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The study of the decay of an accelerated proton recently provided a “theoretical proof” of the Unruh 
effect. On the basis of general covariance of Quantum Field Theory, indeed, it was found that the decay 
rates in the inertial and comoving frames do coincide only when the thermal nature of the accelerated 
vacuum is taken into account. Such an analysis was then extended to the case with mixed neutrinos. 
In this paper, we show that, by further embedding neutrino oscillations in the above framework, the 
requirement of general covariance necessarily entails the use of flavor neutrinos as asymptotic states, as 
well as the occurrence of neutrino oscillations in the Unruh thermal bath.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the history of Physics, the adoption of principles has re-
vealed to be a formidable investigation tool. Although intimately 
related to the phenomenological realm from which they stem, once 
elevated to the status of postulates, physical principles act as light-
houses for the development of a consistent theoretical apparatus. 
Paradigmatic examples are the principle of conservation of energy, 
which led for instance to the discovery of the neutrino, and the 
principle of constancy of speed of light, at the basis of Special Rel-
ativity.

Recently, general covariance was advocated to exhibit that the 
internal consistency of quantum field theory (QFT) unavoidably 
requires the existence of the Unruh effect, also known as Fulling-
Davies-Unruh effect [1–3]. Indeed, starting from the statement that 
acceleration can influence even the proper lifetime of stable parti-
cles [4], in a series of remarkable papers [5] it was shown that 
the tree-level decay rate of an accelerated proton via the inverse 
β-decay is frame-independent only when the thermal nature of 
the vacuum for a non-inertial observer is considered.

The fact that a theoretical requirement leads to the specific 
form of the ground state for an accelerated observer should be 
regarded as a considerable result, especially in view of the per-
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plexities which have been sometimes raised about the physical 
significance of the Unruh effect [6]. Such a skepticism is enhanced 
by the lack of direct evidences of this phenomenon, as it also hap-
pens for the case of the Hawking radiation [7]. In fact, at present, 
the most likely arena for (indirect) experimental tests of these ef-
fects is given by analogue gravity [8].

In the aforemention studies on the proton decay, the emitted 
neutrino was treated as massless and only in Ref. [9] as a mas-
sive particle. In these works, however, neutrino mixing was not 
taken into account. This was done for the first time in Ref. [10], 
where a discrepancy between the proton decay rate in the inertial 
and comoving frames was claimed to arise. Subsequently, it was 
proved that general covariance does indeed hold in the above anal-
ysis: this was shown by employing either flavor [11] or mass [12]
eigenstates for neutrinos, thus leaving an essential ambiguity on 
the very nature of asymptotic neutrino states.

In this paper we show that, due to the occurrence of neutrino 
oscillations in the problem at hand, general covariance leads to 
the conclusion that the correct states to describe the asymptotic 
behavior of neutrinos must be the flavor ones, and that the Unruh 
thermal bath is made up of oscillating neutrinos. Throughout the 
work, we shall use natural units h̄ = c = 1 and the Minkowski 
metric with the mostly negative signature.

2. General formalism

Let us start by setting the framework. Following the approach 
and the notation of Refs. [5], the proton |p〉 and the neutron |n〉
can be viewed as unexcited and excited states of the nucleon. 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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In addition, we assume to deal with particles that are energetic 
enough to possess a well-defined trajectory. In these conditions, 
it is possible to employ the Fermi theory of current-current in-
teraction, where we consider a quantum leptonic and a classical 
hadronic current Ĵμ� Ĵh,μ → Ĵμ� Ĵ (cl)

h,μ , with

Ĵ (cl)
h,μ = q̂(τ )uμδ(x)δ(y)δ(u − a−1) , (1)

(for the definition of the lepton current Ĵμ� , see below). Here,1

τ = v/a is the nucleon’s proper time (with v being the Rindler 
time coordinate), a its proper acceleration and u = a−1 = const
represents the spatial Rindler coordinate which denotes the world 
line of the uniformly accelerated particle. The four-velocity of the 
nucleon uμ is given by uμ = (a, 0, 0, 0), uμ = (

√
a2t2 + 1, 0, 0, at), 

in Rindler and Minkowski coordinates, respectively. In accordance 
with Refs. [5,13], the Hermitian monopole q̂(τ ) is given by q̂(τ ) ≡
eiĤτ q̂0 e−i Ĥτ , where Ĥ is the nucleon Hamiltonian and q̂0 is used 
to reconstruct the effective Fermi constant G F ≡ 〈p| ̂q0|n〉.

