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1 Introduction
Let Ω be an open subset of RN , N > 2. We consider the Dirichlet problem

−div(M(x)∇u) + µu = −div(uE(x)) + f(x) in Ω,

u ∈ W 1,2
0 (Ω),

(1)

where M : Ω → RN2 is a measurable matrix field such that there exist α, β ∈ R+
such that

α|ξ|2 ≤M(x) ξ · ξ, |M(x)| ≤ β, a.e. x ∈ Ω, ∀ ξ ∈ RN ,(2)

µ > 0,(3)

E : Ω→ RN is a vector field and f : Ω→ R is a real function.
Guido Stampacchia proved that if Ω is bounded, |E| ∈ LN(Ω), f ∈ L

2N
N+2 (Ω) and

if µ is large enough, problem (1) admits a unique weak solution u.
Moreover, he also proved that
- if |E| ∈ LN(Ω) and f ∈ Lm(Ω), 2N

N+2 ≤ m<N
2 , then the solution u of (1) is in

Lm
∗∗(Ω), with

m∗∗ = (m∗)∗ = Nm

N − 2m,(4)

m∗ being the Sobolev conjugate of m;
- if |E| ∈ LN(Ω) and f ∈ Lm(Ω), m > N

2 , then the solution u of (1) is in L∞(Ω).
Successively, Lucio Boccardo, in [1], studied the case µ = 0, obtaining the same

results. We point out that the main difficulty here relies on the noncoercitivity of
the operator −div(M(x)∇u) + div(uE(x)) due to the presence of the second term
on which no smallness assumptions are done.

In this paper we generalize these existence, uniqueness and regularity results
to the case when Ω is unbounded. We explicitly observe that, since the domain
is unbounded, we need to assume hypothesis (3). Nevertheless, we still have the
noncoercitivity of the operator since we do not require that µ is large enough.
More precisely, we prove the unique solvability of problem (1) under the assumptions

|E| ∈ L2(Ω) ∩MN
0 (Ω)(5)

and
f ∈ L1(Ω) ∩ L

2N
N+2 (Ω),(6)
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where MN
0 (Ω) is a functional space strictly containing LN(Ω), described in Section

2.
Furthermore, we also generalize to the case of unbounded domains the regularity
results proving that
- if |E| ∈ L2(Ω) ∩MN

0 (Ω) and f ∈ L1(Ω) ∩ Lm(Ω), 2N
N+2 ≤ m<N

2 , then the solution
u of (1) is in Lm∗∗(Ω), with m∗∗ given by (4);
- if |E| ∈ L2(Ω)∩Lr(Ω), r > N , and f ∈ L1(Ω)∩Lm(Ω), m > N

2 , then the solution
u of (1) is in L∞(Ω).
The techniques used to achieve these results issue from an idea of [1], inspired by
the papers of Guido Stampacchia [23, 24], and by [7, 8, 10], where certain nonlinear
problems are treated. In [1] the author approximates the noncoercive problem by
coercive nonlinear problems and then passes to the limit. Here, due to the assump-
tion (5) on the coefficient appearing in the noncoercive term, one can pass to the
limit thanks to a compactness result in MN

0 (Ω) proved in [26] (see also Lemma 2.2).
For similar problems on bounded domains we refer the reader also to [2, 3,

5, 6, 11, 21, 27]. Linear coercive problems on unbounded domains are studied in
[15, 16, 17, 18, 19, 20].

2 The spaces M p(Ω) and M p
0 (Ω)

From now on, let Ω be an unbounded subset of RN , N > 2. We start recalling the
definitions and some properties of a class of spaces that were introduced for the first
time in [25].

Let us give some notation. The σ-algebra of all Lebesgue measurable subsets
of Ω is denoted by Σ(Ω). Given O ∈ Σ(Ω), |O| is its Lebesgue measure, χO is its
characteristic function, and O(x, r) is the intersection O∩B(x, r) (x ∈ RN , r ∈ R+),
where B(x, r) is the open ball with center in x and radius r. The class of restrictions
to Ω̄ of functions ζ ∈ C∞o (Rn) is denoted by D(Ω̄). For p ∈ [1,+∞[, Lploc(Ω̄) is the
class of all functions g : Ω→ R such that ζ g ∈ Lp(Ω) for any ζ ∈ D(Ω̄).

