consideration about advantages with respect to phase-based methods are also

discussed; in section 3 the results of the numerical applications for two toy networks

carried out through CENEO are shown; in section 4 the final conclusions are discussed. A

list of notations is included at the end of the paper.

5

1 PROPOSED METHOD

In this section the proposed approach to the scheduled synchronisation is discussed.

As already noted in the introduction, stage based methods can be used to solve the

scheduled synchronisation by explicitly including the stage sequencing within the

optimisation method, after the stage generation as described below.

1.1 STAGE DEFINITION AND GENERATION

A stage is a set of approaches that have green at the same time. For safe operations all

the approaches in a stage must be mutually compatible, namely they may have green

without any conflictcompatibility requirement. Usually it is also required that each stage

be maximal – completeness requirement –, meaning that no further approach may be

added to any of them without violating the compatibility requirement.

All candidate stages satisfying both the compatibility and completeness requirements can

easily be generated by Bron & Kerbosch’s (1973) algorithm for finding all maximal cliques

of a graph; in this case, the adjacency matrix of the graph is the (square symmetric)

compatibility matrix with as many rows and columns as the number of approaches and

‘0/1’ entry for each ‘incompatible/compatible’ pairs of approaches.

Let n 2 be the number of candidate stages (n = 1 meaning there is no pair of

incompatible approaches, there is no need for traffic control). A candidate stage that

contains an approach not included in any other stage is called compulsory, otherwise it is

called optional. Let nc and no = nnc be the number of compulsory and optional candidate

stages, respectively.

1.2 VARIABLES AND CONSTRAINTS

In this sub-section main variables and constraints among them are described to build up

the optimisation model described in sub-section 2.4.

2.2.a Stage sequences

A set of candidate stages (not necessarily all of them) in a given order are a sequence. A

sequence is called feasible if each approach belongs to at least one stage in the sequence

– feasibility requirement –. If all the compatible and maximal stages are considered such

condition surely holds (in the limit case each stage contains only one approach).

Moreover, a compulsory candidate stage, as defined above, must be included in each

6

sequence since it contains an approach not included in any other stage. The number of

feasible sequences may be very large.

If there is no optional stage, no= 0 and n = nc, the number of feasible sequences is given

by n!, say the number of permutations of the n stages. However, it is worth noting that any

periodic rotation of a sequence, for instance such that the sequence (1,2,3) becomes

(2,3,1), then (3,1,2), then (1,2,3,) again, does not affect optimal green and performance

indicators, while optimal offsets change in an easily predictable way (cfr sub-section 2.2

and example in Figure 1 in the following).

Thus, for each junction all the sequences are considered grouped into (ni! / ni) = (ni 1)!

equivalence classes, and only one sequence for each equivalence class is further

analysed. Thus,

- if only two stages are available, two possible sequences can be built up {(1,2); (2,1)}

which are equivalent, thus, only one equivalent class exists;

- if three stages are available two equivalent classes exist: {(1,2,3), (2,3,1); (3,1,2)} and

{(3,2,1); (2,1,3); (1,3,2)}; either may be obtained from sequence (1,2) by positioning

stage 3 after stage 1 or after stage 2; thus a binary variable is enough to define the

optimal sequence;

- if four stages are available six equivalent classes exist: {(1,2,3,4); (2,3,4,1); (3,4,1,2);

(4,1,2,3)}; {(1,3,2,4); (3,2,4,1); (2,4,1,3); (4,1,3,2)}; {(1,4,2,3); (4,2,3,1); (2,3,1,4);

(3,1,4,2)}); {(1,4,3,2); (4,3,2,1); (3,2,1,4); (2,1,4,3)}; {(1,3,4,2); (3,4,2,1); (4,2,1,3);

(2,1,3,4)}; {(1,2,4,3); (2,4,3,1); (4,3,1,2); (3,1,2,4)}); each may be obtained by changing

the position of stage 4 with respect to sequences (1,2,3) or (3,2,1); thus a binary

variable and a ternary variables are enough to define the optimal sequence;

- and so on.

If there is at least one optional stage, no> 0, n>nc, the stages can be grouped into 2no sub-

sets, each including all the nc compulsory stages and some (or none at all) of the no

optional stages; stages belonging to any of such sets may be arranged in a number of

feasible sequences equal to the factorial of its size minus one, as described above. Thus,

- if only one compulsory, 1, and one optional, 2, stages are available it implies that stage

2 is a sub-set of stage 1, therefore, stage 2 violates the completeness requirement,

even though two equivalent classes exist: {(1)}; {(1,2); (2,1)}, thus this case it is not

further considered;

- if two compulsory, 1 and 2, and one optional, 3, stages are available, three equivalent

7

classes exist: {(1,2); (2,1)}; {(1,2,3), (2,3,1); (3,1,2)} and{(3,2,1); (2,1,3); (1,3,2)}; each

may be obtained from sequence (1,2) by not including stage 3 or by positioning it after

stage 1 or after stage 2; thus a ternary variable is enough to define the optimal

sequence;

- if three compulsory, 1 and 2 and 3, and one optional,4, stages are available, eight

equivalent classes exists: {(1,2,3), (2,3,1); (3,1,2)} and {(3,2,1); (2,1,3); (1,3,2)};

{(1,2,3,4); (2,3,4,1); (3,4,1,2); (4,1,2,3)}; {(1,3,2,4); (3,2,4,1); (2,4,1,3); (4,1,3,2)};

{(1,4,2,3); (4,2,3,1); (2,3,1,4); (3,1,4,2)}); {(1,4,3,2); (4,3,2,1); (3,2,1,4); (2,1,4,3)};

{(1,3,4,2); (3,4,2,1); (4,2,1,3); (2,1,3,4)}; {(1,2,4,3); (2,4,3,1); (4,3,1,2); (3,1,2,4)}; each

may be obtained by not including stage 4 or by changing its position within the

sequences (1,2,3); thus three binary variables are enough to define the optimal

sequence;

- and so on.

Quite often it is also required that each approach has green in consecutive stages within

the sequence, if more than one – consecutiveness requirement –.This requirement is

effective only for sequences containing four or more stages.

The sequence of stages and their composition is commonly described by , the approach-

stage incidence matrix (or stage matrix for short), with entries δkj=1 if approach k receives

green during stage j and 0 otherwise.

2.2b Time and flow variables

Let the junction network be represented by an undirected graph with a node for each

junction and an edge for each pair of adjacent junctions (the actual traffic directions are

irrelevant), with m nodes as the number of junctions.Assuming that the green scheduling is

described by the stage composition and their sequence as discussed above, let

c > 0 be the cycle length, common to all junctions, assumed known or as a optimisation

variable, often constrained in a given range.

For each junction (not explicitly indicated), after Webster (1958), let

tj [0, c] be the length of stage j as a optimisation variable; if no minimum length

constraint is introduced, the optimal length of a (optional) stage may be zero,

meaning that this stage is not in the optimal solution;

tar [0, c] be the so-called all red period at the end of each stage to allow for the safe

clearance of the junction, assumed known (and constant for simplicity’s sake);

8

lk [0, c] be the lost time for approach k, assumed known;

gk= ∑ δkjtj- tar-lkj [0, c]1be the effective green for approach k needed for computing total

delay through a traffic flow model (see next sub-section 2.3).;

qk> 0 be the arrival flow for approach k, assumed known;

sk> 0 be the saturation flow for approach k, assumed known.