Assuming to deal with a simplified two-flavor model, the in-
teraction of the charged leptons �̂α and neutrinos �̂να (α = e, μ)

with the nucleon current Ĵ (cl)
h,μ is described by the Fermi action

Ŝ I ≡
∑

α=e,μ

∫
d4x

√−g Ĵ (cl)
h,λ

(
�̂ναγ

λ�̂α + �̂αγ λ�̂να

)
, (2)

where g ≡ det(gμν) and γ λ are the gamma matrices in Dirac rep-
resentation (e.g., see Ref. [14]). In Eq. (2), neutrino fields with 
definite flavors are related to the ones with definite masses by the 
standard transformations

�̂νe = cos θ �̂ν1 + sin θ �̂ν2 , �̂νμ = −sin θ �̂ν1 + cos θ �̂ν2 .

(3)

In what follows, we shall focus only on the process involving the 
production of a positron. The case in which the proton decays into 
a neutron, an anti-muon and a muon neutrino can be treated anal-
ogously and in an independent way.

3. Inertial frame

In the inertial frame, the process to be considered is (inverse 
β-decay)

(i) p → n + e+ + νe , (4)

which is pictorially represented in Fig. 1. In this frame, the fermion 
field is expanded as

�̂ =
∑
σ=±

∫
d3k

4π
3
2

[
e−ikμxμ u(ω)

σ b̂kσ + eikμxμ u(−ω)
−σ d̂†

kσ

]
, (5)

where σ is the polarization, ω = √
k2 + m2 is the Minkowski fre-

quency and u(ω)
σ is the spinor defined as [11]

1 We assume the acceleration to occur along the z-direction. With this choice, 
the Rindler coordinates (v, x, y, u) are related with the Minkowski coordinates 
(t, x, y, z) as follows: t = u sinh v , z = u cosh v , with x and y untouched.
Fig. 1. Decay process (i) in the inertial frame. Time flows in the vertical direction.

u(±ω)
+ (k) = 1√

ω(ω ± m)

⎛⎜⎜⎝
m ± ω

0
kz

kx + iky

⎞⎟⎟⎠ ,

u(±ω)
− (k) = 1√

ω(ω ± m)

⎛⎜⎜⎝
0

m ± ω
kx − iky

−kz

⎞⎟⎟⎠ .

(6)

The tree-level transition amplitude for the process (i) reads [11]

A(νe)
(i) ≡ 〈n| ⊗ 〈e+, νe| Ŝ I |0〉 ⊗ |p〉 (7)

= G F

24π3

[
cos2 θ Iσνσe (ων1 ,ωe) + sin2 θ Iσνσe (ων2 ,ωe)

]
,

where for simplicity we have omitted the k- and σ -dependence of 
the lepton states, we have assumed equal momenta and polariza-
tions for neutrinos with definite masses and

Iσνσe (ων j ,ωe)

=
+∞∫

−∞
dτ uμ

[
ū

(+ων j )

σν
γ μu(−ωe)−σe

]
(8)

× e
i
[
�mτ+a−1

(
ων j +ωe

)
sinh aτ−a−1

(
kz
ν+kz

e

)
cosh aτ

]
, j = 1,2.

Note that the asymptotic flavor state |νe〉 in Eq. (7) has been ex-
pressed in terms of the corresponding mass states |νi〉 (i = 1, 2) by 
means of Pontecorvo mixing transformations [15]

|νe〉 = cos θ |ν1〉 + sin θ |ν2〉,
|νμ〉 = −sin θ |ν1〉 + cos θ |ν2〉 .

(9)

Now, the differential transition probability takes the form

d6P(νe)
(i)

/
d3kν d3ke ≡ ∑

σe,σν

∣∣∣A(νe)
(i)

∣∣∣2 and the transition rate is 

given by � ≡ P/T , with T ≡ ∫ +∞
−∞ dτ being the nucleon total 

proper time.
In Ref. [11], it has been shown that the decay rate for the pro-

cess (i) is

�
(νe)
in = cos4 θ �1 + sin4 θ �2 + cos2 θ sin2 θ �12 , (10)

where we have introduced the shorthand notation

� j ≡ 1

T

∑
σν,σe

G2
F

28π6

∫
d3kν

∫
d3ke

∣∣Iσνσe (ων j ,ωe)
∣∣2, j = 1,2 ,

(11)
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Fig. 2. Decay process (ii) in the inertial frame.

�12 ≡ 1

T

∑
σν,σe

G2
F

28π6

∫
d3kν

×
∫

d3ke

[
Iσνσe (ων1 ,ωe)I ∗

σνσe
(ων2 ,ωe) + c.c.