For p ∈ [1,+∞[, the space Mp(Ω) is the set of all the functions g in Lploc(Ω̄) such
that

||g||Mp(Ω) = sup
x∈Ω
||g||Lp(Ω(x,1)) < +∞,(7)

endowed with the norm defined in (7). Moreover Mp
0 (Ω) denotes the subspace of

Mp(Ω) made up of functions g ∈Mp(Ω) such that

lim
x→+∞

||g||Lp(Ω(x,1)) = 0.
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We point out that
Lp(Ω) ⊆Mp

0 (Ω),(8)
the inclusion being strict. Indeed, as shown in [26], the function

1
1 + |x|α ∈M

p
0 (Ω),∀ p > 1 and ∀ α ∈ R+,

while for p > 1 and 0 < α < N/p

1
1 + |x|α /∈ Lp(Ω).

Furthermore (see [26] for details) one has

M q(Ω) ⊆Mp(Ω), M q
0 (Ω) ⊆Mp

0 (Ω) if 1 ≤ p ≤ q < +∞.(9)

As already observed in [26], if g ∈ Mp(Ω) the following three properties are
equivalent:
i) g ∈Mp

0 (Ω),
ii) for any ε ∈ R+ there exist νε, σε ∈ R+ such that

O ∈ Σ(Ω), |O(0, σε)| ≤ νε ⇒ ||gχO||Mp(Ω) ≤ ε,(10)

iii) for any ε ∈ R+ there exist hε, kε ∈ R+ such that

‖(1− ζhε) g‖Mp(Ω) ≤ ε, O ∈ Σ(Ω), sup
x∈O
|O(x, 1)| ≤ kε ⇒ ‖g χO‖Mp(Ω) ≤ ε,(11)

where, for h ∈ R+, ζh is a function of class C∞o (Rn) such that

0 ≤ ζh ≤ 1 , ζh|
B(0,h)

= 1 , supp ζh ⊂ B(0, 2h).(12)

If g belongs to Mp
0 (Ω), a modulus of continuity of g in Mp

0 (Ω) is an application
σo
p[g] : R+ → R+ such that

‖(1−ζh)g‖Mp(Ω) + sup
O∈Σ(Ω)

sup
x∈Ω
|O(x,1)|≤ 1

h

‖g χ
O
‖Mp(Ω) ≤ σo

p[g](h), with lim
h→+∞

σo
p[g](h) = 0 .(13)

Let us remind some results proved in Lemma 3.1 of [26], see also [13], adapted
here to our needs, that allow us to approximate functions in Mp

0 (Ω) by means of
sequences of functions in L1(Ω) ∩ Lp(Ω).
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Lemma 2.1. If g ∈ Mp
0 (Ω), with p > 1, then there exists a sequence gh, with

gh ∈ L1(Ω) ∩ Lp(Ω), h ∈ N, such that

gh → g in Mp(Ω),(14)

|gh(x)| ≤ |g(x)|, a.e. in Ω,∀h ∈ N,(15)
σo
p[gh] = σo

p[g],∀h ∈ N.(16)

For the reader’s convenience, in next lemma we recall some results of [25] con-
cerning the multiplication operator

u ∈ W 1,2
0 (Ω) −→ g u ∈ L2(Ω),(17)

where the function g belongs to MN(Ω).

Lemma 2.2. If g ∈MN(Ω), then the operator in (17) is bounded and there exists a
positive constant c such that

‖g u‖L2(Ω) ≤ c ‖g‖MN (Ω) ‖u‖W 1,2(Ω) ∀u ∈ W 1,2
0 (Ω),(18)

with c = c (N).
Moreover, if g ∈MN

0 (Ω), then the operator in (17) is also compact.

3 Preliminary results

Let k ∈ R+. Recall Stampacchia’s definition of truncate:

Tk(t) =
{
t, if |t| ≤ k,
k t
|t| , if |t| > k,(19)

and let
Gk(t) = t− Tk(t).(20)

Given u ∈ W 1,2
0 (Ω), we put

Ak = {x ∈ Ω : |u(x)| > k}.(21)

Let us recall a known result proved in [24] and generalized to the case of un-
bounded domains in [12].
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Lemma 3.1. Let G be a uniformly Lipschitz function such that G(0) = 0 and
u ∈ W 1,2

0 (Ω). Then G ◦ u ∈ W 1,2
0 (Ω).