Apart from non-negativity of optimisation variables, a constraint needs to be introduced for

each junction in order to guarantee consistency among the stage lengths and the cycle

length:

tj = c
j

Other constraints are sometimes used in order to guarantee

the minimum value of the effective green

gk gmin ∀k

and that the capacity factor is greater than 1 (or any other value assumed as a threshold)

sk∙ gk

c∙qk

≥ 1

Such a constraint may be added only after having checked that the maximum junction

capacity factor for each approach k in the junction i is greater than 1, otherwise, a solution

may not exist whatever the objective function is.

Moreover, for each junction i let

i [0, c[be the node offset between the start of a reference stage of junction i and the

start of the reference stage of the first junction used as a reference for clock,
1

= 0,

thus the number of the independent node offsets is m - 1.

For each pair of (adjacent) junctions (i, h) in the network, let

ihhihi be the link offset between junctions i and h, needed for computing

total delay through a traffic flow model (see next sub-section 2.3).

If the network contains k > 0 independent loops, the number of independent link offsets is

equal to m-k, thus it is better to use the m - 1 independent node offsets as optimisation

variables to avoid an useless increase of the number of variables and of constraints. On

1non-negative effective green is usually guaranteed by the non-negative stage length, but for a very a short

cycle length with regard to the values of all-red period length and lost times, say the cycle length is less than

∑ MAXk (δkjlk + tar) cj , this condition is never met in practical applications.

9

the other hand, if the network is loop-less, all the m - 1 link offsets are independent, as

many as the independent node offsets, and might be used as optimisation variables

instead of the independent node offsets; arterials are a special case of such kind of

networks.

As noted above, after any periodic rotation of a sequence, for instance such that the

sequence (1,2,3) becomes (2,3,1), then (3,1,2), then (1,2,3,) again, optimal green and

performance indicators remain unchanged, while optimal offsets change in an easily

predictable way, thus all those sequences have been called equivalent, making up an

equivalence class. For instance, the layout in Figure 1 refers to a simple arterial in which

the network cycle length is equal to 60 seconds, the length of stages for the upstream

junction are 28 seconds, 17 seconds and 15 seconds whilst the length of the stages for the

downstream junction are 40 seconds and 20 seconds; three combination of sequences are

evaluated: i) in case of sequences 123-12, 11= 50 s, 21= 50 – 28 = 22 s,31= 50 –

(28+17) =5 s; ii) in case of sequences 231-12, 21= 22 s, 31= 22 -17=5 s,11= 22 –

(17+15) = - 10 + 60 = 50 s; iii) in case of sequences 321-12, 31= 5 s, 21= 5 -15=-

10+60=50 s,11= 5 – (15+17) = - 27 + 60 = 33 s. This examples shows that sequence 123

is equivalent with sequence 231 whilst is not equivalent with sequence 321.

- place Fig.1 # about here

1.3 OBJECTIVE FUNCTIONS

In this paper the total delay TD was considered as objective function (even though other

measure of performances could be introduced). Since generally in a junction network there

can be interacting and non-interacting approaches, two cases should be distinguished.

DELAY FOR NON-INTERACTING APPROACHES

In this case it was computed using the two term Webster formula (Webster, 1958) as

TDk
j = 0.45 ∙ qj

k
k

∙cj∙ 1 - g
k
j /cj

2
 1 -qj

k/ sj
k +

+ 0.45 ∙ qj
k sj

k ∙ g
k
j /cj ∙ (g

k
j /cj) ∙ (s

j
k /qj

k) - 1 (1)

10

Any other formula can be used as well.

DELAY FOR INTERACTING APPROACHES

In this case delay computation needs an explicit traffic flow model. In this paper the model

described in Cantarella et al. (2015), was adopted, but any other traffic flow model can be

used as well. For the computation of delay for an interacting approach the cumulated

input, Ciqkj(t), and output flows, Coqkj(t), through the stop line of approach k of junction j, in

the subsequent sub-intervals t were compared.

The Deterministic Total Delay (DTDkj) cumulated in the interval [0,Ta] for approach k of

junction j was then given by the following expression:

DTDk
j = ∑ (Ciqk

j(t) Coqk
j(t))

t=1.. ∆τ

2 (2)

Thus delay experienced at an interacting approach is a function of the offsets between the

timing plans. In fact, such a delay depends on the output flow in the downstream junction

which is obtained by starting from the input flow in the upstream junction through the

phenomenon of dispersion.

Let skj be the saturation flow on approach k of junction j, the Stochastic and Oversaturation

component of Total Delay SOTDkj for approach k of junction j is computed using the

following expression

SOTDk
j = { [(q'jk ∙ sj

k)
2
 + (4q'jk / 𝑇)]

0.5
 + (q'jk ∙ s

j
k)} 𝑇 / 4 (3)

and considering the average of the values of the cyclic flow profile along the connecting

link arriving at approach k of considered junction j, q'jk as input flow.

Then

TD = DTDk
j
 + SOTDk

j (4)

Finally, the total network delay is given by

TD = ∑ ∑ TD ∙ (5)

where TDkj is computed through equation (1) in case of non-interacting junction and

through equation (4) in case of interacting junctions.

2 the sub-interval of equal duration in which the time of analysis Ta is divided.

11

1.4 OPTIMISATION MODEL

A mixed discrete-continuous linear optimisation problem with non-linear objective function

(not available in closed form for interacting approaches) is obtained by combining together:

 the discrete variables needed to define the optimal stage sequence, constrained by the

feasibility and the consecutiveness requirements, as in sub-section 2.2.a;

 the continuous variables needed to completely define the signal plan, that is: (i) the

stage lengths, as many as the stages, constrained by the consistency among the stage

lengths and the cycle length, (ii) the m - 1 (independent) node offsets, and possibly (iii)

the cycle length, as well as other constraints introduced in sub-section 2.2.b;

 the objective function defined by the total delay, as in sub-section 2.3.

The number and/or the kind of discrete variables may be reduced if no minimum length

constraint is introduced, in this case indeed if the optimal length of a (optional) stage is

zero it means that this stage is not in the optimal solution.

By a comparison, extending to a junction network for instance the phase-based method

proposed by Improta and Cantarella (1984) for as single junction would require two

continuous variables for each approach and one binary variable for each pair of

incompatible approaches, thus leading to a much larger number of optimisation variables.

1.5 OPTIMISATION ALGORITHM

To solve optimisation problems of the kind described in the previous sub-section, meta-

heuristic algorithms are usually adopted such as Simulated Annealing (SA). As a matter of

fact, such algorithms can effectively address even optimisation problems with objective

function not expressed in closed form, so that derivatives are not easily available, as it

occurs for the scheduled synchronisation. The implementation remarks of CENEO are

outlined below.

The proposed SA3 algorithm mimics the annealing process of a metal, also known as the

Metropolis Scheme (Metropolis et al., 1953), starts with an initial solution and goes through

3SA can deal with non-linear models, unordered data with many constraints. Its main advantages over other

local search methods are its flexibility and its ability to approach global optimality.

12

a predetermined number of iterations to try to improve upon the objective function. In the

scheduled-synchronisation, the algorithm starts with an initial combination of sequences,

greens and offsets, randomly provided, and tries to improve the network total delay (or any

other measure of performance). The whole framework is composed by an outer loop

(external iterations) and an inner loop (internal iterations), as in following described (see

Figure 2).

