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1 Introduction and principal results

We will consider a class of second-order elliptic equations including

P+
p (D2u)− |u|s−1u = f(x) (1.1)

and its dual
P−p (D2u)− |u|s−1u = f(x) (1.2)

in a domain of Rn with n > 2 for a positive integer p ∈ [3, n] and a real number s > 1.
Here

P+
p (X) =λn−p+1(X) + · · ·+ λn(X),

P−p (X) =λ1(X) + · · ·+ λp(X) ,
(1.3)

where λi(X), i = 1, . . . , n, are the eigenvalues of X ∈ Sn, the set of the n × n real
symmetric matrix, arranged in increasing order: λ1 ≤ λ2 ≤ · · · ≤ λn. Note that P±p (D2u)
are degenerate elliptic, according to the definition which will be given below in Section 2,
but not uniformly elliptic, except for the case p = n, when P±n (D2u) = ∆u is the Laplace
operator.

Throughout the paper, for a C2-function u in an open set of Rn, we will denote by
Du = (Diu) its gradient and by D2u = [Diju] its Hessian matrix.

More generally, if u is a continuous function, equations (1.1) and (1.2) will be intended
in the viscosity sense, which will be specified in the sequel.

The operators P±p arise in the characterizations of manifolds with partially positive
curvature, see Wu [56] and Sha [53], [54], and have been largely studied by Harvey and
Lawson [28], [29], [30], [31], [32], [34] in the framework of their theory of subequations
with respect to existence, uniqueness, removable and prescribed singularities, which have
also been considered by Caffarelli, Y.Y.Li and Nirenberg [11], [12], [13], and recently with
respect to the existence of entire subsolutions related to Keller-Osserman conditions by
Capuzzo Dolcetta, Leoni and Vitolo [14], [15].

It is well known that, also in the case of uniformly elliptic operators and for an isolated
singularity, we need conditions on the growth of the solution, related to fundamental
solutions; see for instance Gilbarg and Serrin [26] and the subsequent papers by Serrin
[48], [50], [51], [52]. In the case of the Laplace equation ∆u = 0, the fundamental solution

E(x) =

(
1

|x|

)n−2

(1.4)
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provides a smooth positive superharmonic function in (Rn)∗ = {x ∈ Rn : x 6= 0} such
that E(x)→∞ as x→ 0.

Consequently, if u is any harmonic function in the punctured ball B∗ρ = {0 < |x| < ρ}
for some ρ > 0, and u(x) = o(E(x)) as x → 0, then uε(x) ≡ u(x) − εE(x) is in turn
a subharmonic function in B∗ρ such that uε(x) → −∞ as x → 0. Therefore, if v is the
solution of the Dirichlet problem {

∆v = 0 in Br

v = u on ∂Br
(1.5)

for any r < ρ by the comparison principle we have u ≤ v+ εE in B∗r and therefore, letting
ε → 0+, we get u ≤ v in B∗ρ . In a similar manner, by comparison we also get u ≥ v in
B∗ρ so that v(x) = u(x) in B∗ρ provides the harmonic extension of u to Bρ; in other words,
the origin is a removable singularity for the Laplace equation.

The same argument can be carried out in the case of fully nonlinear uniformly elliptic
operators with ellipticity constants 0 < λ ≤ Λ such that n > 1+Λ

λ
, using the corresponding

fundamental solutions

E(x) =

(
1

|x|

) λ
Λ

(n−1)−1

. (1.6)

for which we refer to Labutin [39]. For Hessian and curvature equations see Labutin [41],
Takimoto [55] and the references therein.

For isolated singularities of nonnegative solutions of the p-Laplace operator and ∞-
Laplace operator we refer to Serrin [49], Manfredi [45] and Savin, Wang and Yu [47],
respectively. See also Cirstea and Du [17], Brandolini, Chiacchio, Cirstea and Trombetti
[7], Cirstea [16] for nonnegative solutions of semilinear equations, and Y.Y.Li [43] for
conformally invariant fully nonlinear equations.

Here we are interested to unconditional removability results, which do not require any
condition on the solution when approaching the singularity.

The issue under consideration goes back to the well known result of Brezis and Veron
[9], who proved that equation

∆u− |u|s−1u = 0 (1.7)

with s ≥ n
n−2

has the property that any isolated singularity is removable, provided n ≥ 3.
This result was already known as a consequence of a theorem of Loewner and Nirenberg
[44] in the case s = n+2

n−2
and has been generalized by Labutin [38] to general fully nonlinear

uniformly elliptic equations
F (D2u)− |u|s−1u = 0 (1.8)
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with s ≥ λ(n−1)+Λ
λ(n−1)−Λ

. If F (D2u) in (1.8) is the Laplace operator ∆u = P+
n (D2u), then

λ = Λ = 1 and we recover the aforementioned removability condition s ≥ n
n−2

for equation
(1.7).

Note that no condition is assumed on the solution u. That u(x) = o(E(x)) as x→ 0 can
be deduced from the fact that u is a solution of the equation, and a function u(x) >> E(x)
cannot be a solution of equation (1.7) as soon as s = n

n−2
. Results of this kind for other

classes of fully nonlinear uniformly elliptic operators are obtained by Felmer and Quaas
[22].

Our aim is to extend this result to equations (1.8) having a degenerate elliptic principal
part Fp(D

2u) such that

P−p (X) ≤ Fp(X) ≤ P+
p (X), X ∈ Sn . (1.9)

For this purpose we prove an extended comparison principle in punctured domains be-
tween upper semicontinuous (usc) subsolutions and lower semicontinuous (lsc) supersolu-
tions of equation

Fp(D
2u)− |u|s−1u = f(x) (1.10)

in viscosity sense, also admitting a moderate singularity of f(x).
The natural functions to be compared with are the so-called fundamental solutions of

the operator Fp. Here we use the fundamental solutions u = Ep, for 2 < p ≤ n, of the
equations P+

p (D2u) = 0, corresponding to the maximal operator in the considered class:

Ep(x) =

(
1

|x|

)p−2

, x 6= 0. (1.11)

For p = n, the definition (1.11) returns the harmonic function En, see (1.6), which is the
fundamental solution of the Laplace operator.

Let us recall that the fundamental solutions of the Laplace originate from the solution
of the Poisson equation

∆u = δ

in distributional sense with the Dirac unit mass distribution concentrated at the origin
such that u(x)→ 0 as |x| → ∞, with the physical meaning that the effects from a point
disappear far away from it. By linearity, the knowledge of E allow to construct solutions
with a different distribution f by superposition (convolution).
Since the Bôcher theorem [6], every solution u, bounded from below, of the Laplace
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equation ∆u = 0 in the punctured ball Br = {x ∈ Rn : 0 < |x| < r}, satisfies the
inequalities

γEn − C ≤ u ≤ γEn + C

with γ > 0, if u cannot be extended to a harmonic function in Br.
In the fully nonlinear setting, due to by Labutin [39], the same conclusion holds true

when the Laplace equation is replaced by the maximal Pucci equation with ellipticity
constants λ > 0 and Λ ≥ λ,

Mλ,Λ(D2u) := Λ
n∑
i=1

λ+
i − λ

n∑
i=1

λ−i = 0,

and the fundamental solution En by E(n−1) λ
Λ

+1. For general uniformly elliptic equations

we refer to Armstrong, Sirakov and Smart [4] for a detailed discussion and more recent
results about fundamental solutions. See also [22].

Roughly speaking, since the Bôcher theorem, the fundamental solutions go to infinity
at the origin with a typical growth order, which is in turn a limiting growth for the
removability of isolated singularities, as in the previous examples.

In this sense, since P+(D2Ep(x)) = 0 for x 6= 0, the functions Ep defined in (1.11) are
the fundamental solutions for the operator P+

p .
We will set, for s > 1,

ps =
2s

s− 1
(> 2) (1.12)

observing that ps ≤ p if and only if s ≥ p
p−2

, as in the assumption of the following result.

Theorem 1.1. Let n and p be positive integers such that 2 < p ≤ n, and s ≥ p
p−2

.
Suppose f is a continuous function in some punctured ball of Rn, say B∗ρ with ρ > 0, such
that

lim
x→0
|x|(p−2)sf(x) = 0 . (1.13)

If u is both a viscosity subsolution of equation (1.1) and a viscosity supersolution of equa-
tion (1.2) in B∗ρ, then

lim
x→0

u(x)

Ep(x)
= 0 . (1.14)

Remark 1.2. If instead 1 < s < p
p−2

, i.e. p < ps, then u(x) = C|x|−(ps−2), with

Cs−1 = (ps − 2) (ps − p), is a solution of equation P+
p (D2u) − |u|s−1u = 0 in Rn\{0}.