The next lemma collects some useful properties of the composition of Tk with
Gk and u ∈ W 1,2

0 (Ω), needed in the sequel.

Lemma 3.2. For every u ∈ W 1,2
0 (Ω) and k ∈ R+ one has

Tk(u) = Tk ◦ u ∈ W 1,2
0 (Ω),(22)

∇u · ∇Tk(u) = |∇Tk(u)|2, a.e. in Ω,(23)
u Tk(u) ≥ |Tk(u)|2, a.e. in Ω,(24)

u ∇Tk(u) = Tk(u)∇Tk(u), a.e. in Ω,(25)
Gk(u) = Gk ◦ u ∈ W 1,2

0 (Ω),(26)
|Gk(u)| ≤ |u|, a.e. in Ω,(27)
|u| ≤ |Gk(u)|+ k, a.e. in Ω,(28)

∇u · ∇Gk(u) = |∇Gk(u)|2, a.e. in Ω,(29)
u Gk(u) ≥ |Gk(u)|2, a.e. in Ω,(30)

supp Gk(u) ⊆ Ak,(31)

(Gk(u))xi =
{
uxi a.e. in Ak,
0 a.e. in Ω \ Ak, i = 1 . . . n.(32)

Proof. The staments in (22) and (26) can be obtained by Lemma 3.1, the other
properties are straightforward consequence of the definitions of Tk, Gk and Ak.

Let us now recall Lemma 4.1 of [24] by Stampacchia.

Lemma 3.3. Let k0 > 0 and ϕ : [k0,+∞[→ R be a non negative and non increasing
function such that

ϕ(h) ≤ C

(h− k)γ [ϕ(k)]δ ∀h > k ≥ k0,(33)

where C, γ and δ are positive constants, with δ > 1. Then there exists

d = 2
δ
δ−1C1/γ [ϕ(k0)]

δ−1
γ(34)

such that
ϕ(k0 + d) = 0.(35)
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Lemma 3.3 allows us to prove the next result obtained following some techniques
used in [14, 23].

Lemma 3.4. Assume (2), (3), |F | ∈ L2(Ω) and f ∈ L
2N
N+2 (Ω). Then there exists a

unique solution u of the problem
−div(M(x)∇u) + µu = −div(F (x)) + f(x) in Ω,

u ∈ W 1,2
0 (Ω).

(36)

If in addition |F | ∈ Lp(Ω) and f ∈ L p
2 (Ω), p > N, then the solution u is of class

L∞(Ω).

Proof. The Lax-Milgram Lemma gives the existence and uniqueness of the solu-
tion.

Let us prove the boundedness. Take Gk(u) as test function in the variational
formulation of (36) (this is allowed by (26)). Then by (2), (21), (29), (30), (31),
Hölder and Sobolev inequalities one gets

α
∫
Ω

|∇Gk(u)|2 + µ
∫
Ω

|Gk(u)|2 ≤
∫
Ak

|F ||∇Gk(u)|+
∫
Ak

|f ||Gk(u)|

≤
(
‖F‖Lp(Ω)|Ak|

1
2−

1
p + 1

S
‖f‖

L
p
2 (Ω)
|Ak|1−

1
2∗−

2
p

)
‖∇Gk(u)‖L2(Ω).

Whence
‖Gk(u)‖L2∗ (Ω) ≤ C(|Ak|

1
2−

1
p + |Ak|1−

1
2∗−

2
p ),

with C = C(α, S, ‖F‖Lp(Ω), ‖f‖L p2 (Ω)
) and where S is the Sobolev constant as in

Theorem 3.17 of [4].
Now, observe that since |Ak| → 0, as k → +∞, we can assume that there

exists k0 ∈ R+ such that |Ak| ≤ 1, for k ≥ k0. Moreover, since p > N , then
1
2 −

1
p
< 1− 1

2∗ −
2
p
, therefore

‖Gk(u)‖L2∗ (Ω) ≤ C ′|Ak|
1
2−

1
p ,∀k ≥ k0,(37)

with C ′ = C ′(α, S, ‖F‖Lp(Ω), ‖f‖L p2 (Ω)
).

