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Abstract 27 

Baseflow index (BFI) prediction in ungauged basins has largely been based on the use of catchment 28 

physiographic attributes as dominant variables. In a context where changes in climate are 29 

increasingly evident, it is also important to study how the slow component of flow is potentially 30 

affected by climate. The aim of this study was to illustrate the impact of climate variability on the 31 

baseflow process based on analysis of daily rainfall characteristics and hydrological modelling 32 

simulation exercises validated with observed data. Ten catchments were analysed that span southern 33 

to northern Europe and range from arid Mediterranean to maritime temperate climate conditions. 34 

Additionally, more than two thousand virtual catchments were modelled that cover an extended 35 

gradient of physiographic and climate properties. The relative amounts of baseflow were 36 

summarized by the BFI. The catchment slow response delay time (Ks) was assumed to be a 37 

measure of catchment effects, and the impact of climate properties was investigated with the dry 38 

spell length (d). Well-drained and poorly-drained groups were identified based on Ks and d, and 39 

their response to an increase or decrease in dry spell length was analysed. Overall, for either well- 40 

or poorly-drained groups, an extension in dry spell length appeared to have minor effects on the 41 

baseflow compared with a decrease in dry spell length. Under the same dry spell variation, the BFI 42 

vulnerability appeared higher for catchments characterized by large initial d values in combination 43 

with poorly-drained systems, but attributing an equal weight to the variations in d both in the case 44 

of dry and wet initial conditions, it is in the end concluded that the BFI vulnerability appear higher 45 

for systems laying in the transition zone between well- and poorly-drained systems. 46 

 47 

Keywords: Baseflow, Low flows, BFI, Dry spells, IAHCRES, catchment characteristics, climate  48 

  49 



1. INTRODUCTION 50 

The baseflow index (BFI), the ratio between the volume of baseflow and the volume of total 51 

streamflow, was originally recommended in the Low Flow Studies (Institute of Hydrology, 1980) 52 

for indexing the effect of geology on low flows; however, the BFI now represents a general index of 53 

catchment hydrological response. Among various applications, BFI has been implemented as an 54 

index of river flow regime classification (Kennard et al., 2010; Bejarano et al., 2010; Olden and 55 

Poff, 2012) and, as such, has also been used to detect hydrological regime changes along with other 56 

low flow indices (Sawicz et al., 2014, Coopersmith et al., 2014, Crooks and Kay, 2015). 57 

Although the importance of the impact of geological catchment properties on BFI is universally 58 

understood (Gustard et al., 1989; Schneider et al., 2007; Longobardi and Villani, 2013; Zhang et al., 59 

2013), the role of climate variables is less clear (Stoelzle et al., 2014; Van Loon and Laaha, 2015, 60 

Staudinger et al., 2015). Recent global scale assessments of BFI patterns and the relevant influence 61 

of various climate factors have generally focused on average climate characteristics, such as the 62 

mean annual precipitation, mean annual potential evapotranspiration, mean annual air temperature, 63 

and the intra-annual seasonality of precipitation (Beck et al., 2013; Sawicz et al., 2014). 64 

A general agreement exists that climate (change or variability) has the potential to substantially alter 65 

river flow regimes. A global assessment has been reported in Arnell and Gosling, 2013. At the 66 

European scale, a large body of literature provides indications regarding the considerable climate 67 

change projections that will impact hydrological systems. As a general trend, high latitude areas of 68 

northern Europe appear to face an increase in the number of wet days and thus a decrease in the 69 

duration of dry spells. Conversely, southern Europe Mediterranean areas appear to face a decrease 70 

in the number of wet days and thus an increase in dry spell duration (Rajah et al., 2014; Jacob et al, 71 

2014; Pascale et al., 2016). In a context where changes in climate are increasingly evident, it is 72 

important to study how the proportion of the slow component of flow is potentially affected by 73 

short-term rainfall properties. 74 



The dry spell length and the catchment delay time, as well as their relative probability distributions, 75 

have in the past been considered to be primary descriptive parameters of the catchment hydrological 76 

response (Botter et al., 2013; Muller et al., 2014; Doulatyari et al., 2015). For example, Botter et al. 77 

(2013) showed how a combination of these descriptors can be used to determine the resilience of 78 

erratic and persistent regime systems to climate fluctuations. None of these studies, however, 79 

specifically focused on the baseflow component of the hydrograph. Therefore, in this study, we aim 80 

to illustrate the impact of climate variability and, in particular, the impact of dry spell duration on 81 

the baseflow process, summarized by the BFI index. We do this with a combined data-based and 82 

modelling study, investigating the hydrological behaviour of observed and virtual catchments that 83 

spanned a broad gradient of climate conditions and catchment properties.   84 

In this study, two characteristic time scales were used, the dry spell length and the catchment delay 85 

time, to represent the effect of climate and catchment properties, respectively, on the BFI index. 86 

Investigated catchments were grouped into well-drained and poorly-drained systems based on their 87 

features. Catchments featured by perennial water resources, the well-drained group, were associated 88 

with prevailing slow streamflow components, large BFI values and long delays or recession times. 89 

Catchments with intermittent water resources, the poorly-drained group, were associated with fast 90 

prevailing streamflow components, small BFI values and short delay times. 91 

To understand if both systems were affected by dry spell temporal variation to the same extent, a 92 

simulation approach was used where, given the generation of daily rainfall time series characterized 93 

by different average dry spell, the total discharge of the investigated catchments was computed in 94 

response to the generated rainfall scenarios, and BFIs were extracted by the application of a 95 

hydrograph filtering algorithm. 96 

The primary findings of this study will help to elucidate the extent to which catchment properties 97 

can mitigate climate fluctuations and to determine which catchment properties are most meaningful 98 

for this purpose. 99 

 100 



2. BFI ASSESSMENT FOR OBSERVED CATCHMENTS 101 

2.1 Data description 102 

Because the current investigation is focused on the impact of dry spell characterization on BFI 103 

assessment, the observed catchments were principally selected to provide a broad spectrum of 104 

climate conditions covered by a north-south European transect from extremely dry and seasonal 105 

types (typically in southern Europe) to temperate and oceanic types (typically in northern Europe). 106 