Hence the conclusion of Theorem 1.1 fails to hold.
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Note also that condition (1.13) on the growth of f(x) cannot be relaxed. In fact, if
s = p

p−2
, i.e. p = ps = (p− 2)s, then u(x) = Ep(x) is a solution of equation

P+
p (D2u)− |u|s−1u = −

(
1

|x|

)p
. �

Since p > 2, the conclusion of above Theorem 1.1 is obviously true when f(x) is bounded.
If this is the case, the following corollary shows that the solution u is bounded.

Corollary 1.3. Suppose that assumptions of Theorem 1.1 are fulfilled with f(x) bounded
in B∗ρ. If u ∈ C(B∗ρ) is both a subsolution of equation (1.1) and a supersolution of equation
(1.2) in viscosity sense, then u is bounded in B∗r for all r ∈ (0, ρ).

As a consequence of Corollary 1.3, we get the following result of unconditional remov-
ability.

Theorem 1.4. Let n and p be positive integers such that 2 < p ≤ n. Let Ω be a domain
(open connected set) of Rn, and set Ω∗ = {x ∈ Ω : x 6= x0}. Suppose Fp is a continuous
degenerate elliptic operator satisfying

P−p (Y ) ≤ Fp(X + Y )− Fp(X) ≤ P+
p (Y ), X ∈ Sn , (1.9)′

and f is a continuous function in Ω.
If u is a continuous viscosity solution of equation (1.10) in Ω∗ with s ≥ p

p−2
, then u

can be extended to a solution in all Ω.

Remark 1.5. As in [38], the result can be furthermore generalized to equation

Fp(D
2u)− g(u) = f(x), (1.15)

where g is a continuous real function such that

lim sup
t→−∞

g(t)

|t|
p
p−2

< 0 < lim inf
t→∞

g(t)

|t|
p
p−2

. (1.16)

In fact, by the first one, we have g(u+(x)) ≥ ε(u+)s−1 − C for s = p
p−2

and positive

constants ε, C so that u = u+ satisfies the differential inequality

P+
p (D2u)− ε|u|s−1u ≥ f(x)− C
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and therefore u+ satisfies assumptions (4.1) and (4.2), which imply (4.3).

On the other side, we also have g(−u−(x)) ≤ −ε(u−)
p
p−2 + C, from which u = −u−

satisfies the differential inequality

P−p (D2(u)− ε|u|s−1u ≤ f+(x) + C

and therefore −u− satisfies assumptions (4.4) and (4.5), which imply (4.6).
This shows that Lemma 4.1 and therefore Theorem 1.1, which is the basic result,

continues to hold when |u|s−1u is replaced with a function g(u) satisfying (1.16).

Example 1.6. Theorem 1.1 and Corollary 1.3 hold true, for instance, for all operators
which are partial sums of p eigenvalues such as

Fp(X) = λi1(X) + · · ·+ λip(X), (1.17)

for every choice of p positive integers less than n. Theorem 1.4 holds in particular in the
extremal cases (i1, . . . , ip) = (1, . . . , p) and (i1, . . . , ip) = (n− p+ 1, . . . , n), corresponding
to P−p (X) and to P+

p (X), respectively.

Unconditional results of this kind hold true, for instance, in the case of isolated singu-
larities of minimal surface equation, see Bers [5] in the two-dimensional case, De Giorgi
and Stampacchia [20] in higher dimensions.

On the other hand, we can equally find in literature many results about nonisolated
removable singular sets, generally assuming that the solutions are bounded. For instance,
it is well known that the sets E such that all bounded harmonic functions outside E can be
extended across E are characterized by having zero capacity; see [35]. For generalizations
of this result we refer to Brezis and Nirenberg [8], Labutin [39], [40], [41] and to recent
works of Caffarelli, Y.Y.Li and Nirenberg [11], [12], [13], as well as of Harvey and Lawson
[32]; see also Amendola, Galise and Vitolo [3], Galise and Vitolo [25].

There are also cases in the literature of unconditional removable singularities which are
not isolated. For instance, see [8], where Brezis and Nirenberg show that sets of Newtonian
capacity Cn−2(E) = 0 are removable for a class of equations including ∆u−u|Du|2 = f(x)
with a smooth f(x). More recently, in Section 6 of [32] Harvey and Lawson, using the
restriction theorem of [33], proved that sets E with a suitable Hausdorff measure equal
to zero, are removable singularities for subsolutions of the p-th branch of Monge-Ampère
equation λp(D

2u) = 0.
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In spit of thise, we attack the problem to find how large the removable singular sets
can be for our equation (1.10) in the viscosity sense assuming no condition on the size of
the solution.

To deal with this issue, we consider a compact subset E ⊂ Ω and set dE(x) = dist(x,E).
For sufficiently small r > 0 the set {dE(x) ≤ r} is still contained in Ω and, for a function
f(x) defined in Ω\E, we set

lim sup
x→E

f(x) = lim
r→0

sup
0<dE(x)<r

f(x); lim inf
x→E

f(x) = lim
r→0

inf
0<dE(x)<r

f(x). (1.18)

Using the estimates on the distance function by Ambrosio and Soner [2], we can state the
following

Theorem 1.7. Let n and p be positive integers such that 3 ≤ p ≤ n. Let k ∈ N be such
that n− k < p− 2 and define

α := (p− 2)− (n− k) > 0 . (1.19)

Suppose that Γ is a smooth embedded manifold in Rn of codimension k < n, and set

δ(x) = dist(x,Γ) . (1.20)

Let s be a real number such that s ≥ α+2
α

and f be a continuous function in Ω\E, where
E is a compact subset of Ω such that E b Γ in the relative topology and all points of E
are limit points for Ω\Γ. Suppose also that

lim sup
x→E

dαsE (x)|f(x)| = 0 . (1.21)

If u is both a viscosity subsolution of equation (1.1) and a viscosity supersolution of equa-
tion (1.2), then

lim sup
x→E

u(x)

δ−α(x)
= 0 = lim inf

x→E

u(x)

δ−α(x)
. (1.22)

Since p > n+2−k, in Theorem 1.7 we can plainly take f bounded in a neighbourhood
of E. In this the case we can show the following corollary.

Corollary 1.8. Suppose that assumptions of Theorem 1.7 are fulfilled with f(x) bounded
in a neighborhood of E. If u ∈ C(Ω\E) is both a viscosity subsolution of equation (1.1)
and a viscosity supersolution of equation (1.2) in Ω\E, then u is bounded across E, namely
in all domains Ω′\E such that Ω′ b Ω.
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As a consequence of Corollary 1.8, we get the following generalization of Theorem 1.4.

Theorem 1.9. Suppose that assumptions of Theorem 1.7 are fulfilled with Fp satisfying
(1.9)′ and f continuous in Ω.
If u is a continuous viscosity solution of equation (1.10) in Ω\E with

s ≥ p− (n− k)

p− 2− (n− k)
, (1.23)

then u can be extended to a solution in all Ω.

We point out that the results of Theorem 1.7, Corollary 1.8 and Theorem 1.9 for k = n
return Theorem 1.1, Corollary 1.3 and Theorem 1.4, respectively.

The paper is organized as follows. In Section 2 we recall the principal notions about
elliptic operators and viscosity solutions, introducing the degenerate elliptic operator P+

p

and its dual P−p , defined as partial sum of eigenvalues; in Section 3 we deduce from
the comparison principles of Section 2 useful bounds for subsolutions and supersolutions;
Sections 4 and 5 contain the proof of the main results of the paper for isolated and not iso-
lated singularities, respectively, starting from the necessary conditions of Lemma 4.1 and
Subsection 5.2. We also add for the convenience of the reader Section 6, devoted to ex-
istence and uniqueness of equations involving degenerate elliptic operators Fp ∈ (P−p ,P+

p ).

2 Notations and preliminary results

In this Section we briefly recall the notions of ellipticity and viscosity solutions with the
properties mostly used in the paper. For a deeper knowledge we refer to [19], [10], [18],
[37].

