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ABSTRACT 5 

Shallow landslides are widespread in different geological contexts and generally occur as multiple 6 

events over large areas. When these phenomena involve fine-grained soils, they may cause serious 7 

consequences⎯in terms of environmental and property damages⎯and thus their spatial forecasting 8 

becomes a relevant issue for land use planning and design purposes. The existing literature provides 9 

several methods for landslide susceptibility assessment, categorized in qualitative and quantitative 10 

methods. When dealing with analyses at large scale (1:5000), quantitative methods are generally 11 

preferred. In this paper, landslide susceptibility maps are produced for a study area prone to shallow 12 

landsliding, located in Catanzaro (southern Italy). To this aim, two quantitative methods are 13 

implemented: the statistical “information value method” and the deterministic “TRIGRS model.” 14 

The two approaches are compared by means of two indicators of the grade of correctness of the 15 

landslide susceptibility maps: the area under curve of the ROC curve, AUC, and the overestimation 16 

index, OI. The results of the analyses in terms of AUC values demonstrate the effectiveness and 17 

consistency of both methods in performing the susceptibility mapping of the study area. When the 18 

OI values are considered, the results provided by the deterministic model are slightly better than the 19 

ones resulting from the statistical analysis. This does not come as a surprise for the case study at 20 

hand and it can be ascribed to the availability, within the study area, of: a reliable database of soil 21 

properties, and an in-depth knowledge of the behaviour of the considered landslides. 22 
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1. Introduction 33 

Rainfall-induced shallow landslides are widespread all over the world and, during a single rainfall 34 

event, they can involve large areas (Park et al., 2013; Lee and Park, 2016; Romer and Ferentinou, 35 

2016; among others). The consequences caused by these phenomena are linked to a series of 36 

factors, among which: the geological context of the area affected by landsliding, the mechanical 37 

characteristics of the soils, the vulnerability of the exposed elements. 38 

Shallow landslides of flow type in coarse-grained soils are generally characterized by both scarcity 39 

of warning signs in the pre-failure stage and high velocities in the post-failure phase (McDougall 40 

and Hungr, 2004; Sorbino et al., 2010; Hungr et al. 2014; Yerro et al., 2016). On the other hand, 41 

shallow landslides involving clayey colluvial soils frequently present warning signs in the pre-42 

failure stage (e.g., tension cracks at the top of the slope) and a shorter run-out in the post failure 43 

phase (Hungr et al. 2001; Meisina et al., 2006; Cascini et al., 2015). Many examples of rainfall-44 

induced shallow landslides in both coarse-grained and fine-grained soils are reported in Europe 45 

(e.g., Borrelli et al., 2012; Martinović et al., 2016), America (e.g., Baum et al., 2005; Godt et al., 46 

2008), Asia (e.g., Park et al., 2013; Hadmoko et al., 2017) and Africa (e.g., Broothaerts et al., 2012; 47 

Romer and Ferentinou, 2016). A significant number of contributions specifically deal with the 48 

assessment of shallow landslide susceptibility (e.g., Leventhal and Kotze, 2008; Nandi and 49 

Shakoor, 2009; Frattini et al., 2010; Kavzoglu et al., 2015; Romer and Ferentinou, 2016). 50 

Landslide susceptibility assessment, herein intended as the landslide spatial probability of 51 

occurrence within a given territory, can be performed by qualitative or quantitative methods, 52 

depending on how the landslide causal factors are considered and modelled (Lee and Park, 2016). 53 

The applicability of each method depends on: the availability, quality and accuracy of the data; the 54 

resolution of zoning; the required outcomes; and the scale of analysis (Soeters and van Westen, 55 

1996; Cascini, 2008; Fell et al., 2008). Quantitative analyses can be divided into statistical and 56 

deterministic methods (Soeters and van Westen, 1996). Statistical methods, applicable at different 57 

scales (from 1:100,000 to 1:5000), establish the relationships between predisposing factors and 58 

landslides through the proper use of statistic indicators (Carrara, 1983; Baeza and Corominas, 2001; 59 

Nefeslioglu et al. 2008), while neglecting to explicitly model the landslide failure mechanisms 60 

(Park et al., 2013). Deterministic methods, applicable at large and detailed scales (≥1:5000), 61 

properly analyze existing or potential failure mechanisms via physically-based models calibrated 62 

using on-site and laboratory test results (Salciarini et al., 2006; Huang and Kao 2006; Godt et al., 63 

2008; Park et al., 2013). 64 
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Several significant examples of the application of landslide statistical analyses at large scale are 65 

available in the literature (Cervi et al., 2010; Reza and Daneshvar, 2014; Iovine et al., 2014; Regmi 66 

et al., 2014). In some cases, a separation between different types of landslides is lacking and, for 67 

instance, slides, creep phenomena and falls may be considered together when deriving the event 68 

map for the statistical correlations (Hadmoko et al., 2017). On the other hand, a proper 69 

understanding of the landslide triggering processes is typically a key prerequisite for a consistent 70 

application of physically based models estimating shallow rainfall-triggered landslide susceptibility 71 