Moreover, because this study was concerned with BFI assessment, catchments were also selected to 107 

provide a broad range of BFI values and the correspondingly broad range of catchment delay times.  108 

According to these rules, daily streamflow, rainfall and temperature data were collated for 10 109 

catchments across Europe from local water agencies or as part of previous studies (Brauer et al., 110 

2011; Van Lanen and Dijksma, 1999; Van Huijgevoort et al., 2011; Mehaiguene et al., 2012; Van 111 

Loon and Van Lanen, 2013; Longobardi and Villani, 2013). The locations of the investigated 112 

catchments are indicated in Figure 1.  113 

Catchment areas vary between 6.5 and 16500 km2, and mean catchment elevation ranges between 114 

165 and 1060 m.a.s.l. The range of average annual precipitation is 347–1588 mm, with the largest 115 

values occurring for a humid region in southern Italy (Longobardi et al., 2016). Climate regime 116 

indications are provided with reference to the Köppen-Geiger climate classification (Figure 1; Peel 117 

et al., 2007). A typical mean monthly rainfall distribution is provided in Figure 1 for each of the 118 

investigated regions. Climate regimes range from dry type B to temperate type C classes. Semi-arid 119 

(Bsk) climates and Mediterranean climate conditions (Csa-Csb) are observed in the southern area of 120 

the investigated domain and are characterized by a rather marked seasonal distribution. Temperate 121 

oceanic climate conditions (Cfb) prevail in the northern area of the domain and are characterized by 122 

a more uniformly distributed precipitation regime. Average annual runoff ranges between 22 and 123 

1309 mm/yr, and none of the catchments shows important snow accumulation and melt processes. 124 

Bedrock permeabilities (derived from the Global Hydrogeology MAPs product; Gleeson et al., 125 

2014) range between 10-4 and 10-9 m/s, ranging from high to extremely low values,. Soil types 126 



range from podzols to cambisols to calcisols according to the FAO classification (Soil Atlas of 127 

Europe, 2005). More information is provided in Table 1. 128 

 129 

2.2 Baseflow separation  130 

Hydrograph components separation was performed to assess the catchment long-term BFI. 131 

Following the definition of the Institute of Hydrology (1980), a BFI value was assessed as the ratio 132 

between the volume of baseflow and the volume of total streamflow; to derive the baseflow volume, 133 

baseflow separation was performed for each catchment.  134 

At least three main categories of separation algorithms can be cited: empirical, digital filter-based 135 

and model-based techniques. Each procedure is, to a large extent, arbitrary (Hewelett and Hibbert, 136 

1967) but provides a repeatable methodology to derive objective measures or indices related to a 137 

particular streamflow source. Recursive digital filters (RDF) are the most commonly used methods 138 

for estimating baseflow because of their simplicity and quick implementation, which only needs 139 

streamflow data (Eckhardt 2005; Aksoy et al., 2009; Li et al., 2014), even though RDF parameters 140 

are questionable in certain cases, and geochemical or isotopic method calibration would improve 141 

the separation between slow and fast components (Lott and Stewart, 2013; Longobardi et al., 2016). 142 

Among RDFs, the Lyne and Hollick method (Lyne and Hollick, 1979; Ladson et al., 2013) seemed 143 

to be the most flexible approach and to have better performance for a wide range of climate 144 

conditions and catchment properties (Li et al., 2014, Longobardi et al, 2016). Because of these 145 

reasons, the Lyne and Hollick filter was selected for this study as a simple smoothing and 146 

separation rule to separate the baseflow from the total streamflow hydrograph. The Lyne and 147 

Hollick method acts as a low-pass filter to remove the high frequency quickflow component of 148 

streamflow from the low frequency baseflow component. The filter equation predicts the quickflow 149 

qq component at a time step t by 150 

 [ ])1t(q)t(q
2
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subject to the restriction qq > 0, where α is the filter parameter that affects the degree of attenuation. 152 

The baseflow component qb at time step t is the difference between total streamflow q and 153 

quickflow qq: 154 

qb(t) = q(t) – qq(t),           (2) 155 

subject to the restriction qb  ≤ q. According to Nathan and McMahon (1990), the value of the filter 156 

that yields the most acceptable results in term of baseflow separation is in the range of 0.9 to 0.95. 157 

The filter was passed over the data three times, forward, backward and forward again, for a larger 158 

smoothing effect, as suggested by Nathan and McMahon (1990). 159 

The result of the assessment is illustrated in Table 1. The BFI showed a large range for the studied 160 

catchments, varying from 20% to 80%. The correlation between the BFI and catchment area (8%), 161 

mean annual precipitation (3%) and mean annual runoff (3%) appears not relevant. Although not 162 

significant, a larger positive correlation (43%) appeared between BFI and the permeability values 163 

reported in Table 1. Geo-hydrological soil properties are tightly related to the BFI, and the weak 164 

numerical correlation extent found in the current analysis was probably because the permeability 165 

values indicated in Table 1 did not account for soil properties and were primarily derived from 166 

bedrock type.  167 

 168 

3. CHARACTERISTIC SCALE IDENTIFICATION 169 

As discussed in the introduction, BFI vulnerability to dry spell length variation was investigated as 170 

a function of two characteristic time scales: the catchment delay time “Ks” and the dry spell length 171 