Let Ω be a domain (open connected set) of Rn. We denote by Sn the linear spaces
of n × n real symmetric matrices with the partial ordering induced by the semidefinite
positiveness. Let F : Sn → R be a continuous map. We say that F is degenerate elliptic
if

F (X) ≤ F (Y ) (2.1)
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for all X, Y ∈ Sn such that X ≤ Y . The operators P+
p and P−p defined in (1.3) are

degenerate elliptic for all positive integers p ≤ n. They can also be represented in the
form

P+
p (X) = sup

S∈Gp
TrS(X),

P−p (X) = inf
S∈Gp

TrS(X),
X ∈ Sn, (2.2)

where Gp is the Grassmanian of all linear p-dimensional subspaces S of Rn and TrS is
the trace of the quadratic form associated to X restricted to S. In particular P+

p is
subadditive and P−p is superadditive:

P+
p (X + Y ) ≤P+

p (X) + P+
p (Y );

P−p (X + Y ) ≥P−p (X) + P−p (Y ) .
(2.3)

Moreover,
P+
p (−X) = −P−p (X) . (2.4)

Let λ and Λ ≥ λ be positive real numbers. We say that F : Sn → R is uniformly elliptic
with ellipticity constants λ and Λ if

X ≤ Y ⇒ λTr(Y −X) ≤ F (Y )− F (X) ≤ ΛTr(Y −X) (2.5)

If p = n, then P±n (X) = TrRn(X) ≡ Tr(X) is uniformly elliptic with ellipticity constants
λ = 1 = Λ, and, acting on Hessian matrices, yields the Laplace operator ∆u = Tr(D2u).

Let F be a degenerate elliptic operator and f(x) be a continuous function in a domain
Ω of Rn. We recall that an usc (upper semicontinuous) function u in Ω, for short u ∈
USC(Ω), is a (viscosity) subsolution of equation F (D2u) = f(x) in Ω, equivalently u is a
solution of the elliptic differential inequality F (D2u) ≥ f(x) if: for all x0 ∈ Ω and all C2

(test) functions ϕ such that ϕ(x0) = u(x0) and ϕ(x) ≥ u(x) in a neighbourhood of x0, we
have

F (D2ϕ(x0)) ≥ f(x0) . (2.6)

Similarly, a function v ∈ LSC(Ω), i.e. a lsc (lower semicontinuous) function v in Ω, is
a (viscosity) supersolution of equation F (D2v) = f(x) in Ω, equivalently v is a solution
of the elliptic differential inequality F (D2v) ≤ f(x) if: for all x0 ∈ Ω and all C2 (test)
functions ϕ such that ϕ(x0) = u(x0) and ϕ(x) ≤ u(x) in a neighbourhood of x0, we have

F (D2ϕ(x0)) ≤ f(x0) . (2.7)
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In both cases the test is intended to be satisfied if there is no test function.

A continuous function u is a (viscosity) solution of F (D2u) = f(x) if it is both a
subsolution and a supersolution.

It is worth to recall that the supremum (resp. infimum) of a finite family of subsolutions
(resp. supersolutions) is still a subsolution (resp. a supersolution).

In particular, supposing F (0) = 0 and setting u± = max(±u, 0), we have:
i) if F (D2u) ≥ f(x), then F (D2u+) ≥ −f−(x);
ii) if F (D2u) ≤ f(x), then F̃ (D2u−) ≥ −f+(x), where F̃ (X) = −F (−X).

If instead {uj} is an arbitrary family of subsolutions (resp. supersolutions), we can
apply Lemma 4.2 of [19] to infer that the usc envelope of u = supj uj (resp. the lsc
envelope of u = infj uj) is still a subsolution (resp. a supersolution); see also Theorem
2.6 (E) of [28].

In this respect, we recall that the usc envelope of u in Ω, i.e. the smallest usc func-
tion above u, and the lsc envelope of u, i.e. the largest lsc function below u, are given
respectively by

u∗(x) = lim
r→0+

sup {u(y) : y ∈ Ω, |y − x| < r},
u∗(x) = lim

r→0+
inf {u(y) : y ∈ Ω, |y − x| < r} (2.8)

Suppose now that u is an usc function in Ω\E, which is locally bounded above at points
of E, a closed subset of Ω. Following [32, Section 3], such function u has a canonical usc
extension U across E to all of Ω defined as follows: if E has interior Int(E) = ∅, then we
set

U(x) = lim sup
z→x, z 6∈E

u(z) ≡ lim
r→0+

sup
z∈Br(x)\E

u(z); (2.9)

if Int(E) 6= ∅, we put U(x) = −∞ on Int(E); then U(x) = ũ∗(x), the usc envelope of the
function

ũ(x) = u(x), x ∈ Ω\E; ũ(x) = −∞, x ∈ E . (2.10)

Analogously, we can consider a lsc function v in Ω\E, which is locally bounded below at
points of E, and define the canonical lsc extension V across E to all of Ω as follows: if
Int(E) = ∅, then we set

V (x) = lim inf
z→x, z 6∈E

v(z) ≡ lim
r→0+

inf
z∈Br(x)\E

v(z); (2.11)
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if Int(E) 6= ∅, we put V (x) = +∞ on Int(E) and V (x) = ṽ∗(x), the lsc envelope ṽ∗ of
the function

ṽ(x) = v(x), x ∈ Ω\E; ṽ(x) =∞, x ∈ E . (2.12)

The solutions (resp., subsolutions, supersolutions) of equation P±p (D2u) = 0 will be called
p±-harmonic (resp. subharmonic, superharmonic) functions.

We notice that the maximum principle holds true for p+-subharmonic functions in all
bounded domains Ω ⊂ Rn, as checked in [13] and [3], and this allows, by subadditivity
of P+

p and viscosity notion, to compare p+-subharmonic and p+-superharmonic functions
when at least one of them is C2. The same can be said comparing p−-subharmonic and
p−-superharmonic functions.

More generally, to compare usc subsolutions and lsc supersolutions of equation (1.10),
we will use Theorem 3.3 of [19] considering the operator

F (x, t,X) = Fp(X)− |t|s−1t− f(x), (x, t,X) ∈ Ω× R× Sn . (2.13)

Lemma 2.1. Let Ω be a bounded domain of Rn, let Fp be a degenerate elliptic operator
satisfying (1.9) for a positive integer p ≤ n, and f ∈ C(Ω). If u ∈ USC(Ω) and v ∈
LSC(Ω) are viscosity solutions in Ω of the differential inequalities

Fp(D
2v)− |v|s−1v ≤ f(x) ≤ Fp(D

2u)− |u|s−1u (2.14)

for s ≥ 1, such that u ≤ v on ∂Ω, then u ≤ v in Ω.

Proof. We check the assumptions of Theorem 3.3 of [19] with F (x, t,X) as in (2.13).
First of all, the degenerate ellipticity assumption is satisfied, being Fp degenerate elliptic.

Next, since
u ≥ v ⇒ |u|s−1u− |v|s−1v ≥ γ(u− v)s, (2.15)

with γ = γ(s) > 0, we get for any δ > 0

u− v ≥ δ ⇒ F (x, u,X)− F (x, v,X) ≤ −γ δs, (2.16)

which plays the role of (3.13) of [19], being just that for s = 1. Moreover, by the degenerate
ellipticity of Fp we also get

X ≤ Y ⇒ F (x, t,X)− F (y, t, Y ) = Fp(X)− Fp(Y )− f(x) + f(y)

≤− f(x) + f(y) ≤ ω(|x− y|),
(2.17)
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where ω is the continuity modulus of f , which plays the role of (3.14) of [19] (see also
Example 3.6 therein).

Following the proof of Theorem 3.3 of [19], assume u ≤ v on ∂Ω but suppose by
contradiction that

max
x∈Ω

(u(x)− v(x)) = δ > 0. (2.18)

In view of (3.11) and (3.12) of [19], from this we deduce that there exist sequences of
points xα, yα ∈ Ω such that |xα − yα| → 0 as α→∞ but

u(xα)− v(yα) ≥ δ, (2.19)

and sequences of matrices Xα, Yα ∈ Sn such that Xα ≤ Yα such that

F (yα, v(yα), Yα) ≤ 0 ≤ F (xα, u(xα), Xα). (2.20)

From this, using (2.16) and (2.17), we get

0 ≤F (xα, u(xα), Xα)− F (yα, v(yα), Yα)

≤F (xα, u(xα), Xα)− F (xα, v(xα), Xα)

+F (xα, v(xα), Xα)− F (yα, v(yα), Yα)

≤ − γ δs + ω(|xα − yα|),

(2.21)

a contradiction, since ω(|xα − yα|) as α→∞, and we conclude that u ≤ v in Ω. �

We will also make use, in the sequel, of the following result on the sum of supersolutions.