On the other hand, by (21) and (28)

h|Ah|
1

2∗ =
( ∫

Ah

|h|2∗
) 1

2∗ ≤ ‖u‖L2∗ (Ah) ≤ ‖Gk(u)‖L2∗ (Ah) + k|Ah|
1

2∗ .
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Thus
(h− k)|Ah|

1
2∗ ≤ ‖Gk(u)‖L2∗ (Ah), ∀h > k.(38)

Putting together (37) and (38), we obtain

|Ah| ≤ C ′′
|Ak|

2∗
2 −

2∗
p

(h− k)2∗ , ∀h > k ≥ k0,

with C ′′ = C ′′(α, S, ‖F‖Lp(Ω), ‖f‖L p2 (Ω)
).

Finally, again as a consequence of the fact that N < p, one gets that 2∗
2 −

2∗
p
> 1,

hence Lemma 3.3 applies and therefore there exists d ∈ R+ such that |Ak0+d| = 0,
thus u ∈ L∞(Ω).

4 Existence result
Here, we want to prove the existence of a weak solution of (1). Following an idea of
[1], that issues from the papers of Guido Stampacchia and from [7, 8, 10], we use a
nonlinear approach to our linear problem.
Indeed, we consider the following nonlinear approximate problems −div(M(x)∇un) + µun = −div

(
un

1 + 1
n
|un|

E(x)
1 + 1

n
|E(x)|

)
+ f

1 + 1
n
|f |
,

un ∈ W 1,2
0 (Ω).

(39)

We start proving that, for every fixed n, a bounded weak solution un of (39) exists.
This is done in Theorem 4.1 for n = 1 and it can be analogously proved for n ≥ 2.
Successively, in Theorem 4.6, we show that the sequence un of the solutions of
problems (39) is bounded in W 1,2

0 (Ω). To this aim, some preliminary results are
needed. Namely, in Lemma 4.2, we obtain that for any k ∈ R+, the sequence Tk(un)
is bounded in W 1,2

0 (Ω) and successively, in Lemma 4.5, we get that the sequence
Gk(un) is bounded in W 1,2

0 (Ω) too, for sufficiently large k. Thus, fixed k sufficiently
large, in view (20), we get the boundedness of un in W 1,2

0 (Ω). Finally, in Theorem
4.7, by approximation, we get the existence result of a weak solution of problem (1).
Theorem 4.1. Assume (2), (3), |E| ∈ L2(Ω)∩MN

0 (Ω) and f ∈ L1(Ω). Then there
exists a weak solution u of class L∞(Ω) of the following problem −div(M(x)∇u) + µu = −div

(
u

1 + |u|
E(x)

1 + |E(x)|

)
+ f

1 + |f | ,

u ∈ W 1,2
0 (Ω).

(40)
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Proof. Let w ∈ W 1,2
0 (Ω). By Lemma 3.4 there exists a unique and bounded

solution u of the following problem −div(M(x)∇u) + µu = −div
(

w

1 + |w|
E(x)

1 + |E(x)|

)
+ f

1 + |f | ,

fu ∈ W 1,2
0 (Ω).

(41)

Consider then the operator

P : w ∈ W 1,2
0 (Ω)→ u = Pw ∈ W 1,2

0 (Ω).(42)

In order to prove our claim it is enough to show that P has a fixed point. To do
that we make use of the Schauder fixed point Theorem (in its formulation given, for
instance, in Theorem 1.11 of [4]).

Let us therefore show that the following two hypotheses are satisfied:
1. P admits a bounded and closed invariant convex set.
2. P is completely continuous.
1. Take u as test function in the variational formulation of (41). We have

∫
Ω

M(x)∇u · ∇u+
∫
Ω

µu2 =
∫
Ω

w

1 + |w|
E(x)

1 + |E(x)| · ∇u+
∫
Ω

f u

1 + |f | .

Hence, by (2), (3) and by the Hölder and Sobolev inequalities we obtain that there
exist two positive constants C0 = C0(α, µ) and C = C(α, µ, ‖E‖L2(Ω), ‖ f

1+|f |‖L 2N
N+2 (Ω)

, S)
such that

‖u‖2
W 1,2(Ω) ≤ C0(‖E‖L2(Ω)‖∇u‖L2(Ω) + ‖ f

1 + |f |‖L 2N
N+2 (Ω)

‖u‖L2∗ (Ω)) ≤ C‖u‖W 1,2(Ω).