“d”. The first scale parameter helps to distinguish between catchments based on catchment 172 

characteristics, particularly between poorly and well-drained catchments. The second scale 173 

parameter helps to distinguish between catchments on the basis of climate characteristics. The 174 

mentioned scales were identified by a modelling approach which was subsequently used to 175 

investigate the mutual interaction between climate and catchment properties.   176 

 177 



3.1 Daily streamflow modelling 178 

In view of the modelling analysis that will follow, it is particularly interesting and also conceptually 179 

important to differentiate the catchments based on their hydrological response times. A high number 180 

and broad range of rainfall-runoff models are available for this aim. Popular physically based 181 

models were not considered in this study; simple conceptual approaches have instead been 182 

preferred, because although minimal in terms of model input and parametrization, they are able to 183 

capture catchment behaviour for highly different climate and basin properties. Among the 184 

conceptual rainfall-runoff models, the IAHCRES transfer function approach was selected (Jakeman 185 

and Hornberger, 1993). According to a large number of scientific papers, IHACRES appears to be a 186 

flexible and versatile model that has been applied to a very broad range of purposes from traditional 187 

streamflow prediction (Razavi and Coulibaly, 2013), water resources management (Alredaisy, 188 

2011), and water quality studies (Letcher et al., 2002) to reservoir operating rules management 189 

(Ahmadi et al., 2014). Studies exploring the role of climate changes and land cover changes on the 190 

hydrological response have also applied IHACRES (Evans and Schreider, 2002; Croke et al., 2004, 191 

Aronica and Bonaccorso, 2013). 192 

The IHACRES model accounts for the non-linearity in the catchment response by a rainfall loss 193 

filter module driven by climatic forcing. Further down, a routing module considers the existence of 194 

two streamflow pathways, slow and fast, that contribute with different weights (time of delay and 195 

relative volumetric throughput) to total streamflow based on catchment characteristics. The 196 

conceptual separation between slow and fast paths enables the user to characterize the delay times 197 

for both streamflow components. The slow path delay time Ks was used in the current study to 198 

quantify the hydrological response characteristic time scale.  199 

To test the ability of the model to describe the catchment hydrological behaviour under the climate 200 

and geology gradient considered in this study, the model was applied to the 10 catchments under 201 

investigation and its performance was measured in terms of the following statistics. Slow flow 202 

component delay time (Ks) and slow flow component volumetric throughput coefficient (vs) are 203 



illustrated in Table 2. Statistics used to measure model performance were the NSE (Nash and 204 

Sutcliff Efficiency coefficient), the coefficient of determination (r2), the LNSE (Nash and Sutcliffe 205 

Efficiency with logarithmic values), and d (index of agreement; Willmott et al., 1985). Because the 206 

catchment vulnerability to dry spell length variability was quantified in terms of long-term BFI 207 

changes, it was important to understand how reasonable the BFI values provided by the modelling 208 

approach were. To quantify such a feature, BFIcal, the BFI value obtained by filtering the modelled 209 

time series after calibration, and the BFI relative error percentage between the BFI (computed for 210 

observed time series) and BFIcal were also estimated. Metrics estimation is provided in Table 2.  211 

Overall model performance appeared rather satisfactory. Average NSE was approximately 0.7 (min 212 

0.67), average r2 was approximately 0.85 (min 0.81), average LNSE was approximately 0.66 (min 213 

0.45) and average D was approximately 0.73 (min 0.63). The relative percentage error between the 214 

BFI computed for the observed time series and the BFIcal computed for the modelled time series 215 

was negligible with an average value of approximately 6%. There was no systematic bias in the BFI 216 

model results with both positive and negative deviations from observed values (Table 2) The need 217 

to use a specific simulation approach that provided optimal results for the different climate and 218 

catchment property conditions was considered and thus appears to be congruent with the selected 219 

model. 220 

 221 

3.2 Daily rainfall modelling 222 

The characteristic time scale for climate settings is the dry spell d, the period between two 223 

consecutive rainfall occurrences. A stochastic point process approach was adopted to describe and 224 

assess the characteristic time scale for each of the investigated catchments and for the subsequent 225 

generation of daily rainfall series to be used as inputs in the following simulation analysis. The 226 

daily rainfall time series were modelled as stochastic Poisson processes with rectangular pulses 227 

(PRP) (Rodriguez-Iturbe et al., 1987). The arrival times of daily rainfall storms were assumed to 228 

follow a Poisson process of rate λ such that the dry spells were independently and identically 229 



distributed as exponential random variables with mean d=1/λ days. Rainfall intensity at time t was 230 

obtained as the sum of intensities of all overlapping storms that occurred at that time, which could 231 

be generated for each storm occurrence marked by the Poisson process. Rainfall intensity had an 232 

exponential distribution with parameter µ.  233 

Average d duration for the studied catchments ranged between a minimum of approximately 3 days 234 

(HUP - Cfb) and a maximum of approximately 14 days (PLA - Csa) from northern to southern 235 

latitudes (Table 3). Rainfall intensity ranged between approximately 1 mm/d (DJE - Bsk) and 4.36 236 

mm/d (BUS – Csa, Csb), with a relatively lower dependence on a catchment’s geographical 237 

coordinates (Table 4).  238 

For the successive simulation analyses it was important to confirm the suitability of the PRP 239 

approach for the case studies. To assess the goodness-of-fit for the studied data, main descriptive 240 

statistics (mean, maximum, standard deviation) for observed and modelled daily rainfall were 241 

quantified and are reported in Table 3 and Table 4. Additionally, observed and modelled daily 242 

rainfall cumulative distributions were compared with the use of the average absolute percentage 243 

error (AAPE), defined as  244 
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where i is the percentile order, Fobs,i is the cumulative distribution for observed daily rainfall 246 

corresponding to the i-th percentile, Fmod,i is the cumulative distribution for modelled daily rainfall 247 

corresponding to the i-th percentile, and n is the number of percentiles. AAPE values are also 248 

reported in Table 3 and Table 4. 249 

Overall model performance appears to have been rather satisfactory. The d process, which is of 250 

particular interest in the current research, appears to have been well represented. Errors in 251 

cumulative distribution fitting were smaller than 10% for half of the catchments and not larger than 252 