Lemma 2.2. Let vi ∈ LSC(Ω), i = 1, 2, be non-negative viscosity solutions in a domain
Ω of Rn of the differential inequalities

P+
p (D2vi)− |vi|s−1vi ≤ fi(x) (2.22)

for a positive integer p ≤ n and a real number s ≥ 1 and fi(x), i = 1, 2, are continuous
functions. Suppose at least one between vi, i = 1, 2, is a C2-function in Ω.
Then v = v1 + v2 is a viscosity supersolution of equation

P+
p (D2v)− |v|s−1v = f(x) (2.23)

with f(x) = f1(x) + f2(x).
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The proof is based on subadditivity of P+
p , inequality

vs1 + vs2 ≤ (v1 + v2)s (2.24)

for vi ≥ 0 and on the fact that we may handle equations using formally the classical
derivatives when at least one of the functions v1 and v2 is C2.

3 Basic estimates

Here we deduce a basic estimate on the behaviour of a solution when approaching the
singular set. This will be done by comparison with supersolutions v of Osserman type,
see [9] (or also [21], [24] and [23]). We recall that ps = 2s

s−1
> 2. Actually, we will search

for a supersolution v of the form

v(x) = c1v1(x) + c2, (3.1)

where

v1(x) =
ρps−2

(ρ2 − |x− x0|2)ps−2
(3.2)

is a positive function in Bρ(x0) and ci, i = 1, 2, are positive constants.
Let f± = max(±f, 0). Taking positive numbers ci large enough in order that

cs−1
1 ≥ 4 (ps − 1) (ps − 2) + 2 p (ps − 2),

cs2 ≥ max
|x−x0|≤ρ

f−(x) , (3.3)

we obtain positive C2 and constant supersolutions, c1v1 and c2, respectively, such that

P+
p (D2c1v1)− (c1v1)s ≤ 0,

P+
p (D2c2)− (c2)s ≤ −f−(x)

(3.4)

in the ball of radius ρ centered at x0. Using Lemma 2.2 we conclude that v = c1v1 + c2 is
a C2 supersolution of (2.23) in Bρ(x0), as claimed.

From this we can deduce an upper bound for subsolutions around the singular set.
Suppose that Ω is a domain in Rn and E is a compact subset of Ω. Recall that ps = 2s

s−1
.
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Lemma 3.1. Let s > 1 and f ∈ C(Ω\E). Suppose that

P+
p (D2u)− |u|s−1u ≥ f(x) in Ω\E . (3.5)

There exists a positive constant A = A(p, s) such that

u(x) ≤ A

dps−2
E (x)

+ max
|z−x|≤ 1

2
dE(x)
{f−(z)}

1
s in Ω\E . (3.6)

Analogously, if
P−p (D2u)− |u|s−1u ≤ f(x) in Ω\E , (3.7)

then

u(x) ≥ − A

dps−2
E (x)

− max
|z−x|≤ 1

2
dE(x)
{f+(z)}

1
s in Ω\E . (3.8)

Proof. Consider the case of subsolutions (3.5). Let us fix x0 ∈ Ω\E, and set ρ = 1
2
dE(x0).

Using (3.1), (3.2) and (3.3), we construct a supersolution v(x) = c1v(x) + c2 of equation
P+
p (D2v) − |v|s−1v = −f−(x) in Bρ(x0). Using the comparison principle of Lemma 2.1,

since v(x)→∞ as |x| → ρ−, we get u(x) ≤ v(x) in Bρ(x0) and in particular u(x0) ≤ v(x0),
which yields (3.6). The case (3.7) of supersolutions can be treated applying the result
just proved for subsolutions replacing u and f with −u and −f in (3.5), respectively. �

4 Removability of isolated singularities

In this Section, using the comparison principles and the estimates of previous Sections,
we will show that a solution u of equation (1.1) in B∗ρ = Bρ\{0} with s ≥ p

p−2
must have

growth of order strictly less than the fundamental solution Ep(x) as x → 0. In order to
show this, we borrow some ideas from [38] arguing by contradiction and using a sequence
of Dirichlet problems approaching the singularity together the scale invariance of the
equation to compare the solutions with the fundamental solution: see ii) and iii) below.
The ending parts iv) and v) are developed in a pure viscosity setting, since a regularity
theory is actually not available for the degenerate elliptic equations under consideration.
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Lemma 4.1. Let n and p be positive integers such that 2 < p ≤ n, and s ≥ p
p−2

.

A) Suppose that f(x) is a function in B∗ρ, for some ρ > 0, such that f−(x) is continuous
and

lim sup
x→0

|x|(p−2)sf−(x) = 0 (4.1)

If u ∈ USC(B∗ρ) satisfies

P+
p (D2u)− |u|s−1u ≥ f(x) (4.2)

in B∗ρ, then

lim sup
x→0

u+(x)

Ep(x)
= 0. (4.3)

B) Analogously, assuming f+(x) to be a continuous function such that

lim sup
x→0

|x|(p−2)sf+(x) = 0, (4.4)

if u ∈ LSC(B∗ρ) satisfies

P−p (D2u)− |u|s−1u ≤ f(x) , (4.5)

then

lim sup
x→0

u−(x)

Ep(x)
= 0. (4.6)

Proof. As in Lemma 3.1, it is sufficient to consider the case A) of subsolutions. In fact,
if u is a supersolution, which satisfies (4.5), then (4.2) holds true by substituting u with
−u and f with −f . Then we get (4.3) with −u instead of u, namely (4.6).

Therefore, focusing on subsolutions, we observe that by viscosity

P+
p (D2u+)− |u+|s−1u+ ≥ −f−(x) . (4.7)

We note that the proof is immediate if s > p
p−2

, that is ps < p. If this is the case, indeed,

using estimate (3.6) and recalling that Ep(x) = |x|−(p−2), we get

lim
x→0

u+(x)

Ep(x)
≤ A lim

x→0
|x|p−ps + lim

x→0
|x|p−2 max

|z−x|≤ 1
2
|x|
{f−(z)}

1
s

≤ 2p−2 lim
x→0

max
|z−x|≤ 1

2
|x|

{
|z|(p−2)sf−(z)

} 1
s = 0,
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by assumption (4.1), and we are done.
Now we consider the remaining case s = p

p−2
, in which ps ≡ 2s

s−1
= p. Here we argue by

contradiction, supposing that

lim sup
x→0

u+(x)

Ep(x)
= l > 0 (4.8)

and noticing that, since ps = p, Lemma 3.1 implies l <∞.

i) Firstly, we show that then there exists r0 ∈ (0, 1) such that

u+(x) ≤M + l Ep(x) as 0 < |x| ≤ r0 (4.9)

for some positive constant M . It is sufficient, by virtue of assumption (4.1), to take
r0 ∈ (0, ρ) such that

f−(x) ≤ ls

|x|(p−2)s
in B∗r0 (4.10)

and to set
M = max

|x|=r0
u+(x) . (4.11)

From (4.8) we find decreasing sequences of positive numbers rj → 0 and εj → 0 as j →∞
such that

l (1− εj) ≤
u+(xj)

Ep(xj)
= max
|x|=rj

u+(x)

Ep(x)
≤ l (1 + εj) (4.12)

By (4.11) and (4.12), therefore we get inequality

u+(x) ≤M + l (1 + εj) Ep(x) (4.13)

on the boundary of the annular region {rj < |x| < r0}. The latter inequality (4.13) can
be extended to all the annular region by using the comparison principle between u+(x),
which is a subsolution by (4.7), and v = M + l (1 + εj) Ep, which is a supersolution by the
following computation, based on (4.10):

P+
p

(
D2v

)
− vs ≤ − l

s(1 + εj)
s

|x|(p−2)s
≤ −f−(x) in B∗r0 . (4.14)

Finally, each fixed x ∈ B∗r0 can be included in any annular region {rj < |x| < r0} for j
large enough and therefore (4.13) still holds at x in the limit as j → ∞, which shows
(4.9).
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ii) Next, we construct a sequence of functions uj(x) such that

u+(x) ≤ uj(x) ≤M + l Ep(x) in Bρj
(xj) , (4.15)

where xj are the maximum points of (4.12) and ρj = rj(1 − εj). This is obtained by
solving the Dirichlet problem (see Section 6 below){

P+
p (D2uj)− |uj|s−1uj = −f−(x) in Bρj

(xj)
uj = u+ on ∂Bρj

(xj)
. (DP )j

The left-hand inequality of (4.15) follows by comparing uj(x) with the subsolution u+(x),
while the right-hand inequality is deduced by comparing it with the supersolution v =
M + l Ep by virtue of (4.9) .

iii) Let νj =
xj
rj

be the direction of xj and yj = r0νj. Using the linear mapping

y = r0

(
νj +

x− xj
ρj

)
, x ∈ Bρj

(xj) , (4.16)

where ρj =
ρj

r0
, and we construct the rescaled function

wj(y) := ρp−2
j uj(x) = ρp−2

j uj(xj + ρj ( y
r0
− νj)), y ∈ Br0(yj) , (4.17)

which is by (DP)j a solution of equation

P+
p (D2wj(y))− |wj(y)|s−1wj(y) = −ρpjf−j (y) in Br0(yj) (4.18)

with f−j (y) = f−(xj + ρj ( y
r0
− νj)).