- place Fig.2 # about here

OUTER LOOP

From the initial or current solution (combination of sequences, greens and offsets), and an

initial value of the so-called current temperature of the system T, at each external iteration,

a new solution is randomly generated from the neighbourhood according to a generation

scheme (see below for the inner loop). The measure of performance (to be minimised) of

the current new solution, c.n, is calculated and compared with the current optimum one,

c.o .

If the new measure, c.n, is better than the current optimum one, c.o, (c.n c.o) 0, it is

accepted anyhow (say, with a probability of one) and the new solution becomes the

current optimum one, then the process repeats itself. However, if the new measure, c.n, is

worse than the current optimum one, c.o, (c.n c.o) > 0, then the new solution may be still

accepted but with a probability P(c) = exp((c.n c.o) / T) < 1; in particular, given a real

number (r) randomly drawn from a uniform distribution over the interval [0,1], if P(c) is

smaller than the number r, then the new solution is rejected and the current solution

remains in the process while the algorithm repeats itself.

The temperature (T) is decreased at each iteration by a predetermined percentage until it

reaches a certain predetermined value where the SA process terminates. To this aim it is

required the specification of an annealing schedule, i.e. an initial temperature (Tinit) and the

rules for lowering it as the search progresses until a final Temperature (Tfin). Several

cooling schedules are covered in literature, including exponential, linear and temperature

cycling. In this paper we adopt the Kirkpatrick geometric cooling scheme, considering at

each iteration it a temperature Tit = αTit-1, where α is a constant close to, but smaller than 1,

usually assumed equal to 0.95.

Note that as temperature decreases, so decreases the probability of accepting a “hill-

climbing move.” If T is very large, then r is likely to be less than P(c) and the new solution

is almost always accepted. If T is small, or close to zero, then only if the new solution is

characterised by a very small ∆c > 0 it has any realistic chance of being accepted.

13

INNER LOOP

At each external iteration (temperature state), the new solution is carried out as an output

of an inner loop which consists of testing the greens and offsets, x, randomly provided for

the current external iteration, for a number (N) of combination of sequences, s, (equalling

the number of internal iterations of the inner loop) extracted within the set of sequences

representing the (ni - 1)! equivalence classes of each junction. The size of the set of

combinations to be tested is determined by the number of junctions in the considered

network. For instance, in the case of a three junction network, with junction 1 having 3

stages and 2 equivalence classes, junction 2 having 4 stages and 6 equivalence classes,

junction 3 having 3 stages and 2 equivalence classes, the size of such a set is given by

262 = 24 combinations of sequences.

The generation scheme is carried out on discrete binary and tertiary variables; in

particular, if the considered junction contains a sequence of three stages, two equivalence

classes exist thus a binary (b) variable 0/1 is adopted to randomly choose between the

sequence (1,2,3), belonging the class {(1,2,3), (2,3,1); (3,1,2)} and the sequence (1,3,2),

belonging the class {(3,2,1); (2,1,3); (1,3,2)}. On the other hand, if the considered

sequence contains four stages, a binary (b) variable 0/1 and a ternary (t) variable 1/2/3 is

considered and two random generations are applied (see Figure 3): first a binary random

decision is taken as to select between the sequence (1,2,3,4), belonging the class

{(1,2,3,4); (2,3,4,1); (3,4,1,2); (4,1,2,3)}, and the sequence (1,4,3,2), belonging the class

{(1,4,3,2); (4,3,2,1); (3,2,1,4); (2,1,4,3)}, then a ternary random decision is taken as to

select the positions of the last stage in the sequence: (1,4,2,3) xor (1,2,4,3) xor (1,2,3,4),

otherwise (1,4,3,2) xor (1,3,4,2) xor (1,3,2,4). And so on for junctions with more than four

stages.

It is quite clear that the generation scheme is constrained by the requirements described in

sub-section 2.2. Necessarily the chosen sequences had to respect the feasibility and

consecutiveness requirements. That implies, in some cases, discarding solutions in which

some approaches had green in two non-consecutive stages; this way the number of stage

sequence combinations to be test is further reduced.

- place Fig.3 # about here

In order to strengthen the algorithm exploitation, at each external iteration, the current

optimum sequence combination, s, is stored and fixed for the successive neighbourhood

14

generation steps (in this way the neighbourhood size will be equal to the total number of

feasible combinations minus one) for the purpose of intensifying (refining) the search of

the optimal greens and offsets, x, in the vicinity of s.

For readers ‘convenience an example will be shown in the following Table 9.

15

2 NUMERICAL APPLICATIONS

In order to test the proposed method CENEO, implemented by the authors in a MATLAB

(Release 2013b) code, two toy networks, case study A and B, were considered as

described in the following. In particular case study A was introduced in order to

1. point out the relevance of the green scheduling on the network performances;

2. compare the results of CENEO with those obtained by explicitly enumerating all

possible stage sequences.

An extensive application of CENEO providing further details regarding the optimisation

procedure is shown in case study B.

2.1 CASE STUDY (A)

In this section the scheduled synchronisation problem is applied to a small size triangular

network. Both the explicit enumeration and the implicit enumeration stage based method

were performed; the solution results are then compared. For the sake of clarity we need to

state that the two solution approaches are not completely comparable due to the fact that

in the stage based implicit enumeration method, the sequences are simultaneously

optimised together with the greens and the offsets whilst in the explicit enumerative

method two separate steps are identified: 1) the selection of the feasible combination of

sequences; 2) the optimisation of the greens together with the offsets which are

constrained to the selected combination of sequences.

It has to be noted that in the following case study we will indicate, with the number of

external iterations (ei), the number of temperature states adopted to develop the simulated

annealing scheme, while with the number of internal iterations (ii) the number of

combinations (randomly selected from the equivalence classes sets) tested within each

external iteration simultaneously with the current greens and offsets.

On the basis of previous considerations it is easy to understand how in the case of the

explicit enumerative approach a higher number of traffic flow simulations4 is required, if

4 The number of traffic flow simulations in case of explicit enumerative approach is equal to the product of

the size of the set of feasible combinations of sequences and the number of algorithm iterations during the

second step of the procedure, i.e. for the synchronisation.

16

compared to the implicit approach5. Nevertheless, such a comparison is performed to

investigate the effectiveness of the proposed implicit method.

The test network layout is shown in Figure 4, the entry/exit flows and the turning

percentages (obtained through path flows) are shown respectively in Table 1 and Table 2;

path-flow patterns are summarised in Table 3; finally, in Figure 5 the stage compositions

and the equivalence classes of sequences are summarised. In accordance with the

previous section which explains the optimisation problem, let m be the number of junctions

in the network equal to 3 and ni the number of feasible stages for each junction i (equal to

3 for junction 1, 4 for junction 2 and 3 for junction 3), and let us assume that all stages are

compulsory for simplicity’s sake, there are (ni 1)! classes of equivalent sequences for

each junction i (i.e. 2 classes for junction 1, 6 classes for junction 2 and 2 classes for

junction3), thus, there are i=1, m (ni 1)! combinations of classes, equal to 24, to be

analysed in order to establish the optimal one. Moreover, in our implementations two

equivalent classes were further discarded at junction 2 (i.e. classes 1324 and 1423) since

the approach j22 had green in two non-consecutive stages, so reducing the number of

stage sequence combinations to 16.

- place Fig.4 # about here

As shown in the following of this section, the outputs of the proposed method, CENEO,

even testing the significance of the number of the internal iterations upon the resulting

performance (in terms of time consuming and network total delay minimisation) are

analysed.