25% for the remaining catchments (Table 3). Beyond mean values, the maximum values for dry 253 



spell lengt also appeared congruent with the observations (Table 3). Similar comments hold for the 254 

rainfall intensity, with a moderate increase in the goodness-of-fit errors (Table 4). 255 

 256 

4. THE RELATION BETWEEN OBSERVED CATCHMENT BFI, CATCHMENT DELAY 257 

AND DRY SPELL 258 

For the number of investigated catchments, Ks ranged between approximately 30 days (HUP) to 259 

200 days (NOO), as reported in Table 2. When BFI values were plotted against Ks values, 260 

catchments appeared to have been naturally forced into two clusters as indicated in Figure 2, where 261 

the empirical relation between Ks and BFI is illustrated.  262 

The well-drained group was characterized by a delay time longer than 80 days and BFI values 263 

larger than 0.5. Within this group, the empirical relationship Ks-BFI showed increasing BFI for 264 

increasing delay times. Larger Ks (larger BFI) values generally occurred for high permeability 265 

and/or high water holding capacity soils (Table 1). The poorly-drained group was characterized by 266 

delay times shorter than 80 days and BFI values smaller than 0.5. For this group, the empirical 267 

relationship Ks-BFI was not as evident as in the well-drained one because catchments having 268 

similar response delay times were associated with very different BFI values. For example, the Platis 269 

(PLA) and Hupsel (HUP) catchment delay times were approximately 44 days and 30 days, 270 

respectively, but the BFI for HUP was 50% larger than the BFI for PLA. Lower Ks (lower BFI) 271 

values were generally associated with low permeability and low water holding capacity soils (Table 272 

1).   273 

The empirical relationship between d and the BFI was less clear because the same values of d 274 

related to extremely different BFI values (Figure 3). Groups were indeed still noticeable, but they 275 

were primarily driven by the BFI value, and poorly-drained catchments lay respectively above and 276 

below the threshold of BFI = 0.5. Within each group, although it was more evident for the well-277 

drained group, a more uniform precipitation distribution represented by a small value of d, typical 278 

in medium to northern latitude climates, related to larger BFI. As an example, the Platis (PLA) and 279 



Hupsel (HUP) difference in BFI assessment previously cited seems to be justified by their relative d 280 

values; the Hupsel catchment was indeed forced by more uniform precipitation occurrences, which 281 

made the related hydrological regime more persistent and subsequently yielded a larger BFI value 282 

compared with the Platis catchment. 283 

The coevolution of climate and geology is not new to the scientific literature (Troch et al., 2015). 284 

Both at plot and regional scales, climate features control soil development and soil properties 285 

(Lavee et al., 1997) to the point that climate changes are supposed to affect and induce changes in 286 

hydro-geomorphological processes (Lane, 2013). Catchment delay times are frequently considered 287 

as constant parameters and related to catchment properties; however, for a more realistic simulation, 288 

particularly of the baseflow time series, concern has been raised about a dependence on the climate 289 

regime properties (He et al., 2016; Longobardi et al., 2016). The dataset used for the current 290 

analysis empirically depicts such a relation, although it represents a small sample (Figure 4). 291 

Although rather scattered, a tendency seems to appear in Figure 4 where the larger the d, the smaller 292 

the Ks (the less uniform the precipitation regime, the less persistent the hydrological regime). The 293 

Hupsel catchment represents an exception to the rule, probably because of the combination of very 294 

low permeability and small drainage area.  295 

Soil and geological properties and climate effects on the baseflow properties could be individually 296 

considered only to a limited extent because they have the potential to impact each other and 297 

mitigate the relevant effects. To summarize their mutual impact on the BFI, the ratio between the 298 

characteristic time scales could be considered, that is, d/Ks.  299 

If the BFI is in fact plotted against the d/Ks values, the existence of well- and poorly-drained groups 300 

resulted in an almost univocal relation, such as for the case of Ks dependence (Figure 2); however, 301 

in this case, the impact of d was also considered (Figure 5). In fact, this pattern enabled the group 302 

definitions to be maintained and the BFI values to be sorted as an inverse decreasing function of 303 

d/Ks. Large d/Ks values defined the domain of catchments where d and Ks were of the same order 304 

of magnitude. Poorly-drained catchments were located in this section with BFI values of 305 



approximately 25%. Inversely, low d/Ks values defined the domain of catchments where d << Ks. 306 

Well-drained catchments were located in this section, with a BFI larger than 60% being observed.  307 

The use of the ratio d/Ks in the description of the BFI variability also quantitatively strengthens the 308 

dependence of this index on the characteristic time scales identified. By using a regression model to 309 

explain the variability of the BFI with respect to the Ks parameter alone, we find that the variance 310 

explained is very high in the case of the well-drained group (85%) and very low in the case of the 311 

poorly-drained group (22%). Using instead the ratio d/Ks, the variance explained with respect to the 312 

whole set of basins is equal to 85%. 313 

If the introduction of the weight d on Ks does not appear significant for the well-drained group, it 314 

made it possible to distinguish between poorly-drained catchments with the same hydrological 315 

properties but different climate parameters. 316 

The representation provided in Figure 5 justifies indeed the previously mentioned observed 317 

differences between HUP and PLA, assigns them significantly different d/Ks ratios, and embeds the 318 

significant differences in terms of d. 319 

 320 

5. MODELLED IMPACT OF DRY SPELL DURATION ON OBSERVED CATCHMENT 321 

BFIs 322 

Next we used a simulation approach to measure how changes in dry spell length propagate through 323 

the catchment response to produce changes in the BFI values. Changes in d included both a 324 

decrease (wetter conditions) and an increase (drier conditions) in d. Each of the catchments in Table 325 