Since |yj| = r0 for all j ∈ N, we may suppose, up to a subsequence, that yj → y0,
where |y0| = r0, and also that B r0

2
(y0) ⊂ Br0(yj), taking j ∈ N large enough. We infer

that there exists a sequence ηj ↘ 0 such that

wj(y)

1 + ηj
≤ l Ep(y) in B r0

2
(y0) ;

wj(yj)

1 + ηj
≥ l Ep(y0)

(1 + ηj)2
.

(4.19)
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To show this, from the right-hand inequality of (4.15) we get

wj(y) = ρp−2
j uj(xj + ρj ( y

r0
− νj))

≤ ρp−2
j (M + l Ep(xj + ρj ( y

r0
− νj)))

= ρp−2
j M + rp−2

0

l

|xj
ρj

+ y
r0
− νj|p−2

;

(4.20)

Since ρj = rj(1 − εj) with εj → 0, then
xj
ρj
− νj → 0 and the latter sequence in (4.20)

converges uniformly for y ∈ B r0
2

(y0) as j → ∞, and thus the first inequality in (4.19) is
proved.

On the other side, using the left-hand inequality in (4.15), we obtain

wj(yj) = ρp−2
j uj(xj)

≥ ρp−2
j u+(xj) =

u+(xj)

Ep(xj)

(
ρj
rj

)p−2

≥ l (1− εj)
(
ρj
rj

)p−2

= l rp−2
0 Ep(y0) (1− εj)

(
ρj
rj

)p−2

,

(4.21)

and this also proves the second inequality in (4.19).
Moreover,

P+
p

(
D2 wj(y)

1 + ηj

)
−
(
wj(y)

1 + ηj

)s
≥ −ρpjf−j (y) in B r0

2
(y0) . (4.22)

In fact, by (4.18) we have

(1 + ηj)

(
P+
p

(
D2 wj(y)

1 + ηj

)
−
(
wj(y)

1 + ηj

)s)
≥ (1 + ηj)

(
P+
p

(
D2 wj(y)

1 + ηj

)
− (1 + ηj)

s−1

(
wj(y)

1 + ηj

)s)
=P+

p

(
D2wj(y)

)
− wsj(y) = −ρpjf−j (y)

≥ − (1 + ηj) ρ
p
jf
−
j (y)

(4.23)

iv) Hence, for all j0 ∈ N the usc envelope w∗ (see Section 2) of the function

w(y) = sup
j≥j0

wj(y)

1 + ηj
, y ∈ B r0

2
(y0) , (4.24)
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is a subsolution of equation

P+
p (D2w∗(y))− |w∗(y)|s−1w∗(y) = − sup

j≥j0
ρpjf

−
j (y) in B r0

2
(y0) (4.25)

Moreover, from inequalities (4.19) it follows that

w∗(y) ≤ l Ep(y), y ∈ B r0
2

(y0) . (4.26)

and

w∗(y0) ≥ lim sup
j→∞

wj(yj)

1 + ηj
= l Ep(y0) . (4.27)

v) Conclusion. By (4.26) and (4.27) the function defined as ϕ(y) = l Ep(y) touches from
above w∗(y) at y0 and can be used as a test function for equation (4.25) at y = y0 obtaining

P+
p (D2ϕ(y0))− (ϕ(y0))s ≥ − sup

j≥j0
ρpjf

−(x′j), (4.28)

from which
ls ≤ sup

j≥j0
ρpjf

−(x′j), (4.29)

where x′j = xj + (y0

r0
− νj)→ 0 and

|x′j |
ρj
→ 1 as j →∞.

But letting j0 → ∞, since (p − 2)s = p and therefore |x′j|pf−(x′j) → 0 as j → ∞
by assumption, we should have l = 0. This yields a contradiction with our starting
assumption l > 0 and proves the assertion. �

Proof of Theorem 1.1. The proof of Theorem 1.1 follows at once gathering together
(4.3) and (4.6) of Lemma 4.1. �

Let 2 < p ≤ n and s ≥ p
p−2

. The next corollary shows that, when f is bounded

below, the subsolutions u of equation P+
p (D2u) − |u|s−1u = f(x) in the punctured ball

B∗ρ are bounded above. Similarly, when f is bounded above, supersolutions of equation
P−p (D2u)− |u|s−1u = f(x) are bounded from below.

Corollary 4.2. A) Suppose that assumptions of Lemma 4.1 (A) are fullfilled with f(x)
bounded below. If u ∈ C(B∗ρ) is a viscosity subsolution of equation (1.1), then u is bounded
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above in B∗r for all r < ρ.
B) On the other side, if the assumptions of Lemma 4.1 (B) are fullfilled with f(x) bounded
above and u ∈ C(B∗ρ) is a viscosity supersolution of equation (1.2), then u is bounded below
in B∗r for all r < ρ.

Proof. We treat case A), since case B) is similar.
Suppose f ≥ −F− with F− ≥ 0 and set ϕ(x) = εEp(x) + K(r2 − |x|2). Then for all

ε > 0
P+
p (D2ϕ)− |ϕ|s−1ϕ ≤ −2Kp ≤ −f−(x) (4.30)

in the punctured ball B∗r , provided K ≥ F−

2p
.

Next, set u0(x) = u+(x)−max∂Br u
+. We have

P+
p (D2u0)− |u0|s−1 u0 ≥ −f−(x), (4.31)

so that we can compare u0 and ϕ with Lemma 2.1 in any annular region B∗r . Since u+(x) =
o(ϕ(x)) as x → 0 by (4.3), then u0(x) ≤ ϕ(x) in a sufficiently small neighbourhood of
the origin; moreover u0(x) ≤ 0 ≤ ϕ(x) on ∂Br. So by comparison u0(x) ≤ ϕ(x) in B∗r ,
namely

u(x) ≤ εEp(x) +Kr2 + max
∂Br

u+(x) (4.32)

in B∗r . Letting ε→ 0+, we conclude that u is bounded above in B∗r , as claimed. �

Proof of Corollary 1.3. This is an immediate consequence of Corollary 4.2. �

Proof of Theorem 1.4. Let u be a viscosity solution of equation Fp(D
2u)− |u|s−1u =

f(x) in Ω∗, and suppose that x0 = 0. Then, by condition (1.9) on Fp, the solution u
satisfies the assumptions of Corollary 1.3 and therefore is bounded in a punctured ball
B∗r ⊂ Br ⊂ Ω with a sufficiently small radius r > 0.
We consider the viscosity solution w(x) of the Dirichlet problem (see Section 6){

Fp(D
2w)− |w|s−1w = f(x) in Br

w = u on ∂Br
. (4.33)

Note that for all ε > 0, using the structure condition (1.9)’, the fundamental solution Ep
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and the increasing monotonicity of the function g(t) = |t|s−1t, we have

Fp(D
2(w + εEp))− |w + εEp|s−1(w + εEp)

≤Fp(D2w)− |w|s−1w

≤ f(x)

≤Fp(D2u)− |u|s−1u.

(4.34)

Since u is bounded in B∗r , we have u(x) ≤ w(x) + εEp(x) in a neighbourhhod the origin
as well as on ∂Br. Therefore the comparison principle of Lemma 2.1 yields

u(x) ≤ w(x) + εEp(x) (4.35)

in Br. Letting ε → 0+, we obtain u(x) ≤ w(x) in B∗r . Since w(x) is bounded, too,
interchanging the role of u and w, we also get the reverse inequality w(x) ≤ u(x) in B∗r ,
so that w is a continuous extension of u to Br, concluding the proof. �

5 Removability of nonisolated singular sets

In this Section, we suppose that the singular set E is a compact subset of a domain Ω of
Rn and is contained in a smooth (C2) embedded manifold Γ of codimension k such that
n− p+ 2 < k < n with 3 ≤ p ≤ n.