(Godt et al., 2008; Sorbino et al., 2010; Cascini et al., 2017). Only few contributions deal with the 72 

comparison between the results of statistical and deterministic methods applied to the same study 73 

area at large scale (Cervi et al. 2010; Armas et al., 2013). 74 

Starting from the abovementioned aspects, the paper highlights the important role played by the 75 

understanding of the landslide mechanisms for the susceptibility assessment of shallow landslides 76 

in clayey soils. This aim is pursued by means of a skilled application of both statistical and 77 

deterministic methods in a study area located in southern Italy. The issue is dealt with at large scale 78 

(1:5000) thus allowing a thorough study of all the factors playing a significant role during the pre-79 

failure and failure stages of landsliding. Particularly, the paper preliminary focuses on the 80 

characteristics of the analysed phenomena, then performs a susceptibility assessment of the study 81 

area by means of the statistical method known as “information value” ( e.g. Yin and Yan, 1988) and 82 

of the physically-based model “TRIGRS” (e.g. Montgomery and Dietrich, 1994). Both methods end 83 

with the production of landslide susceptibility computational maps. The maps are compared and 84 

critically analysed in order to highlight advantages and limitations related to the two different 85 

methods of analysis. 86 

 87 

2. Materials and Method 88 

2.1. Study area and data set 89 

The study area is located in southern Italy, in the Calabria region, within a larger area of 136 Km2 90 

(Fig. 1) that has been frequently affected by landslides (Antronico et al., 2013; Borrelli et al., 2015; 91 

Gullà et al., 2004, 2008; Cascini et al., 2015; Ciurleo et al., 2016). In this area, more than 60% of 92 

not flat land (i.e. slope angle greater than 5°) is covered by Pliocene light blue-grey silty clays. In 93 

this area two sites, indicated in the Figure as S2 and S3, have been already analysed by Gullà et al. 94 

(2004), Cascini et al. (2015) and Cascini et al. (2017). The focus of the present paper is the site, 95 

indicated in the Figure as S1, already partly analysed by Cascini et al. (2015) and Calvello and 96 
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Ciurleo (2016). The chosen site of interest is deemed to be the most representative in relation to two 97 

important shallow landslide events, which respectively occurred in 2009 and 2010. 98 

The homogeneity of the fine-grained soils outcropping in the sites S1, S2 and S3 emerges from a 99 

comparison of geotechnical properties (Fig. 2). In the entire area, the soils can be classified as 100 

inorganic, inactive clays characterized by high plasticity and a high liquid limit (Fig. 2b). All the 101 

grain size distribution data fall within a well-defined grain size envelope; the upper limit shows a 102 

fine-grained fraction ranging from 89% to 99%, while the amount of sand varies from 1% to 11%. 103 

The index properties of the soil, the minimum and maximum values assumed by the void ratio and 104 

the soil porosity are summarized in Fig. 2b. The available shear strength envelope ranges from an 105 

upper limit, with a cohesion value of 24.3 kPa and a friction angle of 35.2°, to a lower limit 106 

characterized by a cohesion value of 2 kPa and a friction angle of 22.3°. The saturated permeability 107 

(Ks) ranges from 3.1 × 10−8 m/s to 7.65 × 10−7 m/s (Gullà et al., 2004, 2008; Cascini et al., 2015), 108 

reaching a value of 5x10-6 m/s in the topmost cracked weathered layers (Cascini et al., 2017). 109 

Owing to the homogeneity of the geotechnical data, the information gathered by previous studies in 110 

the sites S2 and S3 have been combined with those available in the study areas, i.e. site S1. The 111 

study area is located on the left bank of the Corace river, it covers approximately 8 km2 and it 112 

represents the product of a complex geological evolutive model provided by Cascini et al. (2015). 113 

The topographical and morphological data used for the analyses are derived from a digital elevation 114 

model with a 5 m resolution generated from digital topographic maps of the Calabria Region 115 

(1:5000 scale, year 2005). The available geological information, provided in Fig. 3, shows that the 116 

outcropping lithology is mainly characterized by silty clays, partially affected by intercalations of 117 

sands. A sandstone layer constituting a morphoselective scarp, which is about 10 to 30 m thick and 118 

covers 2.5% of the test site, will not be included in the analysis, given the study focuses on shallow 119 

landslide susceptibility in fine-grained soils. 120 

The fine-grained soils, outcropping in S1 and in nearby areas, are involved in several processes that 121 

can be considered landslide predisposing factors (e.g., weathering of the most shallow layers, 122 

formation of cracks). The combination of these factors leads to an evolutionary pattern of the 123 

landslides lasting few years, from the first warning signs in the pre-failure stage to the end of 124 

movements (Fig. 4). It follows that the landslide inventory map has to be continuously updated. As 125 