]
. (12)

The aim of the calculation contained in Ref. [11] is to exhibit the 
equality between Eq. (10) and its counterpart in the accelerated 
frame (see below), which guarantees the validity of the principle 
of general covariance.

At this point, it must be emphasized that in the above calcu-
lation an infinite proper time interval is considered, which allows 
for the emitted electron neutrino to oscillate.2 Thus, we should tale 
into account not only the process in Eq. (4), but also the following 
one:

(ii) p → n + e+ + νμ . (13)

The above relation must be intended in the sense of Fig. 2: al-
though it is true that the lepton charge must necessarily be con-
served in the vertex (at tree-level), as soon as the outgoing neu-
trino is produced, there is a non-vanishing probability that it un-
dergoes oscillations. We remark that this process has not been 
included in the analysis of Ref. [11], without affecting, however, 
the validity of the results there contained.

The transition amplitude for the process (ii) is now given by

A(νμ)

(ii) = 〈n| ⊗ 〈e+, νμ| Ŝ I |0〉 ⊗ |p〉 (14)

= − G F

24π3
cos θ sin θ

[
Iσνσe (ων1 ,ωe) − Iσνσe (ων2 ,ωe)

]
.

In terms of �, the quantity A(νμ)

(ii) of Eq. (14) associated to the pro-
cess (ii) leads to the following transition rate:

�
(νμ)

in = cos2 θ sin2 θ (�1 + �2 − �12) , (15)

where the three terms in the r.h.s. have already been defined in 
Eqs. (11) and (12). We notice that the above transition rate is 
proportional to sin2 2θ , thus showing that it is originated by in-
terference.

Finally, observe that the total decay rate in the inertial frame 
reads

�in ≡ �
(νe)
in + �

(νμ)

in = cos2 θ�1 + sin2 θ�2 . (16)

2 We remark that we are describing the spacetime evolution of neutrinos by 
means of plane waves rather than wave packets, so that no decoherence scale ap-
pears in our analysis.
4. Accelerated frame

From the point of view of an observer comoving with the 
proton, the only way to make the particle’s decay possible is to 
suppose the existence of a thermal bath of electrons, neutrinos 
and the corresponding antiparticles [11]. In such conditions, three 
channels have to be considered to match the inertial process (4), 
i.e.

(iii) p+ + e− → n + νe, (iv) p+ + νe → n + e+,

(v) p+ + e− + νe → n .
(17)

In order to calculate the proton’s decay rate in the accelerated 
frame, we need the expansion for the fermion fields in Rindler co-
ordinates, that is

�̂ =
∑
σ=±

+∞∫
0

dω

∫
d2k

(2π)
3
2

[
ei(−ωv/a+kαxα)u(ω)

σ b̂wσ

+ ei(ωv/a + kαxα)u(−ω)
−σ d̂†

wσ

]
, (18)

where kαxα = kxx + ky y, ω is the Rindler frequency which can as-
sume arbitrary positive values and does not satisfy any dispersion 
relation, w = (ω, kx, ky) and u(ω)

σ is defined as [11]

u(ω)
+ (u,w) =

√
a cosh(πω/a)

π l

×

⎛⎜⎜⎜⎜⎜⎝
ilKiω/a−1/2(ul) + m Kiω/a+1/2(ul)

−(kx + iky)Kiω/a+1/2(ul)

ilKiω/a−1/2(ul) − m Kiω/a + 1/2(ul)

−(kx + iky)Kiω/a+1/2(ul)

⎞⎟⎟⎟⎟⎟⎠ , (19)

u(ω)
− (u,w) =

√
a cosh(πω/a)

π l

×

⎛⎜⎜⎜⎜⎜⎝
(kx − iky)Kiω+1/2(ul)

ilKiω/a−1/2(ul) + m Kiω/a+1/2(ul)

−(kx − iky)Kiω+1/2(ul)

−ilKiω/a−1/2(ul) + m Kiω/a+1/2(ul)

⎞⎟⎟⎟⎟⎟⎠ . (20)

Here Kiω/a±1/2(ul) represents the modified Bessel function of sec-

ond kind and complex order, and l ≡√
m2 + (kx)2 + (ky)2.