1 is characterized by a deterministic catchment response; the hydrological model parameters (Table 326 

2) were thus kept constant, as well as the slow path delay time Ks. For each of the catchments, 327 

several daily rainfall scenarios were generated according to the PRP model, each characterized by a 328 

different value for d. The parameter range for d was based on the empirical study, which covered an 329 

exhaustive gradient of climate conditions. The average daily d was assumed to vary between 3 and 330 



16 days To compare catchments, only increases or decreases of 20% and 50% of the initial d value 331 

were considered in the modelling exercise (Figure 6).  332 

Generated rainfall scenarios were then used to force the IHACRES model to simulate the catchment 333 

response, and the Lyne and Hollick algorithm was used to derive the baseflow series from the 334 

simulated total streamflow series to quantify the BFI index. Overall, an increase in d, that is a shift 335 

towards drier conditions, led to a decrease in the BFI (∆dry); in contrast, a decrease in d, that is a 336 

shift towards wetter conditions, led to an increase in the BFI (∆wet). Catchment vulnerability was 337 

measured by 338 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐵𝐵𝐵𝐵𝐵𝐵 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  Δ𝑤𝑤𝑤𝑤𝑤𝑤
𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑�

=
𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑−%−𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑�

𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑�
 (%)    (4) 339 

and 340 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  Δ𝑑𝑑𝑑𝑑𝑑𝑑
𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑�

=
𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑�−𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑+%

𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑�
 (%)    (5) 341 

where 𝑑̅𝑑 represents the initial d value, d-% represent the 20% (or 50%) reduced value for 𝑑̅𝑑 and d+% 342 

represents the 20% (or 50%) increased value for 𝑑̅𝑑. In the following, we only considered as 343 

significant a variation in BFI larger than 10%. 344 

The behaviour of poorly-drained and well-drained groups was different, and the main findings are 345 

summarized below. 346 

A 20% decrease in 𝑑̅𝑑 values did not produce changes in BFI for any of the studied catchments, a 347 

50% decrease generated BFI increases up to 20% (Figure 7 – left panel). Poorly-drained catchments 348 

appear the most vulnerable as they are associated with the largest maximum percentage BFI 349 

increases. Within this group, catchments with a combination of small Ks and large 𝑑̅𝑑 (large d/Ks 350 

values) appear to be the most affected (Figure 7 c)). Catchments located at the opposite boundary, 351 

low d/Ks (large Ks and small 𝑑̅𝑑), were almost unresponsive to a decrease in dry spell length. The 352 

same could be said in the case of a shift toward wetter condition, where 20% and 50% 𝑑̅𝑑 increases 353 

generated almost similar effects on the studied catchments (Figure 7 – d), e) and f)). 354 



The unexpected behaviour of some catchments in this analysis can be explained by soil properties. 355 

This is for example the case of the Sele watershed, SEL, which is among the class of well-drained 356 

the only catchment to be significant affected by variation in d (Figure 7 c)). Although in the group 357 

classification based on Ks SEL clearly belongs to the well-drained group (Figure 2), if the d/Ks 358 

ratio is used, SEL lays in the d/Ks range typical for the poorly-drained group (Figure 5). Different 359 

from the other well-drained catchments, SEL bedrock permeability was not very large, and the large 360 

BFI value (0.54), which forces SEL into the well-drained group, was probably generated by the 361 

presence of very important alluvial deposits, rather than by large bedrock permeability. Soil 362 

properties can also explain the difference between the Djidiouia (DJE) and Platis (PLA) watersheds 363 

(Figure 7 f)). Characterized by similar values for Ks and d (and consequently d/Ks) and by the same 364 

bedrock permeability (Table 1), PLA and DJE differed in terms of soil types, which were leptosols 365 

and calcisols, respectively. The capacity of leptosols to hold water and contribute to baseflow 366 

generation is low, which may have led to the BFI decrease detected by the simulation 367 

 368 

6. INFLUENCE OF DRY SPELL DURATION ON BFI IN SIMULATED VIRTUAL 369 

CATCHMENTS  370 

To support and further expand the results provided by the analysis of the observed catchments, the 371 

hydrological behaviour of a very broad set of virtual catchments was investigated. 372 

The observed catchments selected for the current study covered a broad spectrum of climate 373 

conditions, ranging from extremely dry and seasonal climate types to temperate and oceanic climate 374 

types. The catchments also covered a broad range of BFI values and corresponding catchment delay 375 

times (tightly related to BFI as shown in Figure 2). Assuming that the selected catchments cover the 376 

range of hydrological catchment behaviours existing in Europe, the maximum and the minimum 377 

values of the PRP and IHACRES model parameters calibrated for the observed catchments were 378 

used as the range of model parameters (both PRP + IHACRES) in the synthetic simulation. These 379 

simulations were used to generate synthetic streamflow time series for above two thousand “virtual 380 



catchments” (Table 5).  The virtual catchment behaviour was studied in terms of BFI assessment 381 

and its variability with the d/Ks parameter.  382 

Although a good correspondence was found between observed and virtual catchments, the BFI-d/Ks 383 

domain described by the virtual catchments (Figure 8) extended beyond the range of the observed 384 