Therefore, if we consider the closed ball ‖w‖W 1,2(Ω) ≤ C, we obtain that ‖Pw‖W 1,2(Ω) =
‖u‖W 1,2(Ω) ≤ C. This concludes the proof of the first point.

2. Let wn ⇀ w̄ weakly in W 1,2
0 (Ω), we must show that Pwn → Pw̄ in W 1,2

0 (Ω).
Let un = Pwn and ū = Pw̄. Take un − ū as test function in the variational
formulations of (41) written in correspondence of w = wn and w = w̄, respectively.
We get∫
Ω

M(x)∇un·∇(un−ū)+
∫
Ω

µun(un−ū) =
∫
Ω

wn
1 + |wn|

E(x)
1 + |E(x)| ·∇(un−ū)+

∫
Ω

f (un − ū)
1 + |f |
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and∫
Ω

M(x)∇ū·∇(un−ū)+
∫
Ω

µū(un−ū) =
∫
Ω

w̄

1 + |w̄|
E(x)

1 + |E(x)| ·∇(un−ū)+
∫
Ω

f (un − ū)
1 + |f | .

Subtracting the second equality from the first one we obtain∫
Ω

M(x)[∇(un− ū)]2 +
∫
Ω

µ(un− ū)2 =
∫
Ω

( wn
1 + |wn|

− w̄

1 + |w̄|
) E(x)

1 + |E(x)| ·∇(un− ū).

Hence, by (2), (3) and by the Hölder inequality there exists a positive constant
C = C(α, µ) such that

‖un − ū‖2
W 1,2(Ω) ≤ C

∥∥∥( wn
1 + |wn|

− w̄

1 + |w̄|
)
|E|

∥∥∥
L2(Ω)
‖∇(un − ū)‖L2(Ω),

whence
‖un − ū‖W 1,2(Ω) ≤

∥∥∥( wn
1 + |wn|

− w̄

1 + |w̄|
)
|E|

∥∥∥
L2(Ω)

.

Now, by the compactness of the operator u ∈ W 1,2
0 (Ω) → |E|u ∈ L2(Ω), stated in

Lemma 2.2, since wn ⇀ w̄ weakly in W 1,2
0 (Ω), we obtain |E|wn → |E|w̄ in L2(Ω),

and therefore, up to a subsequence, wn converges to w̄ a.e. in Ω. Thus the Lebesgue
dominated convergence Theorem applies and we get that

∥∥∥( wn
1 + |wn|

− w̄

1 + |w̄|
)
|E|

∥∥∥
L2(Ω)

→ 0.

This concludes our proof.

The estimates contained in the following Lemmas 4.2, 4.3 and 4.5 allow us to
prove the a priori bounds on {un} of Theorem 4.6.

Lemma 4.2. Assume (2), (3), |E| ∈ L2(Ω) ∩MN
0 (Ω) and f ∈ L1(Ω) ∩ L

2N
N+2 (Ω).

Then, for any k ∈ R+, the sequence {Tk(un)} is bounded in W 1,2
0 (Ω). More precisely

we have:
α

2

∫
Ω

|∇Tk(un)|2 + µ
∫
Ω

|Tk(un)|2 ≤ k2

2α

∫
Ω

|E|2 + k
∫
Ω

|f |.(43)
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Proof. Let us take Tk(un) as test function in the variational formulation of (39),
this can be done in view of (22). We have∫

Ω

M(x)∇un · ∇Tk(un) + µ
∫
Ω

unTk(un)

=
∫
Ω

un
1 + 1

n
|un|

E(x)
1 + 1

n
|E(x)| · ∇Tk(un) +

∫
Ω

f

1 + 1
n
|f |
Tk(un) .

In view of (2), (23), (24), (25) and by Young inequality we get

α
∫
Ω

|∇Tk(un)|2 + µ
∫
Ω

|Tk(un)|2

≤
∫
Ω

|Tk(un)| |E| |∇Tk(un)|+
∫
Ω

|f | |Tk(un)|

≤ α

2

∫
Ω

|∇Tk(un)|2 + 1
2α

∫
Ω

|Tk(un)|2 |E|2 +
∫
Ω

|f | |Tk(un)|.