reported in Fig. 5a, the original landslide inventory in the study area is dated 2009 and was updated 126 

in 2010. 127 

Using aerial photos and satellite images from Google Earth, 117 and 509 shallow landslide 128 

triggering areas of slide type were inventoried in 2009 and in 2010, respectively. It is worth 129 
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highlighting that in 2009 the total area affected by landslides is equal to 0.09 Km2, while in 2010 130 

this area is about 0.2 Km2. The smallest triggering landslide area is about 9 m2 while the largest one 131 

is 6000 m2; the depths of the slip surfaces range from few decimetres to 3 meters. Considering that 132 

the sliding surfaces’ depths depend on their location on the slope, Cascini et al. (2017) proposed a 133 

methodology to map the thickness of degraded rock. The methodology, which was initially 134 

calibrated and validated by the authors over one morphological hollow (0.3 km2 size), is herein 135 

applied to map the weathered thickness for the entire study area (Fig. 5b). Fig. 5b underlines the 136 

presence of low values of thickness on sharply defined ridges (up to 0.5 m) and at the top of the 137 

slopes (from 0.5 m to 1.5 m) and maximum thickness depths higher than 5m at the valley bottom. 138 

Significant phases of the morphological slope evolution due to shallow landslides are generally 139 

related to short and intense rainfall events. The analysis of the rainfall patterns in relation to the 140 

activity of the considered landslides is beyond the scope of the present paper yet it’s worth 141 

highlighting, herein, some findings on “critical rainfall” conditions for the area coming from 142 

previous works (Gullà et al., 2004; Cascini et al., 2017). Referring to shallow landslides that 143 

respectively occurred in site S2, in 2002 and 2003, and in Site S1, in 2009, these studies indicated 144 

the maximum intensity of the rainfall event ranging from 43 mm (2002-2003) to 70 mm (2009) over 145 

2 consecutive days and equal to 162 mm over six consecutive days (2009). 146 

 147 

2.2 Methods 148 

The methodology used herein to assess the susceptibility to shallow landslides in fine-grained soils 149 

starts with the calibration of the statistical and physically-based models and it ends with the 150 

production of landslide susceptibility computational maps by means of both statistical and 151 

deterministic methods. Both maps are computed and plotted using terrain computational units, 152 

TCUs (Calvello et al., 2013), and discretizing the study area by means of square cells whose 153 

dimension (herein 5 m by 5 m) is related to the employed scale of the analysis (1:5000 scale). 154 

The statistical analyses are based on bivariate correlations (Tangestani, 2009; Conforti et al., 2012; 155 

Ciurleo et al., 2016) over the study area, between available independent variables (e.g. elevation 156 

zone, slope gradient, slope curvature) and a dichotomous dependent variable derived from the 157 

available landslide inventories. The independent variables can be either categorical or numerical. 158 

The categorical variables are divided in a number of classes directly correlated to the subdivision in 159 

classes of the thematic maps from which they are derived; the numerical variables are herein always 160 

divided in eight classes using the the Jenks Natural Breaks algorithm (Jenks, 1977). Following this 161 
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classification method, class breaks are identified as the boundaries that best group similar values 162 

and that maximize the differences between classes. 163 

The dependent variables used for the analyses are the two already-mentioned landslide inventories 164 

dated 2009 and 2010. For both landslide inventories, the statistical weight assigned to each class, j, 165 

of each variable, Vi, is computed using the following formula, originally proposed within the 166 

“information value method” (e.g. Yin and Yan, 1988): 167 

 168 

𝑊𝑖𝑗 = 𝑙𝑜𝑔 (
𝐷𝑖𝑗

𝐷∗ ) = 𝑙𝑜𝑔(
𝐹𝑖𝑗 𝑁𝑖𝑗⁄

𝐹𝑡𝑜𝑡 𝑁𝑡𝑜𝑡⁄
)          (1) 169 

 170 

where: Wij is the weight assigned to the class j of the independent variable Vi; Dij is the density of 171 

landslides within class j of the independent variable Vi; D* is the average density of landslides 172 

within the study area; Fij is the number of TCUs with landslides belonging to the class j of the 173 

independent variable Vi; Nij is the number of TCUs belonging to the class j of the independent 174 

variable Vi; Ftot is the total number of TCUs with landslides within the study area; Ntot is the total 175 

number of TCUs within the study area. 176 

When Wij assumes low negative value, the statistical implication is low probability for TCUs 177 

belonging to a given class of a given variable to be affected by landslides; when Wij assumes high 178 

positive values, there’s a high probability that TCUs belonging to that class are affected by 179 

landslides. When landslides are not present in a given class of a given independent variable, Eq. 1 180 

cannot be used to compute the weight values. In such cases, the class weight is herein set to a value 181 

equal to the closest negative integer inferior to the minimum computed weight for all classes of all 182 

variables (Ciurleo et al., 2016). 183 

The performance assessment of the bivariate correlation between the independent and the dependent 184 

variables used herein is based on the criteria proposed by Ciurleo et al. (2016), which employ two 185 

indicators, β and σ, defined as follows: 186 

 187 

𝛽𝑖 =
𝑇𝑃𝑅𝑖

𝐹𝑃𝑅𝑖
=

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑖

1−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑖
           (2) 188 

 189 

𝜎𝑖 = √∑ (𝑊𝑖𝑗
∗ −𝑊𝑖)