Then a comparison with explicit enumeration, yield through ENEO, has been carried out. It

is worth remembering, as regards ENEO implementations, how the number of algorithm

iterations can affect the overall implementation (substantially in terms of time consuming

since related to the number of traffic simulations to be run). On the base of such a

consideration only the case in which ii = 5 will be discussed and then compared with the

outputs of CENEO.

5 The number of traffic flow simulations in case of implicit approach is equal to the product of the ii which is

always lower than the size of the complete set of combinations and the ei which is fixed as in the explicit

approach.

17

Table 1: entry-exit flows

entry/exit x1 x2 x3 x4 Total

x1 - 179 170 225 574

x2 132 - 45 39 216

x3 143 32 - 73 248

x4 302 69 28 - 399

Total 577 280 243 337 1437

Table 2: turning percentages

Source turn [%]

link Ahead Left Right

x1-1 * - *

2-1 60 40 -

3-1 - 70 30

x2-3 70 30 *

x4-3 60 10 30

1-3 30 30 40

2-3 20 40 40

1-2 70 - 30

3-2 - 70 30
x3-2 * * -

*exclusive turn lane

- place Fig.5 # about here

Table 3: traffic flow patterns
to

from
x1 x2 x3 x4

x1

x2

x3

x4

18

As previously described, the first evaluation of the CENEO modelling has concerned its

performances both in terms of effectiveness (total delay minimisation) and in terms of

efficiency (running time). As Table 4 makes clear, no meaningful distances among the

optimisations outputs (TD) arise by adopting a different number of internal iterations, ii.

That is presumably due to the low complexity of the network which implies that good

approximation of the optimal global solution can be reached also with a low complexity of

the selected algorithm iteration. On the other hand, as expected, different running times

could be pursued; although, considering that this discrepancy is measured in terms of

minutes it could be stated that, since a certain number of internal iterations ii, no relevant

advantages in terms of overall performance could be reached by sliding such a parameter.

Table 4: performance indicators w.r.t. different values of internal iterations (ii=3, 5 and 8)

internal iterations running time [min] TD [PCU h/h]

3 7 22.74

5 8 22.06

8 10 21.94

As stated before, the comparison has been led by considering 5 internal algorithm

iterations (ii = 5). Starting from CENEO implementations, several runs6 are performed in

order to verify the internal dispersion of solution results which was affected by the

stochastic nature of the optimisation algorithm. In Table 5 and Table 6 only the results of

the first shot are shown; specifically, in Table 5 for each junction the optimum sequence is

displayed whilst Table 6 shows the stage durations, tj, and the link offsets, ϕi, with 1 = 0.

In Table 7 and Table 8 the dispersion among different runs is outlined. As expected, a

small internal dispersion has been reached and in particular the first, the second and the

third minimum are very close. Moreover, the fluctuations are less than the 9% of the best

solution.

6 In general there is no indication about the number of runs to be carried out. In our case it was observed that

the optimal solution was not significantly affected if the considered number of runs was greater than 8.

19

Table 5: optimal sequences computed through one shot CENEO
CENEO

junction 1 junction 2 junction 3 TD

[PCU-h/h] optimum sequence Optimum sequence Optimum sequence

123 1432 123 22.06

Table 6: optimal greens and offsets computed through one shot CENEO
CENEO

junction 1 junction 2 junction 3
TD

[PCU-h/h]
t1

[s]

t2

[s]

t3

[s]

t1

[s]

t2

[s]

t3

[s]

t4

[s]

ϕ2

[s]

t1

[s]

t2

[s]

t3

[s]

ϕ3

[s]

22 42 36 16 37 19 28 48 25 36 39 8 22.06

Table 7: optimal sequences computed through CENEO over several runs

CENEO

junction 1 junction 2 junction 3 TD

[PCU-h/h]
Sim run

Delta to best

[%]

Optimum sequence Optimum sequence Optimum sequence Internal dispersion

123 1432 123 22.06 1 +3.04

123 1234 132 21.41 2 0.00

123 1432 132 23.32 3 +8.92

123 1432 132 23.07 4 +7.75

123 1432 123 23.33 5 +8.97

123 1234 132 21.58 6 +0.79

132 1234 132 22.47 7 +4.95

123 1234 132 21.63 8 +1.03

Table 8: optimal greens and offsets computed through CENEO over several runs
CENEO

junction 1 junction 2 junction 3
TD

[PCU-h/h]
Sim run

Delta to best

[%]

Internal dispersion

t1

[s]

t2

[s]

t3

[s]

t1

[s]

t2

[s]

t3

[s]

t4

[s]

ϕ2

[s]

t1

[s]

t2

[s]

t3

[s]

ϕ3

[s]

22 42 36 16 37 19 28 48 25 36 39 60 22.06 1 +3.04

24 44 32 16 32 21 31 57 27 33 40 65 21.41 2 0.00

23 48 29 15 35 18 32 88 27 36 37 11 23.32 3 +8.92

27 44 29 13 28 24 35 39 29 34 37 11 23.07 4 +7.75

25 43 32 17 34 16 33 62 25 31 44 42 23.33 5 +8.97

20 47 33 20 31 20 29 64 28 35 37 38 21.58 6 +0.79

23 40 37 14 37 16 33 19 27 38 35 79 22.47 7 +4.95

25 41 34 13 29 24 34 13 26 33 41 65 21.63 8 +1.03

20

In the following Table 9 an excerption of the neighborhood dynamic generation in a SA

execution is shown. In particular, internal redundancy of the random solution generated

during each SA iteration is tested in order to verify the algorithm exploration capability

which consists of probing a much larger portion of the search space with the hope of

finding other promising solutions that are yet to be refined. Furthermore, total redundancy

is carried out in order to test algorithm exploitation, intensifying and refining the search in

the vicinity of the current optimum sequence combination.

Table 9: dynamic neighbourhood generation for CENEO (an excerption)

SA iteration
Neighbourhood

generation
Junction 1 Junction 2 Junction 3

Internal

redundancy

#/5

Total

redundancy

#/120

 1

1 123 1234 123 1 7

2 123 1243 132 1 9

3 123 1432 123 1 12

4 * 123 1243 123 1 8

5 132 1234 123 1 11

2

1 123 1243 123 1 8

2 132 1432 123 1 8

3 132 1342 132 2 5

4 132 1342 132 2 5

5 * 123 1234 123 1 7

3

1 123 1234 123 1 7

2 123 1342 132 1 10

3 * 132 1243 132 1 11

4 123 1243 132 1 9

5 132 1432 132 1 6

˜ ˜ ˜ ˜ ˜ ˜

23

1 * 123 1432 123 2 12

2 132 1432 132 1 6

3 123 1234 132 1 4

4 132 1243 132 1 11

5 123 1432 123 2 12

24

1 * 123 1432 123 1 12

2 123 1342 132 1 10

3 132 1342 123 1 4

4 132 1243 132 2 11

5 132 1243 132 2 11

* current optimum (c.o)

21

The results obtained through CENEO have been then compared with those achieved by

explicitly enumerating and analysing all feasible sequences through the procedure ENEO.

This latter approach is clearly suitable only for a very small simple network (as occurred in

this case study) due to the large number of feasible sequences greatly increasing with the

number of junctions and the number of stages (see case study B) and it is presented

below for comparison purpose only.