Let us then consider the scattering process (iii) in Eq. (17) (see 
also Fig. 3); similar calculations can be carried out for the pro-
cesses (iv) and (v). By straightforward calculations, we get [11]

A(νe)
(iii) ≡ 〈n| ⊗ 〈νe| Ŝ I |e−〉 ⊗ |p〉 (21)

= G F

(2π)2

[
cos2 θ J (1)

σνσe (ων,ωe) + sin2 θ J (2)
σνσe (ων,ωe)

]
,

where we have assumed equal frequencies and polarizations for 
neutrino states with definite masses, and

J (i)
σνσe (ων,ωe) ≡ δ

(
ωe − ων − �m

)
ū(i,ων)

σν
γ 0u(ωe)

σe , (22)

with i = 1, 2. The spinor component related to the neutrino field 
contains the information on the mass of νi and, by means of the 
current hypothesis, this is the only difference between the func-
tions J (i) with different indexes.

Now, the sum of the transition rates for the three processes in 
Eqs. (17) yields [11]
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Fig. 3. Decay processes (iii), (iv) and (v) in the accelerated frame.
�
(νe)
acc = cos4 θ �̃1 + sin4 θ �̃2 + cos2 θ sin2 θ �̃12 , (23)

where

�̃ j ≡ N
+∞∫

−∞
dωR j(ω), j = 1,2 , (24)

and N ≡ 2π−7a−2G2
F e−π�m/a . The functions �̃12 and R j in 

Eqs. (23) and (24) are defined by

R j(ω) =
∫

d2kνd2ke lν j le
∣∣∣K i

a ω̃+ 1
2

(
lν j

a

)
K i

a ω+ 1
2

(
le
a

)∣∣∣2
+ mν j meRe

[∫
d2kνd2ke K 2

i
a ω̃− 1

2

(
lν j

a

)
K 2

i
a ω+ 1

2

(
le
a

)]
,

(25)

and

�̃12 = N√
lν1 lν2

∫
dωd2ked2kν

{
le
∣∣∣K i

a ω+ 1
2

(
le
a

)∣∣∣2
× (

κ2
ν + mν1mν2 + lν1 lν2

)
× Re

[
K i

a ω̃+ 1
2

(
lν1

a

)
× K i

a ω̃− 1
2

(
lν2

a

)]
+ me

(
lν1mν2 + lν2mν1

)
×Re

[
K 2

i
a ω+ 1

2

(
le
a

)
K i

a ω̃− 1
2

(
lν1

a

)
K i

a ω̃− 1
2

(
lν2

a

)]}
, (26)

respectively, where we have used the shorthand notation ω̃ ≡ ω −
�m.

In Ref. [11] it was shown that the decay rate �(νe)
acc in Eq. (23) is 

in agreement with the corresponding expression �(νe)
in in the iner-

tial frame (see Eq. (10)). In particular, one can prove that �i = �̃i
for i = 1, 2, whereas �12 and �̃12 are equal to each other only 
up to a first-order expansion in the parameter δm ≡ mν2 − mν1 , 
where mνi represents the mass of the i-th neutrino state. In such 
an approximation, Pontecorvo states (9) can be identified with the 
exact flavor neutrino states, defined as eigenstates of flavor charges 
[16,17].

On the other hand, in Sec. 3 we have seen that an additional 
contribution to the proton decay rate has to be considered to take 
account of flavor oscillations. In the inertial frame, such a con-
tribution is provided by the process (ii) in Fig. 2. Guided by the 
principle of general covariance, we now look for the corresponding 
interactions in the comoving frame which should lead to the same 
expression of the decay rate.
To this aim, we consider the following three channels as poten-
tial candidates for the non-inertial counterpart of the decay (13)
(see Fig. 4)

(vi) p+ + e− → n + νμ, (vii) p+ + νμ → n + e+,

(viii) p+ + e− + νμ → n .
(27)

Note that, while the process (vi) is of the same type of (ii), since 
it simply involves the oscillation of the emitted electron neutrino, 
the processes (vii) and (viii) are essentially due to the oscillation of 
a muon antineutrino that is already present in the Unruh thermal 
bath.

In order to legitimate the validity of our assumption, we need 
to perform the same calculations leading to the decay rate in 
Eq. (23). The outcome of this procedure turns out to be

�
(νμ)
acc = cos2 θ sin2 θ

(
�̃1 + �̃2 − �̃12

)
. (28)

Therefore, in light of the discussion after Eq. (26), which allow 
us to state that �(νe)

in = �
(νe)
acc , it is possible to infer that such an 

equivalence holds also for the decay rates in Eqs. (15) and (28). 
Moreover, if we compute the total (comoving) decay rate which 
includes neutrino oscillations, we deduce that

�acc = �
(νe)
acc + �

(νμ)
acc = cos2 θ �̃1 + sin2 θ �̃2 . (29)

By comparing the above result with the total (inertial) decay rate 
in Eq. (16), we find that

�in = �acc , (30)

which means that such a result does not depend on the quantities 
�12 and �̃12, whose treatment would require additional computa-
tional effort [11].