2
𝑛
𝑗=1

𝑛−1
            (3) 190 

 191 
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where: TPRi is the true positive rate (sensitivity of the bivariate model) for the independent variable 192 

Vi; FPRi is the false positive rate for the independent variable Vi (1- specificity of the bivariate 193 

model); 𝑊𝑖𝑗
∗  is the normalized value of the weight assigned to the class j of the independent variable 194 

Vi (Ciurleo et al., 2016); Wi is the average value of the weights assigned to the classes of the 195 

independent variable Vi; n is the number of classes of the independent variable Vi. 196 

The two indicators computed with Eqs. (2) and (3) have been originally proposed to select the 197 

independent variables that are relevant for a statistical analysis based on bivariate correlations 198 

between them and one dependent variable. Herein they will be used to verify that all the considered 199 

variables are significant for the performed analysis. 200 

Finally, the calibrated computational map is evaluated by means of a multivariate computational 201 

susceptibility index, ISTCU, which is assigned to each TCU according to the following formula: 202 

 203 

𝐼𝑆𝑇𝐶𝑈 = ∑ 𝑊𝑖𝑘(𝑖)𝑖  (4) 204 

 205 

where: Wik(i) is the weight index of the relevant independent variable Vi related to the TCU 206 

belonging to class k(i) of that variable. 207 

The deterministic analyses are based on TRIGRS (Montgomery and Dietrich, 1994), a physically-208 

based model that is widely used for determining the distribution of shallow precipitation-induced 209 

landslide source areas in different geological contexts (Godt et al., 2008; Montrasio et al., 2011; 210 

Sorbino et al., 2010). The analysis couples a hydrologic model with an infinite slope stability 211 

computation in order to analyze the pore water pressure regime and then evaluate a distribution of 212 

factors of safety (FS) over large areas. In particular, TRIGRS models rainfall infiltration by solving 213 

the Richards equation for vertical infiltration that may occur during a precipitation event (Srivastava 214 

and Yeh, 1991) in homogeneous isotropic materials. It analyzes the slope stability using a simple 215 

infinite-slope analysis (Taylor, 1948) to compute FS for each cell of the computational domain. 216 

TRIGRS, used in conjunction with geographic information system (GIS) software, allows to obtain 217 

maps of FS results thus allowing to differentiate stable (FS>1) from unstable cells (FS≤1). Among 218 

the disadvantages of TRIGRS, it is worth listing the following: steady or quasi-steady models are 219 

not applicable to several realistic cases (e.g. Wu and Sidle, 1995; Sorbino et al., 2010); the model 220 

needs abundant and accurate spatial information over large portions of the study area in order to 221 

obtain reliable results; the results are quite sensitive to some of the input data, such as topographic 222 

data (slope gradient), hydraulic properties of soils (saturated vertical hydraulic conductivity, 223 

hydraulic diffusivity, saturated and residual volumetric water contents), initial water-table and soil 224 
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depths (Sorbino et al., 2010). Other input data the model needs are: rainfall data (with durations 225 

ranging from hours to a few days), cohesion, friction angle and total unit weight of soils. To sum 226 

up, realistic results from deterministic analyses based on TRIGRS are strictly linked to: a consistent 227 

identification of the in situ pore pressure regime, a good knowledge of mechanical and hydraulic 228 

soil properties, an accurate weathered thickness map, and a deep understanding of the triggering 229 

mechanisms of the considered landslides. The sensitivity of TRIGRS to soil thickness has been 230 

tested in Cascini et al. (2017). In the present paper we will test its sensitivity to the soil mechanical 231 

properties and use it to properly identify the susceptibility computational map. 232 

The performance of the susceptibility maps, obtained by both the statistical analysis and TRIGRS, 233 

is evaluated considering two indicators: the area under curve, AUC, of the related receiver operating 234 

characteristic curve (ROC) (Metz, 1978), and the overestimation index, OI, defined as: 235 

 236 

OI =
𝐴𝑜𝑢𝑡

𝐴𝑠𝑡𝑎𝑏
∙ 100          (5)  237 

OI(5°) =
𝐴𝑜𝑢𝑡

𝐴𝑠𝑡𝑎𝑏(5°)
∙ 100         (6) 238 

 239 

where: Aout is the area computed unstable located outside the observed triggering area; Astab is the 240 

area not affected by instability; Astab(5°) is the area not affected by instability obtained excluding 241 

from the study area the zones with a slope gradient inferior or equal to 5°. 242 

Concerning the AUC, a perfect model fitting would be characterised by an AUC value of 1 and a 243 

model not better than random would be characterised by an AUC value of 0.5. OI, originally 244 

defined “error index” by Sorbino et al. (2007, 2010), is proposed in order to individuate the 245 