catchments, which strengthened the significance of the findings, especially concerning the d/Ks 385 

parameter.  386 

According to Figure 8 (upper right panel), for a given d value, the effects of Ks on the BFI was 387 

practically negligible for the poorly-drained group; a long and narrow tail in the BFI-d/Ks domain 388 

was recognized for large d/Ks values, which corresponded to the lower range for Ks. The effect 389 

became more important for the well-drained group because the spread of the BFI-d/Ks domain 390 

significantly increased from larger to smaller d/Ks.  391 

For a given value of Ks (Figure 8 right lower panel) the effect of d on the BFI assessment, measured 392 

by the width of the domain, appeared important for the well-drained group (lower d/Ks values) and 393 

particularly for values included in the interval 0.1-0.3, where the extent of the domain appeared 394 

wider. The importance of d on BFI assessment was drastically reduced for the poorly-drained group 395 

(large d/Ks values, larger than 0.6), for which BFI values were within the minimal range of 0.1-0.2 396 

regardless of the d values. 397 

Similarly to what represented for the observed catchments in Figure 7, Figure 9 illustrates the 398 

maximum percentage BFI increase or decrease for the dataset of virtual catchments due to a 399 

decrease and an increase in the dry spell length. The results found for the virtual catchments appear 400 

congruent with the finding from observed catchments. A 50% decrease in d produces larger effect 401 

than a 20% decrease, whereas the effect of a 20% and a 50% increase are similar in terms of BFI 402 

changes. Larger changes are also in this case detected for large d/Ks. 403 

It has to be noted however that the use of a percentage decrease or increase of the initial value of d, 404 

e.g., 20% and 50%, considered in the current analysis, implies that systems characterized by small 405 

initial d values see a smaller absolute change in d (and d/Ks) than systems characterized by a large 406 



value of initial d. As an example, Figure 10 shows the modelled BFI variability for a set of virtual 407 

catchments featured by two extremely different initial d values and subject to the same 50% d 408 

decrease. Systems featured by the same Ks values exhibit a significantly different behaviour 409 

depending on their initial state.  In the case of the lower Ks (the poorly-drained group) starting from 410 

a dry initial condition (large d) leads to a 30% overestimation of BFI variability compared to the 411 

case of wet initial conditions (red boxes in Figure 10). Differences are evidently dampened in the 412 

case of large Ks (the well-drained group, blue triangles in Figure 10). The range of variability of the 413 

d/Ks parameter is furthermore significantly larger in the case of initial dry conditions. 414 

As this effect might distort the assessment of the impact of d variability on the BFI, the maximum 415 

BFI increase and decrease were standardized by a measure of variability of the d/Ks index, the 416 

standard deviation of the d/Ks (Figure 11). The simulation experiments showed that, even though 417 

under the same dry spell variation, the BFI vulnerability appeared higher for catchments poorly-418 

drained systems,  attributing an equal weight to the variations in d both in the case of dry and wet 419 

initial conditions, for tendencies towards both wetter and drier climates, the poorly-drained systems 420 

appear to have been less impacted by climate fluctuation than the well-drained systems. 421 

To further support the results, the BFI vulnerability can be additionally studied in terms of BFI 422 

variability, the BFI standard deviation, beyond the maximum percentage increase/decrease. Figure 423 

12 indicates even more clearly how the impact on BFI variability decreases for large d/Ks ratios, 424 

thus for the poorly-drained group. In particular the maximum variability in standardised BFI was 425 

approached for a d/Ks values that correspond to the limit of transition between the well-drained and 426 

the poorly-drained groups as illustrated for the observed catchments in Figure 5.  427 

 428 

7. CONCLUSIONS  429 

In a combined data-based and modelling study, where the hydrological behaviour of observed and 430 

virtual catchments was investigated over a broad gradient of climate conditions and catchment 431 



properties, we aimed to illustrate the impact of climate variability and, in particular, the impact of 432 

dry spell duration on the baseflow process, as summarized by the BFI index. 433 

An index based on the combination of catchment and rainfall properties, d/Ks, the ratio between the 434 

dry spell length and the catchment delay time, was used to group catchments into well- and poorly-435 

drained groups and to measure the variability of the BFI index for a given rate of dry spell 436 

variability. 437 

As a general rule, the effect of the main hydrological parameter Ks on the BFI was practically 438 

negligible for the poorly-drained group and became more important for the well-drained group as 439 

the spread of the BFI-d/Ks domain significantly increased from larger to smaller d/Ks. The impact 440 

of d on the BFI, as measured by the width of the domain BFI-d/Ks, appears to be important for the 441 

well-drained group (lower d/Ks values) and drastically reduced for the poorly-drained group (large 442 

d/Ks values, larger than 0.6), for which BFI values were set to minimal values regardless of the d 443 

values. 444 

With respect to the climate fluctuation and in particular an increase or decrease in dry spell length, 445 

the tendency towards drier climates (extension of dry spell length) appears to have caused minor 446 

hydrological impact, compared with the tendency towards wetter climates. The simulation 447 

experiments further showed how, for tendencies towards both wetter and drier climates, the poorly-448 

drained systems appear to have been less impacted by climate fluctuation than the well-drained 449 

systems and that the impact reached maximum values for systems laying in the transition zone 450 

between well- and poorly-drained systems. 451 

Although the virtual catchment behaviour enabled the assessment of general patterns of BFI 452 

vulnerability, the study of the observed catchments provided a thorough knowledge of the 453 

hydrological systems and shed light on the role of specific hydrological parameters, that is, the 454 

catchment properties, on BFI assessment. 455 

It is important to stress that the reported effects on the BFI variability produced by the variability in 456 

the dry spell length do not represent the impact of climate variations on the full spectrum of the low 457 



flow hydrological regime but on only one of the indices to be used to classify the low flow regime. 458 