Therefore (43) follows.

Lemma 4.3. Assume (2), (3), |E| ∈ L2(Ω) ∩MN
0 (Ω) and f ∈ L1(Ω) ∩ L

2N
N+2 (Ω).

Then the solutions un of (39) satisfy∫
Ω

|un| ≤
1
µ

∫
Ω

|f |.(44)

Proof. Let ε > 0 and take un
ε+ |un|

as test function in (39). We have

ε
∫
Ω

M(x)∇un · ∇un
(ε+ |un|)2 +µ

∫
Ω

|un|2

ε+ |un|
= ε

∫
Ω

un
1 + 1

n
|un|

E(x)
1 + 1

n
|E(x)| ·

∇un
(ε+ |un|)2 +

∫
Ω

fn un
ε+ |un|

.

Since |un|
ε+|un| ≤ 1 we have, using (2) and the fact that |fn| ≤ |f |,

αε
∫
Ω

|∇un|2

(ε+ |un|)2 + µ
∫
Ω

|un|2

ε+ |un|
≤ ε

∫
Ω

E · ∇un
ε+ |un|

+
∫
Ω

|f | .
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Now, observe that Young inequality gives

αε

2

∫
Ω

|∇un|2

(ε+ |un|)2 + µ
∫
Ω

|un|2

ε+ |un|
≤ ε

2α

∫
Ω

|E|2 +
∫
Ω

|f |,

which concludes the proof letting ε→ 0.

Remark 4.4. Remark that thanks to the estimate (44), one has

meas
{
x ∈ Ω : |un(x)| > k

}
≤ 1
kµ

∫
Ω

|f |.(45)

Thus, for any ε > 0, it is possible to choose kε such that

meas
{
x ∈ Ω : |un(x)| > k

}
≤ ε, ∀ k > kε,∀n ∈ N.(46)

Lemma 4.5. Assume (2), (3), |E| ∈ L2(Ω) ∩MN
0 (Ω) and f ∈ L1(Ω) ∩ L

2N
N+2 (Ω).

Then there exists k∗ ∈ R+, with k∗ = k∗(N, σoN [E]), such that the sequence {Gk(un)}
is bounded in W 1,2

0 (Ω), for every k > k∗. More precisely we have:

α

2

∫
Ω

|∇Gk(un)|2 + µ

2

∫
Ω

|Gk(un)|2 ≤ 2k2

α

∫
Ω

|E|2 + 2
αS2

[ ∫
Ω

|f |
2N
N+2

]N+2
N

,(47)

where S is the Sobolev constant as in Theorem 3.17 of [4].

Proof. Let k ∈ R+ and n ∈ N, define

An(k) = {x ∈ Ω : k < |un(x)|}.

The use of Gk(un) as test function in the variational formulation of (39) (that can
be done in view of (26)), (2), (28), (29) and (30) give that

α
∫
Ω
|∇Gk(un)|2 + µ

∫
Ω
|Gk(un)|2

≤
∫
Ω
|Gk(un)||E||∇Gk(un)|+ k

∫
Ω
|E||∇Gk(un)|+

∫
Ω
|Gk(un)||f |.

(48)
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By (31), Hölder inequality and (18) of Lemma 2.2, we get that

∫
Ω
|Gk(un)||E||∇Gk(un)| ≤

( ∫
An(k) |E|2|Gk(un)|2

) 1
2
( ∫

Ω
|∇Gk(un)|2

) 1
2

≤ c‖E‖MN (An(k))‖Gk(un)‖W 1,2(Ω)

( ∫
Ω
|∇Gk(un)|2

) 1
2
.

(49)

Therefore, by (48), (49) and Young inequality one has that, for ε > 0,

α
∫
Ω
|∇Gk(un)|2 + µ

∫
Ω
|Gk(un)|2

≤ c‖E‖MN (An(k))

( ∫
Ω
|∇Gk(un)|2 +

∫
Ω
|Gk(un)|2

)
+ ε

∫
Ω
|∇Gk(un)|2 + k2

4ε
∫

An(k)
|E|2

+ε
∫
Ω

|∇Gk(un)|2 + 1
4εS2

[ ∫
An(k)

|f |
2N
N+2

]N+2
N

.