In the ENEO procedure, three implementation steps are identified: 1) for each junction the

adjacency (or compatibility) matrix is defined then all the equivalence classes of

sequences are generated; 2) all the i=1, m (ni- 1)! combinations of sequences (of all the

network junctions) are created; 3) for each combination, greens and offsets optimising

network TD are computed simultaneously (synchronisation) through a Simulated

Annealing solution algorithm (see Cantarella et al., 2015).In Table 10 and Table 11 the

results obtained through ENEO are shown. As expected the combination of sequences

greatly affect the network performances (the worst combination leads to TD close to 50%

greater than the best combination) and, thus, support a proper investigation on the

problem solution.

Table 10: optimal sequences computed through ENEO

ENEO

junction 1 junction 2 junction 3
TD

[PCU-h/h]

Delta to best
[%]

Enumerative sequence Enumerative sequence Enumerative sequence
External

dispersion

132 1234 132 22.01 +3.07

132 1243 132 23.14 +8.75

132 1342 132 22.93 +7.78

132 1432 132 27.46 +28.89

123 1234 132 21.57 +1.18

123 1243 132 24.85 +16.54

123 1342 132 26.82 +25.09

123 1432 132 21.43 0.00

123 1234 123 22.70 +6.23

123 1243 123 24.53 +14.67

123 1342 123 25.95 +21.45

123 1432 123 22.01 +3.14

132 1234 123 21.97 +3.08

132 1243 123 23.72 +11.27

132 1342 123 31.44 +47.11

132 1432 123 26.88 +25.00

22

Table 11: optimal greens and offsets computed through ENEO

In the following Table 12 it is shown the internal dispersion of the solutions carried out

through ENEO by comparing the results obtained in 8 simulation runs in which the

combination of sequences is the best one previously obtained (see Table 9, sequence 123

for junction 1, 1432 for junction 2, 132 for junction 3, which lead to a TD of 21.43 PCU-

h/h). It should be stressed that 2 solutions with equal sequence combination may still differ

with respect to greens and offsets due to the stochastic nature of the algorithm adopted for

approximating the global optimum (see Table 13). Anyhow the fluctuations are less than

6% of the best solution. It is worth noting that, as expected, the internal dispersion

obtained in 8 simulation runs of CENEO (Table 7) results higher with respect to the

internal dispersion in 8 simulation runs of ENEO (Table 12).

ENEO

junction 1 junction 2 junction 3
TD

[PCU-h/h]

Delta to best
[%]

t1

[s]

t2

[s]

t3

[s]

t1

[s]

t2

[s]

t3

[s]

t4

[s]

ϕ2

[s]

t1

[s]

t2

[s]

t3

[s]

ϕ3

[s]
External dispersion

28 40 32 13 31 20 36 86 29 31 40 42 22.01 +3.07

25 41 34 20 30 21 29 23 24 34 42 60 23.14 +8.75

25 43 32 23 29 23 25 29 27 30 41 15 22.93 +7.78

19 43 38 23 24 17 36 85 34 26 40 16 27.46 +28.89

22 44 34 15 38 18 29 30 25 38 37 26 21.57 +1.18

23 49 28 21 33 24 22 56 29 30 41 44 24.85 +16.54

19 46 35 20 32 18 30 25 22 40 38 22 26.82 +25.09

23 39 38 23 29 17 31 51 32 30 38 16 21.43 0.00

25 45 30 18 25 21 36 81 34 26 40 29 22.70 +6.23

27 47 26 19 34 24 23 13 27 29 44 66 24.53 +14.67

17 46 37 21 38 17 24 57 28 34 38 65 25.95 +21.45

25 41 34 19 25 18 38 94 28 27 45 56 22.01 +3.14

26 39 35 14 28 24 34 6 25 33 42 46 21.97 +3.08

26 40 34 21 26 24 29 94 28 30 42 94 23.72 +11.27

16 28 56 27 25 22 26 46 25 30 45 1 31.44 +47.11

29 45 26 20 33 18 29 32 30 26 44 44 26.88 +25.00

23

Table 12: optimal sequences computed through ENEO over several runs on the best combination of sequences

ENEO

junction 1 junction 2 junction 3 TD

[PCU-h/h]
Sim run

Delta to best

[%]

Constrained sequence Constrained sequence Constrained sequence Internal dispersion

123 1432 132 21.43 1 +2.19

123 1432 132 22.13 2 +5.53

123 1432 132 20.97 3 0.00

123 1432 132 21.33 4 +1.72

123 1432 132 21.49 5 +2.50

123 1432 132 21.41 6 +2.10

123 1432 132 22.05 7 +5.15

123 1432 132 21.37 8 +1.91

Table 13 optimal greens and offsets computed through ENEO over several runs on the best combination of sequences

ENEO

junction 1 junction 2 junction 3
TD

[PCU-h/h]
Sim run

Delta to best

[%]

t1

[s]

t2

[s]

t3

[s]

t1

[s]

t2

[s]

t3

[s]

t4

[s]

ϕ2

[s]

t1

[s]

t2

[s]

t3

[s]

ϕ3

[s]
Internal dispersion

23 39 38 23 29 17 31 51 32 30 38 46 21.43 1 +2.19

25 41 34 17 30 23 30 35 29 33 38 27 22.13 2 +5.53

23 43 34 18 29 23 30 57 28 32 40 44 20.97 3 0.00

26 43 31 21 26 19 34 46 30 34 36 25 21.33 4 +1.72

23 47 30 16 30 23 31 55 26 34 40 48 21.49 5 +2.50

23 42 35 19 31 21 29 60 26 34 40 63 21.41 6 +2.10

24 42 34 18 29 21 32 72 27 33 40 62 22.05 7 +5.15

22 45 33 19 29 19 33 61 26 34 40 53 21.37 8 +1.91

The analysis of Table 12 and Table 13 might be repeated for all, or at least for the best

solutions in Table 9 (for example for the solutions that return TD not higher than 6% of the

best one).

The final step of the application shown in this section concerned the comparison among

the two methods (explicit vs. implicit). In Table 14 the delta percentage of the optimum

solution attained through the several simulation runs of CENEO from the worst and the

best solution carried out through ENEO is shown. Therefore, we can appreciate how the

solutions of CENEO approximate the optimum achieved through the explicit enumeration

strategy.

24

Table14: relative variation [%] among optimal CENEO solutions and best/worst ENEO solutions.

Sim run

CENEO - SA – CT&PDM

TD

[PCU-h/h]

Delta to Best

ENEO

Delta to Worst

ENEO junction 1 junction 2 junction 3

[%] [%] Optimum sequence Optimum sequence Optimum sequence

1 22.06 3 -43 123 1432 123

2 21.41 0 -47 123 1234 321

3 23.32 9 -35 123 1432 321

4 23.07 8 -36 123 1432 321

5 23.33 9 -35 123 1432 123

6 21.58 1 -46 123 1234 321

7 22.47 5 -40 321 1234 321

8 21.63 1 -45 123 1234 321

Summing up, considering that each simulation run in ENEO takes about 2 minutes whilst

each simulation run in CENEO takes about 18 minutes, it can be observed (considering

that only 16 feasible combination of sequences exist) that: 1) ENEO needs 32 minutes

plus 16 minutes to get the approximate optimum and refine it with an improvement of 6%

(which is affected by the stochastic nature of the adopted algorithm); 2) against, CENEO

needs 18 minutes (and so saving 30 minutes with respect to ENEO) to get the

approximate optimum, yielding poorer solution with respect to the best of ENEO even

though with a discrepancy which is always less than 10%, and better solution with respect

to the worst of ENEO, with a discrepancy which is always more than at least 35%.

It should be stressed that such a comparison results pointless when larger scale network

are considered and an higher number of feasible sequences are identified (see case study

B).