Remarkably, Eq. (30) not only involves a generalization of the 
analysis of the inverse β-decay to the case in which the emitted 
neutrino undergoes oscillations, but also corroborates our guess 
of selecting the processes in Eqs. (27) as the counterpart for the 
decay (ii) in the inertial frame. Hence, the maintenance of the 
principle of general covariance results in the necessity of having 
a thermal bath containing oscillating neutrinos.

5. Conclusions

In this paper, we have extended the study of the inverse 
β-decay firstly introduced in Refs. [5] and then developed in 
Refs. [10–12] to the case in which neutrino oscillations are taken 
into account. On the basis of the requirement of general covari-
ance of QFT, we have shown that the Unruh radiation “seen” by 
the accelerated proton must necessarily be made up of oscillat-
ing neutrinos. This is a novel feature which had been surprisingly 
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Fig. 4. Decay processes (vi), (vii) and (viii) in the accelerated frame. Oscillations of neutrinos in the Unruh thermal bath are considered in the last two diagrams.
neglected in the previous literature on this topic and that here 
emerges in a very natural way.

A further interesting observation that can be deduced from our 
analysis is related to the identities Eqs. (16) and (29) that are 
true for the inertial and the comoving frame, respectively. For this 
purpose, we recall that the decay rates appearing in the afore-
mentioned equations have been computed by employing neutrino 
flavor states as asymptotic states. However, we note that similar 
relations also hold for the quantities �(ν1) and �(ν2) calculated in 
Ref. [12] using neutrino mass eigenstates as fundamental objects. 
We then have

�(ν1) + �(ν2) = �(νe) + �(νμ) , (31)

where �(ν1) and �(ν2) are inclusive of the elements of Pontecorvo 
matrix. The above equality has to be regarded both in the inertial 
and the comoving frames. Such an equation constitutes a consis-
tency check for the correctness of the calculations in Refs. [11]
and [12]. The physical meaning of Eq. (31) can be understood by 
considering the charges for mixed neutrino fields as derived from 
Noether’s theorem [17]. Indeed, by denoting with

Q i =
∫

d3x�
†
νi (x)�νi (x) , i = 1,2 , (32)

the conserved charges for the neutrino fields with definite masses 
and with

Q α(t) =
∫

d3x�
†
να

(x)�να (x) , α = e,μ , (33)

the (time-dependent) flavor charges, one can see that Q =∑
i Q i =∑

α Q α(t), where Q represents the total charge [17]. The 
above relation can be interpreted as the conservation of the total 
lepton number. On the one hand, this can be viewed as the sum 
of two separately conserved family lepton numbers, when no mix-
ing is present; on the other hand, the same conserved number is 
obtained by the sum of non-conserved flavor charges, which are 
associated to oscillations.

Apart from its relevance in the context of neutrino mixing and 
oscillations, we stress that the Unruh effect provides an excellent 
benchmark for both testing well-established predictions and point-
ing out novel effects in fundamental physics, as it combines such 
wide domains as general relativity, quantum field theory and ther-
modynamics. For instance, in Refs. [18] it has been shown that the 
Unruh spectrum may exhibit exotic non-thermal corrections even 
within the standard QFT, thus emphasizing how such a framework 
represents an active forge of still unexplored scenarios. A simi-
lar non-thermal behavior has been obtained in Refs. [19], where 
Planck scale effects on the Hawking/Unruh bath have been derived 
in the context of the generalized uncertainty principle [20]. Fur-
ther features of the Unruh effect may be addressed in connection 
with possible modification of the oscillation probability formula 
in accelerated frames [21] and with entanglement properties for 
accelerated observers, whose implications have been investigated 
also in the context of black hole physics [22]. In particular, in 
Ref. [23], it has been proved that entanglement turns out to be 
an observer-dependent quantity in non-inertial frames due to the 
Unruh radiation. The question thus arises as to how this setting is 
modified in the presence of mixed neutrinos, particularly in view 
of the discussion of Refs. [24]. The entanglement among neutri-
nos and other products of the decays in which they arise is also 
relevant in connection with the issue concerning the “ontological” 
nature of neutrino states – mass or flavor [25]. For more details, 
see Refs. [26,27].

As a final remark, we stress that in the current work we have 
made use of the simplest framework of neutrino mixing among 
two generations. The extension to three flavors is in principle 
straightforward and represents one of the future directions of our 
investigation. We envisage that the presence of CP violation may 
introduce interesting additional features which would enrich the 
non-trivial structure of the Unruh radiation.
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