“overestimation” area, intended here as the area computed as unstable by the model but not 246 

inventoried as area affected by landsliding. 247 

 248 

3. Analyses and results 249 

3.1. Statistical analyses 250 

The variables employed within the statistical model have been expressed in raster format using 251 

303071 square grid cells as TCUs, whose size is equal to 25 m2. The dichotomous dependent 252 

variables, derived from two inventories of shallow landslides that occurred in 2009 and 2010, report 253 

117 and 509 triggering areas which cover, respectively, 3421 and 10602 TCUs of the study area. 254 

The independent variables used in the analysis (Fig. 6, Table 1) are the five variables deemed to be 255 



This is a post-peer-review, pre-copyedit version of an article published in “Engineering geology”. The final authenticated 

version is available at: https://www.sciencedirect.com/science/article/pii/S0013795216308419 (page 9) 
 

the most relevant following Calvello and Ciurleo (2016). The first three variables, i.e. elevation 256 

zone (V1), slope gradient (V2) and slope curvature (V3), are computed from the native-resolution 257 

variables, processing them by means of focal statistics techniques so that the information they carry 258 

is averaged over a larger area around them. The area of influence considered for the three variables 259 

depends on the diameter of the buffer considered around each TCU, herein called Dk, which is 260 

respectively equal to 32 cells for V1, and to 4 cells for V2 and V3. All three variables are classified 261 

according to a natural breaks criterion employing eight classes. The categorical variables 262 

outcropping lithology (V4) is divided in four classes; in this case, as already mentioned, the 263 

sandstone morphoselective scarp has been excluded from the analysis. The weathered rock 264 

thickness variable (V5) is divided in eight classes following the classification reported in the 265 

employed thematic map. 266 

Table 2, reporting the values of the statistical weights computed using Eq. (1) for each class of each 267 

independent variable Vi, underlines that the maximum weights computed considering the 268 

dichotomous dependent variables, respectively dated 2009 and 2010, are both attributed to class 8 269 

of variable V2 (W28=1.28 in 2009 and W28=1.15 in 2010). High values of weights are computed for 270 

variables V1, V3 and V5 both in 2009 and 2010: W18(2009)=0.98; W18(2010)=0.68; 271 

W31(2009)=1.06; W31(2010)=0.94; W52(2009)=0.55; W52(2010)=0.60. Out of the four classes of 272 

variable V4, only one geological unit, which is the class corresponding to silty clays with sporadic 273 

sand intercalations, assumes a positive weight value, W44=0.28, for both years. Concerning low 274 

negative values of the weights, it is worth highlighting that only one class is characterised by a 275 

weight value equal to -2.59 (W23), while the Wij equal to -3.00 is imposed whenever the argument 276 

of the logarithm used in Eq. (1) is equal to zero (Ciurleo et al., 2016). 277 

All the independent considered variables are relevant for the analysis as testified by the value of βi 278 

(Eq. 2) and σi (Eq. 3) respectively greater than 1.7 and 0.4 (Ciurleo et al., 2016), as reported in 279 

Table 3. The Table also shows the values of the two statistics needed to compute the bivariate 280 

success index, TPRi and FPRi. Fig. 7 shows two landslide susceptibility computational maps 281 

classified on the basis of the values assumed by the multivariate computational susceptibility index, 282 

respectively considering the dichotomous dependent variables dated 2009 and 2010, ISTCU, as 283 

follow: not susceptible, for ISTCU≤0; susceptible for ISTCU>0. The results indicate that about 20% of 284 

the study area is susceptible (i.e. ISTCU > 0) in 2009; this area increases to 24% in 2010. The success 285 

of the analysis is verified by the high value assumed by the area under curve (AUC) of the ROC 286 

curve plotted in the sensitivity versus (1 − specificity) space, with values ranging from 96% in 2009 287 
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to 95% in 2010. On the contrary, the values of OI and OI(5°) are never too low, as they range from 288 

OI=19% (in 2009) to OI=21% (in 2010) and OI(5°)=27% (in 2009) to OI(5°)=30% (in 2010). 289 

 290 

3.2. Deterministic analyses 291 

The input data employed within TRIGRS, as for the variables used in the statistical analyses, are 292 

expressed in raster format using 5×5 m2 square grid cells as TCUs. The input data used in TRIGRS 293 

are the following: DEM, flow direction, thickness map, initial water table location, geotechnical 294 

properties of the soils and rainfall data. 295 

Flow direction has been directly derived by DEM with single cell size equal to 5×5 m2. Following 296 

Cascini et al. (2017) it was possible to both reconstruct the thickness map (Fig. 5b) and localize the 297 

initial water table at the contact between intact and weathered rocks. 298 

Referring to the geotechnical properties, the study area is analysed following two different cases 299 