25

2.2 CASE STUDY (B)

In this section the application of the scheduled synchronisation problem to a more complex

test network is shown. The network layout is shown in Figure 6, while the stage

compositions and the equivalence classes of sequences are summarised in Figure 7.

Entry-exit flows, turning percentages of sink links and traffic flow paths are shown in

Table15, Table16 and Table17 respectively.

As in the previous section, let m be the number of junctions in the network equal to 5 and

ni the number of feasible stages for each junction i (equal to 2 for junction 1, 3 for junction

2 and 4 for junction 3,4,5), and let us assume that all stages are compulsory for simplicity’s

sake, there are (ni- 1)! classes of equivalent sequences for each junction i (i.e. 1 class for

junction 1, 2 classes for junction 2 and 6 classes for junction3,4,5), thus, there are ∏i=1, m

(ni- 1)! combinations of classes, equal to 432, to be analysed.

Unlike case study A, no comparison between explicit (ENEO) and implicit (CENEO)

enumeration approaches are carried out and only the second one is adopted. That is

because in doing so (to match the results attained by CENEO with those of ENEO) we

need to explore 432 combinations of sequences, all of which require us to address a

synchronisation, thus, a complete simulated annealing implementation. In this way, via the

explicit enumeration we would achieve 24x432= 10368 traffic flow simulations and so a

number of solutions which is too great to explore, which leads to a unpractical pursuable

approach.

- place Fig.6 # about here

- place Fig.7 # about here

Table 15: entry-exit flows

entry/exit x1 x2 x3 x4 x5 x6 Total

x1 0 70 80 75 78 82 385

x2 45 0 67 63 67 74 316

x3 55 68 0 67 72 56 318

x4 48 75 77 0 74 39 313

x5 71 78 34 96 0 81 360

x6 74 46 88 37 93 0 338

Total 293 337 346 338 384 332 2030

26

Table 16: turning percentages

Source turn [%]

link Ahead Left Right

x1-5 47 39 14

x2-5 43 42 15

x4-4 39 25 36

x3-3 21 40 39

x6-2 28 72 -

x5-1 100 - -
- *exclusive turn lane

Table 17: traffic flow patterns
to

from
x1 x2 x3 x4 x5 x6

x1

x2

x3

x4

x5

x6

-

27

In order to analyse the effect of the neighbourhood generation a comparative analysis was

worked out to handle the number of internal algorithm iterations (and maintaining the

number of external iterations to 24) in such a way to investigate only the neighbourhood

exploitation (considering that its size increases congruently with ii) which affects the

significance of the error percentage obtained within each external iteration. Therefore, (as

shown in Figure 8, Figure 9 and Figure 10) the trends of the performance indicators (in

terms of network TD) achieved considering different numbers of internal iterations were

evaluated (in this case ii=3; 5 and 8) in order to verify the solution range of variation. To

this aim, a box plot is represented in which internal (int), maximum (max) and minimum

(min) performance indicator, as well as current optimum (c.o) are shown.

The second analysis aims to equalise the time consuming independently from the

neighbourhood generation, thus, the number of external iterations was constrained in

order to fix an upper bound for the number of algorithm implementations (as the product of

the internal and external iterations). In particular, it was assumed that such a bound was

nearly a third of the total number of feasible combinations. On that basis, as shown in

Figure 11 we maintain 24 external iterations when ii=5 whilst we reduce ei to 15 when ii=8

and we extend ei to 40 when ii=3 .Such an assumption implies that different temperature

decrements have to be considered.

- place Fig. 8# about here

- place Fig.9 # about here

- place Fig.10 # about here

28

The results obtained for the different classes of internal iterations were compared

considering three measures of performance (see Table 18)

1) the optimum carried out in terms of TD;

2) the running time of the algorithm;

3) the mean range of variation of the solutions carried out during the internal iterations.

Table 18: performance indicators w.r.t. different values of internal iterations (ii=3, 5 and 8)

internal iterations running time [min] TD [PCU h/h] mean internal range [%]

3 12 25.03 16.46

5 21 19.76 32.01

8 30 19.87 35.11

It should be observed that the running time grows linearly with respect to the number of

internal iterations. Both the optimum achieved by the algorithm (in terms of TD) and the

mean internal range of variation (higher values result in a larger portion of the search

space being explored) are noticeably better when ii=5 and ii=8 are considered as input.

Such a result is due to the fact that presumably only in few cases a significant effect could

be observed by switching the combination of stage sequences and then no large internal

refining are necessary. On that basis, in this case study the choice of considering the input

parameter as the class of 5 internal iterations results as the best one, allowing a

considerably safe in computation time and ensuring contemporary promising optimal

solutions.

In order to verify the stability of the solution achieved by CENEO, as in case study A, a

measure of the internal dispersion has been provided. In particular, for a fixed number of

internal iterations equal to 5, several runs7 have been carried out, evaluating the delta

percentage to best solution. Results shown in Table 19 and Table 20 make clear that no

meaningful variation among solutions arises even though the stochastic nature of the

optimisation algorithm. As a matter of fact, as in case study A (Table 7 and Table 8), the

fluctuations are less than the 10% of the best solution.

In order to equalise the time consuming without assuming any variation of the number of

internal iterations we perform, as previously described, a further analysis (see Figure 11)

which consists in adopting three different temperature decrements, each one derived from

7Through a preliminary analysis it was observed that differently from case study A a higher number of

iterations was required in the purpose of reaching the stability of the solutions.

29

a different temperature range. In particular, we assume that the start and the final

temperature are fixed but we vary the number of temperature states in order to generate

different decrement lengths. The case of 5 internal iterations was considered as reference,

thus, we obtain 15 external iterations when ii=8 and 40 external iterations when ii=3.

- place Fig.11 # about here

As expected when ii=8 and ei=15, as high temperature decrements are adopted only a few

search spaces are explored, thus a proxy of a local search is performed yielding a poor

optimum result. However, when ii=3 and ei=40 low temperature decrements are applied in

order to randomise the search for a number of external iterations until the temperature was

cool enough to make the algorithm act as a simulated annealing; as a matter of fact, the

starting point of the cooling process is not good enough to generate a solution which is

better with respect to the reference one attained considering ii=5 and then ei=24.

Nevertheless, even though it is quite clear that a large number of internal iterations, on the

basis of the trade-off between the results obtained in the two aforementioned analyses,

leads to worse global performances (especially in terms of time consuming), no general

considerations can be made when lowering the number of external iterations since the

results are affected by a certain randomness.