Thus it results[
α− c‖E‖MN (An(k)) − 2ε

] ∫
Ω
|∇Gk(un)|2 +

[
µ− c‖E‖MN (An(k))

] ∫
Ω
|Gk(un)|2

≤ k2

4ε
∫

An(k)
|E|2 + 1

4εS2

[ ∫
An(k) |f |

2N
N+2

]N+2
N

.

Fix ε so that 2ε = α
4 . Then (10) and (46) imply that there exists k∗ ∈ R+, such that

c‖E‖MN (An(k)) ≤ min
{α

4 ,
µ

2
}
, ∀k > k∗.(50)

Let us explicitly observe that, in view of (10), (11) and by the definition (13) of
σo
N [E], one has k∗ = k∗(N, σoN [E]). This concludes our proof.

Theorem 4.6. Assume (2), (3), |E| ∈ L2(Ω) ∩MN
0 (Ω) and f ∈ L1(Ω) ∩ L

2N
N+2 (Ω).

Then the sequence {un} of the solutions of problems (39) is bounded in W 1,2
0 (Ω).

More precisely, there exists a positive constant C = C(N,α, µ, S, σoN [E]) such that

‖un‖2
W 1,2(Ω) ≤ C(‖E‖2

L2(Ω) + ‖f‖L1(Ω) + ‖f‖2
L

2N
N+2 (Ω)

).(51)
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Proof. Let k∗ be given by Lemma 4.5. Definition (20) together with the estimates
(43) and (47) imply that for any k > k∗ there exists a positive constant C ′ =
C ′(α, µ, S) such that

∫
Ω

|∇un|2 +
∫
Ω

|un|2 ≤ C ′
(
k2
∫
Ω

|E|2 + k
∫
Ω

|f |+
[ ∫

Ω

|f |
2N
N+2

]N+2
N )

.(52)

This gives (51).

Finally, let us prove the existence result.

Theorem 4.7. Assume (2), (3), |E| ∈ L2(Ω) ∩MN
0 (Ω) and f ∈ L1(Ω) ∩ L

2N
N+2 (Ω).

Then there exists u ∈ W 1,2
0 (Ω) weak solution of (1), that is∫

Ω

M(x)∇u · ∇v + µ
∫
Ω

uv =
∫
Ω

uE(x) · ∇v +
∫
Ω

f v, ∀ v ∈ W 1,2
0 (Ω).(53)

Moreover, there exists a positive constant C = C(N,α, µ, S, σoN [E]) such that

‖u‖2
W 1,2(Ω) ≤ C(‖E‖2

L2(Ω) + ‖f‖L1(Ω) + ‖f‖2
L

2N
N+2 (Ω)

).(54)

Proof. The sequence {un} is bounded in W 1,2
0 (Ω) by Theorem 4.6. Then, up to

a subsequence, un converges weakly in W 1,2
0 (Ω) to a function u.

Since un is a solution of (39), one has that∫
Ω

M(x)∇un · ∇v + µ
∫
Ω

unv

=
∫
Ω

un
1 + 1

n
|un|

E(x)
1 + 1

n
|E(x)| · ∇v +

∫
Ω

f

1 + 1
n
|f |
v ,

(55)

for every v ∈ W 1,2
0 (Ω). Let us to pass to the limit, as n→ +∞, in (55).

Clearly ∫
Ω

M(x)∇un · ∇v →
∫
Ω

M(x)∇u · ∇v

and
µ
∫
Ω

unv → µ
∫
Ω

uv.
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Moreover
f

1 + 1
n
|f |
v → fv a.e. in Ω

and ∣∣∣ f

1 + 1
n
|f |
v
∣∣∣ ≤ |fv| ∈ L1(Ω).

Thus, by the Lebesgue dominated convergence Theorem one has∫
Ω

f

1 + 1
n
|f |
v →

∫
Ω

fv.

It remains to pass to the limit in∫
Ω

un
1 + 1

n
|un|

E(x)
1 + 1

n
|E(x)| · ∇v.