(Tab. 4): case 1, assigning the same geotechnical input data for the entire study area; case 2, 300 

differentiating the geotechnical properties in relation to the thickness of the weathered rock. In 301 

particular, for case 1 the assigned geotechnical parameters are equal to the minimum values 302 

available from the geotechnical input data. For case 2, different geotechnical properties are assumed 303 

for three classes of thickness (0.5-1.0 m; 1.0-2.0 m and 2.0-3.0 m) corresponding to three different 304 

shallow landslide mechanisms. These values have been provided by Cascini et al. (2017) who, by 305 

means of 2D geotechnical analyses, were able to back-analyse these shallow precipitation-induced 306 

landslides and to provide different values of cohesion and friction angle for which the factor of 307 

safety is equal to 1 along the assumed sliding surface. This is essentially due to the genesis of the 308 

landslide mechanisms and to their close relationship with the weathering processes (Cascini et al., 309 

2017). 310 

The obtained results (Fig. 8) are provided for both cases assuming a value of rainfall input data 311 

equal to 162 mm in six days (Cascini et al., 2017). The results clearly show a consistent decrease of 312 

the unstable areas passing from case 1 (minimum geotechnical data) to case 2 (different 313 

geotechnical data depending on the weathered thickness). This reduction appears evident also when 314 

comparing, using the indicators AUC, OI and OI(5°), the obtained results with the landslide 315 

inventories dated 2009 and 2010. For Case 1, the AUC values range from 92% to 91%, respectively 316 

computed considering the shallow landslide inventories dated 2009 and 2010; the OI values range 317 

from 18% (in 2009) to 16% (in 2010); the OI(5°) values range from 25% (in 2009) to 23 % (in 318 

2010). For case 2, the obtained results show: AUC = 93%, OI = 9% and OI(5°)=13% for the 319 
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landslide inventory dated 2009; AUC= 92%, OI = 8% and OI(5°)=11% for the landslide inventory 320 

dated 2010. Comparing the results obtained from case 1 and case 2, it is evident that, despite the 321 

AUC value does not improve significantly, there is a significant reduction of the OI value, passing 322 

from 18% to 9% in 2009 and from 16% to 8% in 2010, and of the OI(5°) values, going from 25% to 323 

13% (in 2009) and from 23% to 11% (in 2010). 324 

 325 

4. Discussion and concluding remarks  326 

The paper presented a comparison, within a study area located in southern Italy, between statistical 327 

and deterministic methods used as tools for shallow landslides susceptibility assessment in clayey 328 

soils. To this purpose, the information value method for the statistical analyses and TRIGRS for the 329 

deterministic analyses have been used at large scale (1:5000). The information value method has 330 

been implemented using two dichotomous dependent variables (landslide inventories, years 2009 331 

and 2010); TRIGRS model has been applied referring to two different geotechnical datasets (case 1 332 

and case 2). In total, we obtained four landslide computational maps that have been compared by 333 

means of three indicators: AUC of the ROC curves, OI and OI(5°). 334 

The very high values attained by the AUC testify the success of all the performed analyses. Indeed, 335 

independently from the method and the reference landslide inventory used, AUC is always greater 336 

than 90%, with values ranging from 95-96% for the statistical analyses and 91-92% for the 337 

deterministic analyses. The 90% AUC value is defined by Swets (1988) and Fressard et al. (2014) 338 

as a threshold to overcome for reaching the best class of accuracy for a model being tested. In 339 

particular Swets (1988) states that values between about 0.7 and 0.9 represent accuracies that are 340 

useful for some purposes, and higher values represent a rather high accuracy; whereas Fressard et 341 

al. (2014) state that values between 0.7 and 0.8 reflect a fair performance of the model, values 342 

between 0.8 and 0.9 can be considered good, and values above 0.9 can be considered excellent. To 343 

stress the relevance of the results obtained in this case study it is important to highlight that, within 344 

the literature dealing with landslide susceptibility and hazard assessment, few analyses report AUC 345 

values higher than 85% (e.g., Akgun, 2012; Yesilnacara and Topalb, 2005; Lee and Pradhan, 2006; 346 

Blahut et al., 2010; Yeon et al., 2010; Sterlacchini et al., 2011; Das et al., 2012) and even fewer 347 

AUC values higher than 90% (e.g., Lee et al., 2008; Bui et al, 2012; Marjanović 2013; Nefeslioglu 348 

et al., 2008; Ciurleo et al., 2016). 349 

The success of the analyses is also related to the values assumed by over-prediction indexes such as: 350 

the modified success rate, MSR (Huang and Kao, 2006); the false positive rate of the contingency 351 
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table (Godt et al., 2008; Montrasio et al., 2011; Raia et al., 2013; Ciurleo et al., 2016); the error 352 

index, EI (Sorbino et al., 2010); the landslide potential, LP (Vieira et al., 2010); and the false alarm 353 

ratio, FAR (Liao et al., 2011). Among them, we choose the EI index, originally proposed by 354 