Table 19: optimal sequences computed through CENEO over several runs)
CENEO

junction 1 junction 2 junction 3 junction 4 junction 5 TD
[PCU-h/h]

Sim run

Delta to best
[%]

Opt. seq. Opt. seq. Opt. seq. Opt. seq. Opt. seq. Internal dispersion

12 123 1342 1423 1234 20.98 1 +5.82

12 123 1324 1342 1432 20.92 2 +5.54

12 123 1234 1432 1324 20.05 3 +1.45

12 123 1342 1423 1234 20.46 4 +3.42

12 123 1234 1432 1324 20.77 5 +4.86

12 123 1324 1342 1432 21.86 6 +9.61

12 132 1234 1234 1342 20.92 7 +5.54

12 123 1234 1432 1324 19.76 8 0.00

12 132 1234 1234 1342 20.66 9 +4.36

12 123 1324 1342 1432 20.82 10 +5.09

12 123 1342 1423 1234 21.18 11 +6.70

12 123 1234 1432 1324 20.84 12 +5.18

12 123 1234 1432 1324 20.39 13 +3.09

12 132 1234 1234 1342 21.26 14 +7.06

12 123 1324 1342 1432 21.54 15 +8.26

12 123 1234 1432 1324 19.76 16 +0.00

30

12 123 1342 1423 1234 21.84 17 +9.52

12 123 1324 1342 1432 21.47 18 +7.96

12 123 1234 1432 1324 20.98 19 +5.82

12 132 1234 1234 1342 21.33 20 +7.36

Table 20: optimal greens and offsets computed through CENEO over several runs)
CENEO

junction 1 junction 2 junction 3 junction 4 junction 5 TD
[PCU-
h/h]

Sim
run

Delta to
best
[%]

t1 t2 t1 t2 t3 ϕ2 t1 t2 t3 t4 ϕ3 t1 t2 t3 t4 ϕ4 t1 t2 t3 t4 ϕ5 Internal
dispersion

66 34 45 38 17 55 27 17 30 26 80 23 26 30 21 96 24 29 20 27 59 20.98 1 +5.82

65 35 43 41 16 59 26 14 32 28 81 24 29 27 20 90 22 26 21 31 61 20.92 2 +5.54

65 35 42 39 19 50 28 16 30 26 65 26 25 28 21 71 23 26 22 29 38 20.05 3 +1.45

63 37 42 39 19 54 25 19 32 24 69 22 30 25 23 82 20 24 23 33 55 20.46 4 +3.42

64 36 43 41 16 54 25 15 32 28 83 22 29 30 19 95 23 24 22 31 63 20.77 5 +4.86

63 37 45 35 20 63 27 16 28 29 94 25 29 24 22 21 23 27 23 27 74 21.86 6 +9.61

65 35 43 41 16 59 26 14 32 28 81 24 29 27 20 90 22 26 21 31 61 20.92 7 +5.54

66 34 42 40 18 50 27 14 30 29 64 27 24 26 23 67 24 26 21 29 32 19.76 8 0.00

62 38 43 38 19 54 23 18 33 26 73 22 30 28 20 88 23 24 23 30 66 20.66 9 +4.36

65 35 42 39 19 57 25 15 32 28 81 24 30 26 20 92 22 26 23 29 61 20.82 10 +5.09

65 35 40 39 21 53 25 15 31 29 80 26 30 24 20 97 23 26 23 28 69 21.18 11 +6.70

63 37 41 40 19 56 26 15 33 26 76 23 27 27 23 96 22 26 24 28 72 20.84 12 +5.18

63 37 41 39 20 55 25 16 35 24 71 23 31 25 21 82 23 23 22 32 56 20.39 13 +3.09

64 36 42 39 19 57 25 14 30 31 81 24 27 26 23 94 25 25 22 28 59 21.26 14 +7.06

64 36 44 38 18 51 28 15 31 26 80 27 31 24 18 11 21 26 24 29 77 21.54 15 +8.26

66 34 42 40 18 50 27 14 30 29 64 27 24 26 23 67 24 26 21 29 32 19.76 16 +0.00

63 37 43 37 20 59 27 19 28 26 93 25 30 23 22 21 24 27 22 27 81 21.84 17 +9.52

65 35 45 38 17 56 28 15 29 28 81 25 32 25 18 8 21 26 23 30 70 21.47 18 +7.96

66 34 45 38 17 55 27 17 30 26 80 23 26 30 21 96 24 29 20 27 59 20.98 19 +5.82

64 36 42 37 21 53 25 14 31 30 82 24 28 24 24 100 25 24 23 28 64 21.33 20 +7.36

3 CONCLUSIONS

This paper focuses on a general approach to Network Signal Setting Design (NSSD)

including green scheduling, green timing and coordination into the so-called scheduled

synchronisation. The proposed method, called CENEO (ComplEte NEtwork Optimisation),

is an extension of the synchronisation method and the traffic flow model proposed in

Cantarella et al. (2015) that requires the stage sequence as input data and optimises

stage lengths and offsets only. CENEO, to authors' knowledge, is the first method

available in literature for scheduled synchronisation.

31

In order to discuss the efficiency of CENEO and to calibrate the parameters of the SA

algorithm a three and a five nodes networks have been analysed. The iterations were

distinguished in external and internal; the former representing the number of temperature

states adopted to apply the simulated annealing scheme, the latter representing the

number of combinations (randomly selected from the equivalence classes) tested within

each external iteration together with the current greens and offsets. In particular, firstly, for

a fixed value of external iterations, the effect of different values of internal iterations (3, 5

and 8) were tested (see Figure 8, Figure 9 and Figure 10); then the external and internal

iterations pairs were obtained by fixing their product. Results of both analyses indicate that

higher values of internal iterations not necessarily improve general performance.

In order to discuss the effectiveness of CENEO the results performed by CENEO have

been also compared with those carried out by explicitly enumerating all possible stage

sequences and then analysing them for the three nodes network only (explicit enumeration

is, in fact, suitable only for a very small simple network as noted in section 3). The values

of the performance indicators provided by CENEO over 8 simulations are in one case the

best feasible solution, in four cases within an error less than 5% and in three cases within

an error less than 10% (see Table 14) of the optimal solution generated through complete

enumeration of all combinations.

In conclusion, CENEO is an efficient and effective method for scheduled synchronisation,

it is presumably suitable for large scale application, and implementation in commercial

software suites. Moreover, it can also be generalised to Signal Setting Global Optimisation

with equilibrium constraints as well as for Urban Network Design Problem, including lane

allocation.

Possible enhancements worthy of research are: testing other traffic flow models (e.g. a

mesoscopic traffic flow model; see Di Gangi et al., 2016), the investigation of hybrid meta-

heuristics (i.e. population based with neighbourhood based methods) presumably more

suitable for large scale networks, NSSD based on reserve capacity maximisation at

network level. Extensions of Phase-based and Lane-based methods to NSSD also seem

interesting research perspectives.

Acknowledgements

This research has been partially supported by the University of Salerno, under PhD program on transportation (Ph.D.

School in Environmental Engineering), local grant n. ORSA132945 - 2013, local grant n. ORSA165221 - 2016, and under

‘APPS4SAFETY – PON03PE_00159_3’. We wish to thanks anonymous reviewers who provided very helpful comments

to improve the paper. For our friendship policy, the authors’ order is organised as in follows: the first author is a PhD

Candidate whose research thesis mainly focused on the topic of the paper, the other authors are in alphabetical order.

32

References

Allsop, R.E., 1971. SIGSET: a computer program for calculating traffic signal settings. Traffic Engineering

and Control 13 (2), 58–60.

Allsop, R.E., 1975. Computer program SIGCAP for assessing the traffic capacity of signal-controlled road

junctions –description and manual for users, Transportation Operations Research Group Working Paper,

Vol. 11, University of Newcastle upon Tyne.

Binning, J. C., Crabtree, M. R., & Burtenshaw, G. L., 2010.Transyt 14 user guide. Transport Road Laboratory

Report nr AG48. APPLICATION GUIDE 65 (Issue F).

Bron, C., & Kerbosch, J., 1973. Algorithm 457: finding all cliques of an undirected graph. Communications of

the ACM, 16(9), 575-577.

Burrow, I.J., 1987. OSCADY: a computer program to model capacities, queues and delays at isolated traffic

signal junctions, TRRL Report, Vol. 105, Transport and Road Research Laboratory, Crowthorne.