Being a long-term average index, the BFI is probably moderately sensitive to changes towards 459 

more-or-less extreme climate conditions, but it is not insensitive, and future research on indices that 460 

describe more extreme low flow features could show even more marked results. 461 
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Figure captions 590 
 591 

Figure 1: Red frames indicate regions where the investigated catchments are located. Histograms of mean 592 

monthly rainfall distribution are illustrated for each region. The Köppen climate classification map 593 

is also provided (upper right corner) for identification of climate groups. 594 

Figure 2: BFI dependence on slow storage delay times. Squares define poorly-drained and circles define 595 

well-drained catchments. 596 

Figure 3: BFI dependence on average dry spell d. Squares define poorly-drained and circles define well-597 

drained catchments. 598 

Figure 4: Empirical relationship between average dry spell d and slow storage delay time. Squares define 599 

poorly-drained and circles define well-drained catchments. 600 

Figure 5: BFI dependence on d/Ks ratio. Squares define poorly-drained and circles define well-drained 601 

catchments. 602 

Figure 6: Modelling analysis flow chart. 603 

Figure 7: Maximum percentage BFI decrease or increase as a function of d, Ks and d/Ks. Squares define 604 

poorly-drained and circles define well-drained catchments. Light colours define 20% increase or 605 

decrease in d; dark colours define 50% increase or decrease in d. Right panel: dry spell length 606 

increase. Left panel: dry spell length decrease. 607 

Figure 8: BFI-d/Ks domain for observed (red circles) and virtual catchments (light blue circles). The insets 608 

visualizes the effect of model parameters on the spread of the results. Right upper panel: effect of 609 

Ks. Right lower panel: effect of d. 610 

Figure 9: Maximum percentage BFI increase (left panels) and decrease (right panels) as a function of d/Ks. 611 

Light colours (upper panel) define 20% decrease or increase in d; dark colours (lower panel) define 612 

50% decrease or increase in d. 613 

Figure 10:  Modelled BFI variability induced by a decrease in d of 50% in the case of dry initial conditions (large d) 614 

and wet initial conditions (small d). Virtual catchments inside red and blue boxes are characterized by the 615 
same Ks value. 616 

Figure 11. Ratio between BFI maximum percentage increase and decrease and d/Ks standard deviation for a 617 

decrease (left panels) and an increase (right panels) of the dry spell length d. Light colours (upper 618 

panel) define 20% decrease or increase in d; dark colours (lower panel) define 50% decrease or 619 

increase in d. 620 



Figure 12: Ratio between BFI standard deviation and d/Ks standard deviation for a decrease (left panels) and 621 

an increase (right panels) of the dry spell length d. Light colours (upper panel) define 20% decrease 622 

or increase in d; dark colours (lower panel) define 50% decrease or increase in d. Plot areas 623 

included in the red boxes are enlarged in the adjacent illustrations. 624 



 

Figure 1. Red frames indicate regions where investigated catchments are located. Histograms of mean monthly rainfall 
distribution are illustrated for each region. The Köppen climate classification map is also provided (upper right corner) 
as identification of climate groups. 
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Figure 2. BFI dependence on slow storage delay times. Squares define poorly-drained and circles define well-
drained catchments. 
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Figure 3. BFI dependence on average dry spell d. Squares define poorly-drained and circles define well-drained 
catchments. 
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Figure 4. Empirical relationship between average dry spell d and slow storage delay time. Squares define poorly-
drained and circles define well-drained catchments. 
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Figure 5. BFI dependence on d/Ks ratio. Squares define poorly-drained and circles define well-drained catchments. 
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Figure 6. Modelling analysis flow chart. 
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Figure 7. Maximum percentage BFI increase and decrease as a function of d, Ks and d/Ks. Squares define poorly-
drained and circles define well-drained catchments. Light colors define 20% increase or decrease in d, dark colors 
define 50% increase or decrease in d. Right panel: dry spell length increase. Left panel: dry spell length decrease. 
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Figure 8. BFI-d/Ks domain for observed (red circles) and virtual catchments (light blue circles). The insets visualizes 
the effect of model parameters on the spread of the results. Right upper panel: effect of Ks. Right lower panel: effect of 
d. 
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Figure 9. Maximum percentage BFI increase (left panels) and decrease (right panels) as a function of d/Ks. Light 
colours (upper panel) define 20% decrease or increase in d, dark colours (lower panel) define 50% decrease or increase 
in d. 
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Figure 10. Modelled BFI variability induced by a decrease in d of 50% in the case of dry initial conditions (large d) and 
wet initial conditions (small d). Virtual catchments inside red and blue boxes are characterized by the same Ks value. 
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Figure 11. Ratio between BFI maximum percentage increase and decrease and d/Ks standard deviation for a decrease 
(left panels) and an increase (right panels) of the dry spell length d. Light colours (upper panel) define 20% decrease or 
increase in d; dark colours (lower panel) define 50% decrease or increase in d. 
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Figure 12. Ratio between BFI standard deviation and d/Ks standard deviation for a decrease (left panels) and an 
increase (right panels) of the dry spell length d. Light colours (upper panel) define 20% decrease or increase in d; dark 
colours (lower panel) define 50% decrease or increase in d. Plot areas included in the red boxes are enlarged in the 
adjacent illustrations. 
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Catchments Cod Latitude Longitude A 
(km2) 

Hmed 
(a.m.s.l.) Climate MAP 

(mm) 
MAR 
(mm) 

Permeability  
(m/s) 