Sorbino et al. (2007, 2010) and named OI in this paper, in order to quantify the overestimation 355 

areas. In the case study, the area computed as unstable by the statistical analyses is equal to 1.5 Km2 356 

(2009) and 1.8 Km2 (2010), while unstable TRIGRS cells involve an area of 1.4 Km2 (case 1) and 357 

0.8 Km2 (case 2). These values, if compared with the inventoried ones (0.1 Km2 of triggering areas 358 

inventoried in 2009 and 0.2 Km2 in 2010), show a clear over-prediction ratio. This overestimation, 359 

identified by means of OI and OI(5°), is more evident for the statistical analyses and progressively 360 

decrease, moving from case 1 to case 2, when using TRIGRS. In particular, the statistical OI values 361 

are equal to 19% in 2009 and 21% in 2010, while the TRIGRS OI values range from 16% to 18% 362 

for case 1 and from 8% to 9% for case 2. The difference in the OI values becomes more evident 363 

when comparing the lowermost statistical OI(5°) value, equal to 27% (considering the 2009 364 

landslides) with the lowermost OI(5°) value for the analyses with TRIGRS, equal to 11% (for case 365 

2 in 2010). To explain these findings, it is worthwhile highlighting herein that TRIGRS’s case 1 366 

refers to a simplified geotechnical scheme (low strength characteristics for the overall investigated 367 

area) while case 2 employs different geotechnical parameters in relation to different thicknesses of 368 

the weathered rock layer. In the latter case, very low values of both OI and OI(5°) testify that an 369 

exhaustive understanding of the main physical and mechanical characteristics of the analysed 370 

phenomena is extremely relevant for the application of a deterministic model. Finally, considering 371 

that the same common input data have been used (in terms of quality and accuracy) for the 372 

statistical and the deterministic analyses, it is reasonable to assume that the higher overestimation 373 

recorded by the statistical analyses is related to the inherent inability of statistical methods to 374 

consider the physical processes within the soils predisposing or triggering the landslides. 375 

In conclusion, the analyses performed over the same study area, to evaluate both the potentialities 376 

of the adopted methods and the consistency of the obtained results, indicate that statistical and 377 

deterministic analyses can be confidently developed at large scale for shallow landslide 378 

susceptibility assessment. The main results indicate that the statistical method provides shallow 379 

landslide susceptibility maps that are more conservative than those obtained by the physically-based 380 

model TRIGRS. The reliability of this latter progressively increases when the predisposing and 381 

triggering factors of the studied phenomena are properly characterized and used as input data. 382 

 383 
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Tab.1. Classification of the independent variables employed in the statistical analysis at large scale. 

 

Class V1 elevation zone 

(m) 

V2 slope gradient (°) V3 slope curvature 

(m− 1) 

V4 geological unit 

(−) 

V5 weathered 

thickness (−) 

1 30.39 to 55.86 0.00 to 4.12 − 6.12 to − 2.06 Colluvial deposits 0.00–0.50 

2 55.87 to 81.33 4.13 to 8.59 − 2.05 to − 1.02 Halluvial deposits 0.50–1.00 

3 81.34 to 105.98 8.60 to 12.89 − 1.01 to − 0.36 Slope debris 1.00–1.50 

4 105.99 to 130.63 12.90 to 17.00 − 0.35 to 0.13 Silty clays with 

sporadic sand 

intercalation 

1.50–2.00 

5 130.64 to 154.46 17.01 to 20.94 0.14 to 0.74  2.00–3.00 

6 154.47 to 178.29 20.95 to 25.06 0.75 to 1.56  3.00–4.00 

7 178.30 to 230.76 25.07 to 30.07 1.57 to 2.71  4.00–5.00 

8 230.77 to 239.91 30.07 to 45.64 2.72 to 7.87  > 5.00 

 

Tab.2. Weights assigned to the independent variables in the statistical analysis at large scale. 

 

Weights 

2009 

V1 V2 V3 V4 V5 Weights 

2010 

V1 V2 V3 V4 V5 

Wi1 − 3.00 − 3.00 1.06 − 3.00 − 0.26 Wi1 − 3.00 − 3.00 0.94 − 3.00 − 0.26 

Wi2 − 3.00 − 3.00 0.55 − 1.24 0.55 Wi2 − 3.00 − 3.00 0.50 − 1.38 0.60 

Wi3 − 3.00 − 3.00 0.04 − 0.40 0.27 Wi3 − 3.00 − 2.59 0.05 − 0.43 0.17 

Wi4 − 3.00 − 1.52 − 0.55 0.28 − 0.10 Wi4 − 1.29 − 1.26 − 0.52 0.28 − 0.17 

Wi5 − 0.46 − 0.52 − 0.11  − 0.80 Wi5 0.07 − 0.22 − 0.13  − 0.52 

Wi6 0.25 0.23 0.13  − 3.00 Wi6 0.42 0.36 0.22  − 1.42 

Wi7 0.63 0.92 0.23  − 3.00 Wi7 0.66 0.89 0.40  − 3.00 

Wi8 0.98 1.28 0.25  − 3.00 Wi8 0.68 1.15 0.48  − 3.00 

 

Tab.3. Values of parameters and indexes needed to select the independent variables relevant for the 

statistical analysis at large scale. 