Cantarella, G. E., de Luca, S., Di Gangi, M., Di Pace, R., &Memoli, S. (2014). Macroscopic vs. mesoscopic

traffic flow models in signal setting design. In Intelligent Transportation Systems (ITSC), 2014 IEEE 17th

International Conference 2221-2226

Cantarella, G. E., de Luca, S., Di Pace, R., & Memoli, S. (2015). Network Signal Setting Design: meta-

heuristic optimisation methods. Transportation Research Part C: Emerging Technologies, 55, 24-45.

Daganzo, C.F., 1994. The cell-transmission model. Part 2: Network traffic, University of California, Berkeley,

California.

Di Gangi, M., Cantarella, G. E., Di Pace, R., & Memoli, S. (2016). Network traffic control based on a

mesoscopic dynamic flow model. Transportation Research Part C: Emerging Technologies, 66, 3-26.

Friesz, T.L., Han, K., Neto, P.A., Meimand, A., Yao, T., 2013. Dynamic user equilibrium based on a

hydrodynamic model. Transportation Research Part B 47, 102–126.

Gallivan, S. Heydecker, B. 1988 Optimising the control performance of traffic signals at a single

junction. Transportation Research Part B: Methodological, 22(5) 357-370.

Gayah, V.V., Daganzo, C.F., 2012. Analytical capacity comparison of one-way and two-way signalized street

networks. Transportation Research Record 2301, 76–85

Gu, W., Gayah, V.V., Cassidy, M.J., Saade, N., 2014. On the impacts of bus stops near signalized

intersections: models of car and bus delays. Transportation Research Part B 68, 123–140.

Hadi, M. A. & Wallace, C. E., 1993. Hybrid genetic algorithm to optimize signal phasing and timing

Transportation Research Record 1421, 94-103.

Hadi, M. A., & Wallace, C. E. 1994. Optimization of signal phasing and timing using cauchy simulated

annealing. Transportation Research Record, (1456), 64-71.

Han, K., & Gayah, V. V. 2015. Continuum signalized junction model for dynamic traffic networks: Offset,

spillback, and multiple signal phases. Transportation Research Part B: Methodological, 77, 213-239.

Han, K., Gayah, V., Piccoli, B., Friesz, T.L., Yao, T., 2014. On the continuum approximation of the on-and-off

signal control on dynamic traffic networks. Transportation Research Part B 61, 73–97

Improta, G., & Cantarella, G. E. 1984. Control system design for an individual signalized

junction. Transportation Research Part B: Methodological, 18(2), 147-167.

Lam, W.H.K, Poon, A.C.K. and Mung, G.K.S. (1997) Integrated model for lane-use and signal-phase

designs. Journal of Transportation Engineering, ASCE, 123, 114-122.

33

Liu, R., & Smith, M., 2015. Route choice and traffic signal control: A study of the stability and instability of a

new dynamical model of route choice and traffic signal control. Transportation Research Part B:

Methodological, 77, 123-145.

Metropolis, N. Rosenbluth, A.W. Rosenbluth, M.N. Teller, A.H. Teller, E., 1953Equation of state calculation

by fast computing machines J. Chem. Phys.. 1087–1092.

Park, B., B., Messer, J., C., Urbanik II, T., 2000. Enhanced Genetic Algorithm for Signal-Timing Optimization

of Oversaturated Intersections. Transportation Research record 1727, no.00.1661.

Silcock, J.P., 1997. Designing signal-controlled junctions for group-based operation. Transportation

Research Part A: Policy and Practice, 31(2): 157-173.

Smith, M. J., Liu, R., & Mounce, R., 2015. Traffic control and route choice: Capacity maximisation and

stability. Transportation Research Part B: Methodological, 81, 863-885.

Sun, W., Wu, X., Wang, Y. & Yu, G. (2015), A continuous- flow-intersection-lite design and traffic control for

oversaturated bottleneck intersections, Transportation Research Part C: Emerging Technologies, 56, 18–

33.

Webster, F.V., 1958. Traffic signal settings, Road Research Technical Paper, No. 39, HMSO, London.

Wong, C.K. and Wong, S.C., (2003). Lane-based optimization of signal timings for isolated junctions.

Transportation Research Part B, 37, 291-312.

Wong, C.K., Wong, S.C. and Tong, C.O., (2000). Lane-based optimization method for maximizing reserve

capacity of isolated signal-controlled junctions. Proceeding of the Fifth Conference of Hong Kong Society

for Transportation Studies, 2 December, Hong Kong, pp. 176-184.

Wong, S.C., 1996. Group-based optimisation of signal timings using the TRANSYT traffic model.

Transportation Research Part B: Methodological, 30(3): 217-244.

Wong, S.C., 1997. Group-based optimisation of signal timings using parallel computing. Transportation

Research Part C: Emerging Technologies, 5(2): 123-139.

Wong, S.C., Wong, W.T., Leung, C.M., Tong, C.O., 2002. Group-based optimization of a time-dependent

TRANSYT traffic model for area traffic control. Transportation Research Part B: Methodological, 36(4):

291-312.

Yu, C., Ma, W., Lo, H. K., & Yang, X. (2016). Robust Optimal Lane Allocation for Isolated

Intersections. Computer Aided Civil and Infrastructure Engineering. DOI: 10.1111/mice.12236

Zhou, Y. & Zhuang, H. (2014), The optimization of lane assignment and signal timing at the tandem

intersection with pre-signal, Journal of Advanced Transportation, 48(4), 362– 76.

34

LIST OF NOTATIONS

We list here the parameters used in the paper

n number of candidate stages

no number of optional candidate stages

nc number of compulsory candidate stages

m number of junctions in the network

c cycle length (s)

tj length of stage j (s)

tar all red period (s)

lk lost time for approach k (s)

gk effective green for approach k (s)

q
k
j arrival flow for approach k (pcu/hr) of the generic junction j

sk
j saturation flow for approach k (pcu/hr) of the generic junction j

ih link offset between any two adjacent junctions i and h (s)

i node offset at junction i (s)

TD single junction total delay (pcu/hr x hr) on approach k of junction j

Ciqkj(t) cumulated input flows (pcu/hr) through the stop line of approach k of

junction j, in the subsequent sub-intervals t

Coqkj(t) cumulated output flows (pcu/hr) through the stop line of approach k of

junction j, in the subsequent sub-intervals t

 the sub-interval of the time of analysis Ta

DTDkj Deterministic Total Delay (pcu/hr x hr) cumulated in the interval [0,Ta]

for approach k of junction j

SOTDkj Stochastic Oversaturation component of Total Delay (pcu/hr x hr)

cumulated in the interval [0,Ta] for approach k of junction j

TD network total delay (pcu/hr x hr)

P(c) probability of acceptance

r real number randomly drawn from a uniform distribution over [0, 1]

T current temperature of the system

Ta time of analysis

Tinit initial temperature

35

Tfin final temperature

Tit temperature at iteration it

α constant (equal to 0.95)

x vector of greens and offsets

N number of combination of sequences within the inner loop

s0 combination of sequences at iteration 0

x0 = f(g0,φ0) green and offsets generation at iteration 0

sit combination of sequences at iteration it

xit = f(git,φit) green and offsets generation at iteration it

c.o = f(xit,sit) current optimum solution at iteration it

c.n = f(xit+1,sit+1) current new solution at iteration it

Δc = c.n - c.o delta between current new and current optimum solutions

b binary variable (that may get one of two values)

t ternary variable (that may get one of three values)