Soil type 
(FAO soil groups) BFI 

Hupsel HUP 52.08 6.62 6.5 30 Cfb 654 270 10-9 Podzols 0.35 

Alento ALE 42.43 14.09 270 328 Csa, Csb 1254 506 10-6 Cambisols 0.3 

Platis PLA 35.10 24.69 210 698 Csa 930 241 10-8 Leptosols 0.23 

Calore CAL 40.55 15.18 805 658 Csa, Csb 1362 859 10-5 Cambisols 0.36 

Djidiouia DJE 35.97 0.88 835 468 Bsh 347 22 10-8 Calcisols 0.25 

Liri LIR 41.72 13.62 480 1060 Csa, Csb 1445 978 10-7 Cambisols 0.58 

Noor NOO 52.14 5.81 10.6 165 Cfb 869 164 10-4 Podzols 0.86 
Bussento 
Caselle BUS 40.23 15.54 125 667 Csa, Csb 1588 1309 10-5 Cambisols 0.76 

Sele Albanella SEL 40.48 15.10 3216 684 Csa, Csb 1210 545 10-6 Cambisols 0.54 

Guadiana GUA 39.25 -3.75 16479 769 Csa, Bsh 452 37 10-8 Calcisols 0.65 

Table 1. Investigated catchments characteristics: assigned identification code (Cod), geographical coordinates (Latitude 
and Longitude), catchment drainage area (A), catchment mean elevation (Hmed), climate classes, according to Koppen 
climate classification (Climate), mean annual precipitation (MAP), mean annual runoff (MAR), permeability (Gleeson 
et al., 2014), soil type and baseflow index (BFI).  



 

Catchments Ks 
(days) vs NSE R2 LNSE D BFIcal BFI err(%) 

Hupsel 30.2 0.21 0.74 0.88 0.64 0.66 0.39 -11.4 

Alento 66.0 0.33 0.67 0.82 0.71 0.77 0.28 6.7 

Platis 44.1 0.28 0.69 0.85 0.63 0.76 0.25 -8.7 

Calore 60.0 0.43 0.72 0.85 0.68 0.75 0.39 -8.3 

Djidiouia 40.0 0.30 0.72 0.86 0.70 0.83 0.24 4.0 

Liri 102.0 0.53 0.73 0.85 0.74 0.76 0.57 1.7 

Noor 202.9 0.93 0.74 0.86 0.77 0.80 0.92 -7.0 

Bussento Caselle 122.7 0.81 0.67 0.81 0.45 0.63 0.64 3.0 

Sele Albanella 80.0 0.55 0.72 0.85 0.73 0.74 0.50 7.4 

Guadiana 120.0 0.49 0.71 0.85 0.68 0.73 0.62 4.6 

Table 2. Model parameters and performances. Main reported model parameters are Ks (slow flow component delay 
time) and vs (slow flow component volumetric throughput coefficient). Used performance metrics are NSE (Nash-
Sutcliff Efficiency coefficient), coefficient of determination (r2), LNSE (Nash-Sutcliffe Efficiency with logarithmic 
values) and D (index of agreement), BFIcal (BFI derived by digital filtering of modelled time series), BFI err 
(percentage relative error between BFI and BFIcal). 



 

Catchments mean obs max obs dev obs mean mod max mod dev mod AAPE 

  (days) (days) (days) (days) (days) (days) (%) 

Hupsel 3.18 19.00 2.86 2.70 18.00 2.18 3.65 

Alento 7.72 47.00 6.19 5.79 50.00 4.08 -9.94 

Platis 13.21 144.00 16.81 11.99 127.00 13.95 9.68 

Calore 7.96 43.00 5.30 6.20 48.00 3.91 -14.91 

Djidiouia 11.21 112.00 16.22 10.31 113.00 10.34 -1.43 

Liri 7.54 42.00 5.03 6.20 51.00 3.87 -25.26 

Noor 3.49 36.00 3.96 2.89 31.00 2.51 13.24 

Bussento Caselle 7.95 66.00 6.63 5.94 62.00 3.98 4.92 

Sele Albanella 9.49 29.00 3.51 6.80 30.00 2.05 -6.89 

Guadiana 9.18 53.00 5.87 5.72 42.00 3.09 18.94 

Table 3. Inter-storm durations: main descriptive statistics (mean, maximum and standard deviation values) for observed 
(obs) and modelled (mod) daily rainfall and average absolute percentage error (AAPE). 



 

Catchments mean obs max obs dev obs mean mod max mod dev mod AAPE 

  (mm) (mm) (mm) (mm) (mm) (mm) (%) 

Hupsel 1.83 33.10 3.59 1.47 41.13 3.11 -26.57 

Alento 3.53 77.50 8.23 2.80 89.65 7.22 -17.35 

Platis 2.55 95.40 7.31 1.95 69.41 4.90 27.36 

Calore 3.30 65.80 6.47 2.38 68.47 5.46 -5.66 

Djidiouia 0.98 61.80 3.81 0.81 69.58 3.28 -13.01 

Liri 3.98 125.00 8.94 2.88 94.17 6.82 24.59 

Noor 2.39 72.00 4.90 1.65 42.52 3.53 41.34 

Bussento Caselle 4.36 137.00 11.53 3.34 109.08 8.54 20.33 

Sele Albanella 3.32 50.70 6.01 2.25 62.21 4.44 -26.37 

Guadiana 1.24 49.60 2.94 1.74 46.77 3.82 7.00 

Table 4. Rainfall intensity: main descriptive statistics (mean, maximum and standard deviation values) for observed 
(obs) and modelled (mod) daily rainfall and average absolute percentage error (AAPE). 



 

 vs Ks (days) d (days) 

min value 0.1 15 3 

max value 0.9 250 20 

Table 5. Range of the main models parameters used in the virtual catchments simulation. 

 