As already anticipated in Section 1, we will consider the distance function δ(x) =
dist(x,Γ) and we refer to Ambrosio and Soner [2] for the properties that will be used
here; see also Ambrosio and Mantegazza [1].

We will follow the track of Section 4 with suitable modifications, substituting p and
|x|, respectively, with the integer p− (n− k) > 2 and the function δ(x). This essentially
amounts to substituting the fundamental solution Ep(x) with the function

Vp(x) = δ−α(x) , δ(x) = dist(x,Γ) , (5.1)

where α = (p− 2)− (n− k) is a positive integer, as in the Introduction.
However, differently from Ep(x), which is p+-harmonic, the function Vp(x) = δ−α(x) is

neither p+-harmonic nor p+-superharmonic, in general. Nonetheless, this will be seen as
not invalidating the argument of the proofs.

We also notice that the case that E is a point can be assimilated to co-dimension k = n.
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5.1 Supersolutions via distance function

It will be convenient to use the function η(x) = 1
2
δ2(x), which, by Theorem 3.1 of [2], is a

smooth function in the tubular neighbourhood Tσ(Γ) = {x ∈ Rn : δ(x) ≡ dist(x,Γ) < σ}
for some σ > 0. If x ∈ Tσ(Γ), then Dη(x) = δ(x)νP , where νP is the unit normal vector
to Γ from the point P ∈ Γ such that |x−P | = δ(x). Moreover, by Theorem 3.2 of [2], the
Hessian matrix D2η(x) represents the orthogonal projections on the normal space NP to
Γ at P and has k eigenvalues equal to 1 with the remaining λ1 ≤ · · · ≤ λn−k < 1 such
that

|λi(D2η(x))| ≤ Cδ(x), i = 1, . . . , n− k , (5.2)

where C = C(σ) is a positive constant. Next, we compute

D2Vp = 2−
α
2D2η−

α
2 = −2−

1
α

2 α
2
D(η−(α

2
+1)Dη)

=α δ−(α+2)
[
(α + 2)νP ⊗ νP −D2η

]
.

(5.3)

We notice that νP ⊗ νP is a one-rank matrix with non-zero eigenvalue 1 associated to the
eigenvector νP ∈ NP , so that

P+
p ((α + 2)νP ⊗ νP −D2η) ≤ (α + 2)P+

p (νP ⊗ νP )− P−p (D2η)

≤ (α + 2)−
n−k∑
i=1

λi(D
2η)− p+ n− k

≤α− (p− 2) + (n− k) + (n− k)Cδ

(5.4)

and hence, choosing α = (p− 2)− (n− k), we have

P+
p (D2Vp) ≤ C1 δ

−(α+1) (5.5)

in the tubular neighbourhood Tσ(Γ)\Γ, for some positive constant C1.
As already observed above, in this case the function Vp(x) will play the role of the

fundamental solution Ep(x) for punctured domains. But the right term of (5.5) cannot be
in general taken to be equal to zero, unless Γ is flat, i.e. Γ = {x1 = · · · = xk = 0}.

Nevertheless, if l is a positive constant and s = α+2
α

, we have

P+
p (D2lVp)− (lVp)

s ≤ l δ−(α+2)(C1δ − ls−1) ≤ 0 (5.6)

if we take δ(x) ≤ C−1
1 ls−1, namely in a suitable tubular neighbourhood Tσl(Γ)\Γ, and this

will be seen as sufficient to show that solutions u of Lemma 3.1 are in fact o(Vp(x)) as
x→ E.
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5.2 Behaviour near singular sets

We are going to establish the counterpart of Lemma 4.1.

Lemma 5.1. Let n and p be positive integers such that 3 ≤ p ≤ n. Let k ∈ N be such
that α := (p− 2)− (n− k) > 0. Suppose that Γ is a smooth embedded manifold in Rn of
codimension k < n, and that E is a compact subset of Ω such that E b Γ in the relative
topology and all points of E are limit points for Ω\Γ. Let s be a real number such that

s ≥ α + 2

α
≡ p− (n− k)

(p− 2)− (n− k)
, (5.7)

i.e. p ≥ ps + (n− k).

A) Suppose f− is a continuous function in Ω\E such that

lim sup
x→E

dαsE (x) f−(x) = 0 , (5.8)

If u ∈ USC(Ω\E) is a viscosity subsolution of equation

P+
p (D2u)− |u|s−1u = f(x) (5.9)

in Ω\E, then

lim sup
x→E

u+(x)

Vp(x)
= 0 . (5.10)

B) Suppose that f+ is a continuous function in Ω\E such that

lim sup
x→E

dαsE (x) f+(x) = 0 . (5.11)

If u ∈ LSC(Ω\E) is a viscosity supersolution of equation

P−p (D2u)− |u|s−1u = f(x) (5.12)

in Ω\E, then

lim sup
x→E

u−(x)

Vp(x)
= 0 . (5.13)
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Proof. As in the case of punctured domains of Lemma 4.1, part B) for a supersolution
u can be deduced from the part A) passing to the subsolution −u, and therefore it is
enough to prove part A).

In order to do this, we argue as in the proof of Lemma 4.1, recalling that Vp(x) = δ−α(x),
where δ(x) = dist(x,Γ) and α = (p− 2)− (n− k) ∈ N.

Firstly, supposing s > α+2
α

, i.e. p > ps + (n − k), and observing that dist(x,Γ) ≤
dist(x,E) ≡ dE(x), then estimate (3.6) yields, for a viscosity subsolution of equation
(5.9),

u+(x)

Vp(x)
≤ AdE(x)p−(ps+n−k)

+ 2p−2 max
|z−x|≤ 1

2
δ(x)

dαE(z)
{
f−(z)

} 1
s

which, by assumption on f−, proves (5.10) in the present case, letting x→ E.

We are left with the case s = α+2
α
≡ p−(n−k)

(p−2)−(n−k)
, i.e. p = ps + n− k ≡ 2s

s−1
+ (n− k).

Arguing by contradiction, we suppose

lim sup
x→E

u+(x)

Vp(x)
= l > 0 (5.14)

and notice that, since p = ps + n− k, Lemma 3.1 implies l <∞.
Then we will adapt the proof of Lemma 4.1.

i) Firstly, we find d0 > 0 and a neighbourhood Ω0 = {x ∈ Ω : dE(x) < d0} of E such that
Ω0 ⊂ Ω and

u+(x) ≤M + l Vp(x) in Ω∗0 ≡ Ω0\E (5.15)

with
M = max

dE(x)=d0

u+(x) , (5.16)

and

f−(x) ≤ ls

2δαs(x)
in Ω∗0 , (5.17)

using assumption (5.8). Note that Ω∗0 contains points x ∈ Γ where Vp(x) = ∞, and we
still denote by Vp(x) the canonical lsc extension (Vp)∗(x) of Vp(x) across Γ, namely

(Vp)∗(x) =

{
δ−α(x) x 6∈ Γ
∞ x ∈ Γ

(5.18)
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We will also suppose that Ω0 ⊂ Tσ, the tubular neighbourhood of Γ where the distance
function δ(x) is smooth.

To show (5.15), from (5.14) we take decreasing sequences of positive numbers dj → 0
and εj → 0 as j →∞, and points xj ∈ Ω0\Γ such that

l (1− εj) ≤
u+(xj)

Vp(xj)
= max

dE(x)=dj

u+(x)

Vp(x)
≤ l (1 + εj) (5.19)

By (5.16) and (5.19), we obtain, on the boundary of the ”annular region” {dj < dE(x) <
d0}, the inequality

u+(x) ≤M + l (1 + εj)Vp(x) , (5.20)

which can be extended to all the annular region comparing the subsolution u+(x) with
the supersolution M + l (1 + εj)Vp(x) of equation P+

p (D2u) − |u|s−1u = −f−(x) in Ω∗0.
That M + l (1+εj)Vp(x) is a supersolution deserves some explanation: we suppose, as we

may, that Ω∗0 is contained in the tubular neighbourhood Tσl and δ(x) ≤ ls−1

2C1
in Ω∗0, where

C1 is the constant in (5.6), which we can use at points x ∈ Ω0\Γ under the assumption
(5.17), while there are no test functions at points x ∈ Γ.
Then we obtain (5.20) in the annular region {dj < dE(x) < d0}. As in the proof of Lemma
4.1 (i), each fixed x ∈ Ω∗0 will be included in any annular region {dj < dE(x) < d0} for j
large enough, and therefore (5.20) still holds at x in the limit as j →∞, yielding (5.15).