 

Variables 2009 2010  

TPRi FPRi β σi TPRi FPRi β σi Relevant 

V1 95.8% 22.0% 4.36 2.20 99.3% 32.5% 3.05 2.17 Yes 

V2 95.7% 17.6% 5.45 2.45 91.3% 15.8% 5.78 2.45 Yes 

V3 73.3% 34.6% 2.12 0.77 72.9% 33.7% 2.17 0.74 Yes 

V4 93.2% 48.8% 1.91 0.85 93.9% 47.7% 1.97 0.86 Yes 

V5 84.0% 31.0% 2.71 2.23 84.0% 29.7% 2.83 2.22 Yes 

 

  



This is a post-peer-review, pre-copyedit version of an article published in “Engineering geology”. The final authenticated 

version is available at: https://www.sciencedirect.com/science/article/pii/S0013795216308419 (page 20) 
 

Tab.4. The geotechnical input data used for TRIGRS analyses. 

 

TRIGRS – Case 1 

Unit weight γ 

(kN/m3) 

Effective cohesion 

c′ (kPa) 

Friction angle ϕ′ (°) Soil depth h 

TRIGRS (m) 

Hydraulic 

conductivity K 

(m/s) 

Diffusivity D 

TRIGRS (m2/s) 

18 3 27 variable 5.00E − 06 2.87–05 

TRIGRS – Case 2 

Unit weight γ 

(kN/m3) 

Effective cohesion 

c′ (kPa) 

Friction angle ϕ′ (°) Soil depth h 

TRIGRS (m) 

Hydraulic 

conductivity K 

(m/s) 

Diffusivity D 

TRIGRS (m2/s) 

18 3 27 0.5–1.0 5.00E − 06 2.87E − 05 

18 5 27 1.0–2.0 5.00E − 07 3.49E − 05 

18 8 27 2.0–3.0 5.00E − 07 3.49E − 05 
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Fig.1. Geographical location of the study area. Legend: 1. Pliocene light blue-grey silty clays; 2. zones 

frequently involved by shallow landslides studied in the past (S2 and S3); 3. study area (S1). 

 

  



This is a post-peer-review, pre-copyedit version of an article published in “Engineering geology”. The final authenticated 

version is available at: https://www.sciencedirect.com/science/article/pii/S0013795216308419 (page 22) 
 

Fig. 2. Available in situ investigations and laboratory tests (modified from Cascini et al., 2017). a) Spatial 

location. b) Physical and mechanical properties of weathered clays. From the top to the bottom: plasticity 

chart, grain size distribution envelope, index properties (dry unit weight - γd (kN/m3), natural unit weight - γ 

(kN/m3), the saturated unit weight - γs (kN/m3), index void - e (−), soil porosity - n (−)), shear strength 

(modified from Gullà et al. 2008; Cascini et al. 2015). 
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Fig. 3. Lithological map of the study area (S1), Legend: 1. alluvial deposits; 2. colluvial; 3. landslide debris; 

4. light blue-grey silty clays; 5. Sandstone. 
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Fig. 4. 3D view from Google Earth of December 2005, April 2009 and March 2010 for the study area (S1). 
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Fig. 5. Thematic map employed for the analysis at S1: a) Landslide inventories. Legend: landslide source 

areas from 2009 (1) and 2010 (2) inventories; b) Weathered rock thickness map. 
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Fig. 6. Variables employed in the statistical analysis. Independent variables: (a) elevation zones, V1; (b) 

slope gradient, V2; (c) slope curvature, V3; (d) geology V4;(e) weathered rock thickness, V5. Dependent 

variables: (f) landslide source areas from 2009; g) landslide source areas from 2010. Legend for (d): 1. 

alluvial deposits; 2. colluvial; 3. slope debris; 4. light blue-grey silty clays. 

 

  



This is a post-peer-review, pre-copyedit version of an article published in “Engineering geology”. The final authenticated 

version is available at: https://www.sciencedirect.com/science/article/pii/S0013795216308419 (page 27) 
 

Fig. 7. Results of the statistical analyses at 2009 and 2010: landslide susceptibility computational maps; 

receiver operating characteristic curves; values of statistical indicators of performance AUC, OI and OI(5°). 
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Fig. 8. Results of the TRIGRS analyses at 2009 and 2010 for case 1 and case 2: landslide susceptibility 

computational maps; receiver operating characteristic curves; values of statistical indicators of performance 

AUC, OI and OI(5°). 

 