ii) Taking the sequence of maximum points xj ∈ Ω\Γ, j ∈ N, of (5.19), we put

rj = δ(xj) ≡ dist(xj,Γ) (5.21)

and we solve the Dirichlet problem (DP)j as in the proof of Lemma 4.1 (ii) with ρj =
rj (1− εj). Thus we construct a sequence of functions uj(x) such that

u+(x) ≤ uj(x) ≤M + l Vp(x) in Bρj
(xj) . (5.22)

The left-hand inequality follows comparing the solution uj with the subsolution u = u+ of
equation P+

p (D2u)− |u|s−1u = −f−(x). Concerning the right-hand inequality, we notice
that Bρj

⊂ Ω0\Γ and use (5.15) to compare uj with the supersolution M + l Vp(x) on the
boundary of Bρj

.

iii) Next, let Pj ∈ Γ such that |xj − Pj| = rj ≡ δ(xj) and νj be the unit normal vector to
Γ from Pj to xj, so that xj = Pj + δ(xj) νj.
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Setting yj = Pj +r0νj for a suitable small r0 > 0, independent of j ∈ N, the distance of
yj from Γ is still realized along νj: δ(yj) = |yj−Pj|. Then we consider the linear mapping
(4.16), which sends xj into yj = Pj + r0νj, and Bρj

(xj) into Br0(yj). Following the proof
of Lemma 4.1, with ρj =

ρj

r0
we construct the rescaled function

wj(y) = ραj uj(x) = ραj uj(xj + ρj
y−yj
r0

) (5.23)

in Br0(yj), which satisfies equation

P+
p (D2wj(y))− |wj(y)|s−1wj(y) = −ρα+2

j f−j (y) in Br0(yj) . (5.24)

where f−j (y) = f−(xj + ρj
y−yj
r0

).
Since the yj’s are bounded, we may suppose, up to a subsequence, that yj → y0, and, up

to a translation, that the distance of y0 from Γ is realized at the origin 0 ∈ E; therefore
y0 = r0ν0. Moreover, B r0

2
(y0) ⊂ Br0(yj) for j ∈ N large enough. Then we can find a

sequence ηj ↘ 0 such that

wj(y)

1 + ηj
≤ l Vp(y) in B r0

2
(y0) ;

wj(yj)

1 + ηj
≥ l Vp(y0)

(1 + ηj)2
.

(5.25)

To show this, we observe that from the right-hand inequality of (5.22) we obtain

wj(y) = ραj uj(xj + ρj
y−yj
r0

)

≤ ραj (M + l Vp(xj + ρj
y−yj
r0

))

= ραjM +
ραj l

δα(ρj ( y
r0

+
xj
ρj
− yj

r0
))

;

(5.26)

Since ρj = rj(1−εj) < 1, as we may suppose, Pj → 0 and νj → ν0, then
xj
ρj
− yj

r0
→ 0, and

the latter sequence in (5.26) converges to l δ−α(y) uniformly for y ∈ B r0
2

(y0) as j → ∞.

Thus the first inequality in (5.25) is proved.
On the other side, using the left-hand inequality in (5.22), we get

wj(yj) = ραj uj(xj)

≥ ραj u+(xj) =
u+(xj)

Vp(xj)

(
ρj
rj

)α
≥ l (1− εj)

(
ρj
rj

)α
= l rα0 Vp(y0) (1− εj)

(
ρj
rj

)α
,

(5.27)
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and this also proves the second inequality in (5.25).

Moreover, starting from (5.24) and reasoning as in the proof of Lemma 4.1, we also get

P+
p

(
D2 wj(y)

1 + ηj

)
−
(
wj(y)

1 + ηj

)s
≥ −ρα+2

j f−j (y) in B r0
2

(y0) , (5.28)

where f−j (y) = f−(xj + ρj
y−yj
r0

).

iv) Observe, again as in the proof of Lemma 4.1, that for all j0 ∈ N the usc envelope w∗

of function w(y) = sup
j≥j0

wj(y)

1 + ηj
is a subsolution of equation

P+
p (D2w∗(y))− |w∗(y)|s−1w∗(y) = − sup

j≥j0
ρα+2
j f−j (y) in B r0

2
(y0) . (5.29)

Moreover, from inequalities (5.25) it follows that

w∗(y) ≤ l Vp(y), y ∈ B r0
2

(y0) . (5.30)

and
w∗(y0) ≥ l Vp(y0) . (5.31)

v) Conclusion. By (5.30) and (5.31) the function ϕ(y) = l Vp(y) touches from above w∗(y)
at y0 and can be used as a test function in equation (5.29) obtaining

P+
p (D2ϕ(y0))− (ϕ(y0))s ≥ − sup

j≥j0
ρα+2
j f−(x′j), (5.32)

where x′j = xj + ρj
y0−yj
r0

.
We will get a contradiction, but we have to be a little bit more careful, with respect

to Lemma 4.1. By (5.5), it follows from (5.32) that

l C1 r
−α−1
0 − ls r−αs0 ≥ − sup

j≥j0
ρα+2
j f−(xj + ρj

y0−yj
r0

). (5.33)

Now, letting j0 → ∞, since αs = α + 2 and δα+2(x′j)f
−(x′j) → 0 by assumption, as well

as
ρj

δ(x′j)
→ 1 when j →∞, we should have

ls r−2
0 − l C1 r

−1
0 ≤ 0 . (5.34)
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Here we observe that the argument works with any sufficiently small r0 > 0, and (5.34)
yields a contradiction for r0 small enough, thereby proving the assertion. �

Proof of Theorem 1.7. The proof of Theorem 1.7 follows at once gathering together
(5.10) and (5.13) of the above Lemma 5.1 . �

5.3 Boundedness across the singular set

As in the case of punctured domains (Corollary 1.3), we will see that solutions are bounded
across Γ if we assume that f(x) is bounded.

Lemma 5.2. A) Suppose that assumptions of Lemma 5.1, part A), are fulfilled with f(x)
bounded below. If u ∈ USC(Ω\E) is a viscosity subsolution of equation (1.1), then u is
bounded above across E, namely bounded above in any open set Ω′\E such that Ω′ b Ω.
B) Suppose that assumptions of Lemma 5.1, part B), are fulfilled with f(x) bounded above.
If u ∈ LSC(Ω\E) is a viscosity supersolution of equation (1.1), then u is bounded below
across E, namely bounded below in any open set Ω′\E such that Ω′ b Ω.

Proof. We will give the proof for subsolutions of part A), the counterpart for supersolu-
tions of part B) being similar, based on part B) of Lemma 5.1.

We follow the lines of the proof Corollary 4.2 (A), but we cannot simply use Vp(x)
in the place of Ep(x), because in general Vp(x) ≡ δ−α(x) is not p+-superharmonic in any
tubular neighbourhood of Γ, unless Γ is flat. We take instead vp(x), the lsc canonical
extension across Γ of

Vp(x) + δ−α+ 1
2 (x) ≡ δ−α(x) + δ−α+ 1

2 (x) , (5.35)

such that vp(x) → ∞ as x → Γ and the boundary limits (5.10) and (5.13) continue to
hold with vp(x) instead of Vp(x). Following the computations leading to (5.5), we get

P+
p (D2vp(x)) ≤P+

p (D2Vp(x)) + P+
p (D2δ−α+ 1

2 (x))

≤C1 δ
−α−1(x)− C2 δ

−α−3
2 (x) + C3 δ

−α−1
2 (x) ,

(5.36)

where Ci, i = 1, 2, 3, are positive constants, and so we can find a tubular neighborhood
Td of Γ such that

P+
p (D2vp(x)) ≤ 0 in Td ; (5.37)
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then we take a neighbourhood Ω0 of E such that E ⊂ Ω0 b Td.
Now, we argue as in the proof of Corollary 4.2, taking F− ≥ 0 such that f ≥ −F−,

K ≥ F−

2p
and r > 0 such that Ω0 b Br. For all ε > 0 we construct the function

ϕ(x) = ε vp(x) +K(r2 − |x|2), in order to have a supersolution in Ω0, namely

P+
p (D2ϕ)− |ϕ|s−1ϕ ≤ −f−(x) . (5.38)

Taking u0(x) = u+(x)−max∂Ω0 u
+, we also have

P+
p (D2u0)− |u0|s−1u0 ≥ −f−(x) , (5.39)

and we can compare u0 and ϕ in Ω∗0 = Ω0\E, observing that u+ ≤ ϕ in a suitably small
neighbourhood of E by (5.10); moreover u0(x) ≤ 0 ≤ ϕ(x) on ∂Ω0. Then by comparison
we have

u(x) ≤ εvp(x) +Kr2 + max
∂Ω0

u+ (5.40)

in Ω∗0. Letting ε → 0, we conclude that u is bounded above in Ω0\Γ. Therefore the
canonical usc extension U of u across Γ is bounded above, but u(x) = U(x) in Ω\E, and
therefere u is bounded above in Ω0\E. �

Proof of Corollary 1.8. Corollary 1.8 is an immediate consequence of part A) and B)
of this Subsection. �

5.4 Removability of the singular set

To show the removability result we will use Theorem 6.1 of [32], showing that a compact
subset E with Hausdorff measure Hp−2(E) <∞ is a polar set for the operator P+

p . This
means that there exists a p+-superharmonic function v of equation P+

p (D2v) = 0 in a
neighbourhood Ω0 of E, which is smooth in Ω0\E, such that

v(x) =∞ if x ∈ E, 0 ≤ v(x) <∞ if x 6∈ E . (5.41)

In fact, since Hp−2(E) < ∞, then E has Riesz capacity Cp−2(E) = 0. Then (see for
instance [3]) there exists a unit positive Borel measure µ on E such that the potential

v(x) =

∫
E

Ep(y − x) dµ, (5.42)
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satisfies (5.41) in Ω0 = Rn and is C∞ in Rn\E.
Moreover, as in [3], recalling that Ep(x) = 1

|x|p−2 , by direct computation we get

P+
p (D2v) ≤

∫
E

P+
p (D2Ep(y − x)) dµ ≤ 0 , x 6∈ E; (5.43)

on the other hand, since v(x) =∞ on E, there are no test functions at points x ∈ E and
therefore v is p+-superharmonic in Rn.

Proof of Theorem 1.9. As a consequence of the above argument, the proof can be
obtained as a straightforward application of Theorem 6.1 of [32]. Since we have used a
different terminology, we make it explicit for sake of completeness.

Since E b Γ and m < p− 2, then Hp−2(E) = 0, and from the above it follows that E
is a polar set for the operator P+

p , so there exists a p+-superharmonic function satisfying
(5.41).

Let U be the canonical usc extension of u across E, which is bounded above in Ω from
the previous subsection; then we consider the family {U−ε v : ε > 0}. Using the structure
condition (1.9)’ and the nondecreasing monotonicity of the function g(t) = |t|s−1t, we get

Fp(D
2(U − εv))− |U − εv|s−1(U − εv)

≥Fp(D2U)− |U |s−1U

+ (|U |s−1U − |U − εv|s−1(U − εv)) ≥ f(x) in Ω∗ ,

(5.44)

while there are no test functions at points x ∈ E, where U(x)− ε v(x) = −∞.
Hence the usc envelope w(x) = u∗(x) of the function

u(x) = sup
ε>0

(U(x)− εv(x)) =

{
u(x) if x ∈ Ω∗

−∞ if x ∈ E (5.45)

is in turn a subsolution (see Section 2) of equation Fp(D
2w)− |w|s−1w = f(x) in Ω.

Analogously, using the canonical lsc extension V of u across E, the lsc envelope of
u∗(x) of the function

u(x) = inf
ε>0

(V (x) + εv(x)) =

{
u(x) if x ∈ Ω∗

+∞ if x ∈ E (5.46)

will be a supersolution of the same equation in Ω.
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Finally, at x0 ∈ E

u∗(x0) ≤ lim inf
x→x0

u(x) ≤ lim sup
x→x0

u(x) ≤ u∗(x0) . (5.47)

On the other side, since u∗(x) is a subsolution and u∗(x) a supersolution in Ω such that
u∗(x) = u(x) = u∗(x) for x 6∈ E, we also get by comparison also the opposite inequality
u∗(x0) ≤ u∗(x0). Therefore u∗(x0) = u∗(x0) = ũ(x0), say, for x0 ∈ E and actually the
function

w(x) =

{
u(x) if x ∈ Ω∗

ũ(x) if x ∈ E , (5.48)

yields a continuous extension of u to a solution in all of Ω. �

Remark 5.3. Note that the smoothness assumption on the manifold Γ c E in Theorem
1.9, and hence on the distance function δ(x) = dist(x,Γ) is used to show that a solution
u(x) is o(δ(x)) as x → E and ultimately that u is bounded in Ω\E. If u is assumed to
be bounded, then the argument of the above proof shows that a sufficient condition in
order that E be a removable singularity for equation F (D2u)− |u|s−1u = f(x) with f(x)
bounded is that Cp−2(E) = 0.

6 Appendix: existence of solutions

In this Section we recall the existence via the Perron’s method of viscosity solutions of
the Dirichlet problem, provided by Theorem 4.1 of Crandall, Ishii and Lions (see [27] for
the classical Perron method and Ishii [36] for other applications to fully nonlinear second
order elliptic equations). Existence results for operators involving P+

p can be found in
[30]. Here we briefly sketch the proof.

We wish to find viscosity solutions of the Dirichlet problem{
Fp(D

2u)− |u|s−1u = f(x) in B
u = g on ∂B

(DP )

in a ball B.
According to Theorem 4.1 of [19], we need in particular to find a supersolution u and

a subsolution u of the equation in (DP) such that

u∗ = g = u∗ on ∂B, (6.1)
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Lemma 6.1. Suppose that B is a ball in Rn, 1 < p ≤ n, s > 1 and f ∈ C(B). There
exists a function u ∈ lsc(B) such that{

P+
p (D2u)− |u|s−1u ≤ f(x) in B

u∗ = g on ∂B
(6.2)

Sketch of the proof. Following the scheme of Section 9 of [18], it is sufficient to find,
for all points xb on the boundary ∂B, an equicontinuous family of solutions Gb ∈ C(B)
of equation

P+
p (D2Gb) ≤ −κ in B (6.3)

with κ > 0, such that Gb(xb) = 0 and Gb(x) > 0 for x ∈ B\{xb}.
Indeed, suppose that this has been done. If g = 0, choosing M = max |f |/κ we get

P+
p (D2(MGb))− |MGb|s−1MGb ≤ −κM ≤ f(x) in B

and we can choose
u(x) = inf

xb∈∂B
MGb(x),

which is continuous by equicontinuity and, since the infimum of supersolutions is a super-
solution, satisfies {

P+
p (D2u)− |u|s−1u ≤ f(x) in B

u = g on ∂B

In the general case (see Hint. 9.3 of [18], Section 7.2 of [46]) we can use as u the lsc
envelope (see Lemma 4.2 of [19]) of the function

u(x) = inf
xb∈∂B1
ε>0

(g(xb) + ε+MεGb(x))

with suitable constants Mε > 0.
Hence we are left with the task of finding the functions Gb for each xb ∈ ∂B. We

notice that unfortunately, by lack of uniform ellipticity, we may not proceed taking a
radial symmetric function. So we need a different construction.
We may assume

B = {x ∈ Rn : x2
1 + · · ·+ x2

n−1 + (xn − 1)2 < 1}.
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Setting
G0(x) = xn − (x2

1 + · · ·+ x2
n−1),

we have G0(0) = 0, G0(x) > 0 in B\{0} and

P+
p (D2G0) = −2(p− 1) < 0 .

For a general point xb ∈ ∂B then we can define

Gb(x) = G0(Rb(x− xb)),

where Rb is a suitable rotation matrix, and we notice that the functions Gb(x) have all
required properties. �

We are in position to prove the following existence and uniqueness result.

Theorem 6.2. Let B be a ball of Rn, 1 < p ≤ n, s > 1, f ∈ C(B) and g ∈ C(∂B).
There exists a unique continuous viscosity solution of Dirichlet problem (DP ).

Proof. According to Theorem 4.1 of [19], we need:
i) the comparison principle between subsolutions and supersolutions;
ii) the existence of subsolutions and supersolutions with continuous boundary values.

The comparison principle is proved above in Lemma 2.1 and a supersolution u in the ball
B such that u∗ = g on ∂B is provided by the above Lemma 6.1, since Fp(X) ≤ P+

p (X),
by (1.9). To find a subsolution, it is enough to find with Lemma 6.1 a solution of the
problem {

P+
p (D2w)− |w|s−1v ≤ −f(x) in B

w∗ = −g on ∂B
(6.4)

in order that v = −w satisfies{
P−p (D2v)− |v|s−1w ≥ f(x) in B
v∗ = g on ∂B

(6.5)

and therefore v can be used as the subsolution that we needed, since Fp(X) ≥ P−p (X).
In conclusion, the assumptions of Theorem 4.1 of [19] are fulfilled, and we are done. �
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