Since un converges weakly to u in W 1,2
0 (Ω), by Lemma 2.2 we obtain that |E|un

converges strongly to |E|u in L2(Ω). Hence, by the Vitali Theorem (see, for instance,
[22]) one has that for any ε > 0 there exists Ωε ⊂ Ω with |Ωε| < +∞ such that∫

Ω\Ωε
|un|2|E|2 < ε, uniformly with respect to n,

and there exists δ > 0 such that for every A ⊂ Ω with |A| < δ, one has∫
A
|un|2|E|2 < ε, uniformly with respect to n.

Now, ∫
Ω\Ωε

|un|2

(1 + 1
n
|un|)2

|E(x)|2
(1 + 1

n
|E(x)|)2 ≤

∫
Ω\Ωε
|un|2|E|2 < ε,

and ∫
A

|un|2

(1 + 1
n
|un|)2

|E(x)|2
(1 + 1

n
|E(x)|)2 ≤

∫
A
|un|2|E|2 < ε,

uniformly with respect to n and moreover, since un converges a.e. to u, one gets

un
1 + 1

n
|un|

|E(x)|
1 + 1

n
|E(x)| → u|E| a.e. in Ω.
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Thus, using again the Vitali Theorem, in the reverse sense, we obtain that

un
1 + 1

n
|un|

|E(x)|
1 + 1

n
|E(x)| → un |E| in L2(Ω).

Passing to the limit, as n→ +∞, in (55) we obtain (53).
Estimate (54) follows then by (51).

5 Uniqueness result
In this section we prove the uniqueness of the solution of problem (1). To achieve
this result we follow some ideas of [1, 9].

Theorem 5.1. Assume (2), (3), |E| ∈ L2(Ω) ∩MN
0 (Ω) and f ∈ L1(Ω) ∩ L

2N
N+2 (Ω).

Then the weak solution u of (1) is unique.

Proof. Let u, w be weak solutions of (1) and let δ ∈ R+ and ε ∈]0, δ[. We use
Tε(u− w) as test function in the variational formulation of problem (1), written in
correspondence of the solutions u and w respectively. This can be done in view of
(22). By subtracting we obtain∫

Ω

M(x)∇(u− w)∇Tε(u− w) + µ
∫
Ω

(u− w)Tε(u− w)

=
∫
Ω

(u− w)E(x)∇Tε(u− w).

By (2), (23), (24) and (25) we have

α
∫
Ω

|∇Tε(u− w)|2 + µ
∫
Ω

|Tε(u− w)|2 ≤ ε
∫

0<|u(x)−w(x)|<ε

|E(x)||∇Tε(u− w)|

and the Hölder inequality gives then

min{α, µ}
( ∫

Ω

|∇Tε(u− w)|2 +
∫
Ω

|Tε(u− w)|2
)

≤ ε
( ∫

0<|u(x)−w(x)|<ε

|E(x)|2
) 1

2
( ∫

Ω

|∇Tε(u− w)|2
) 1

2
.
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Therefore

(min{α, µ})2
( ∫

Ω

|∇Tε(u− w)|2 +
∫
Ω

|Tε(u− w)|2
)
≤ ε2

∫
0<|u(x)−w(x)|<ε

|E|2.

Then ∫
δ<|u(x)−w(x)|

|Tε(u− w)|2 ≤
∫
Ω

|Tε(u− w)|2 ≤ ε2

(min{α, µ})2

∫
0<|u(x)−w(x)|<ε

|E|2.

Thus

ε2 meas({δ < |u(x)− w(x)|}) ≤ ε2

(min{α, µ})2

∫
0<|u(x)−w(x)|<ε

|E|2.

Since ⋂
ε>0
{0 < |u(x)− w(x)| < ε} = {0 < |u(x)− w(x)| ≤ 0} = ∅,

the continuity of the measure with respect to intersection then implies that

meas({0 < |u(x)− w(x)| < ε})→ 0, as ε→ 0.

Then ∫
0<|u(x)−w(x)|<ε

|E|2 → 0,

and so meas{δ < |u(x) − w(x)|} = 0 for any δ > 0, that is u(x) = w(x) almost
everywhere.

6 Regularity results
This section is devoted to the proof of two regularity results for the weak solution
u ∈ W 1,2

0 (Ω) of problem (1).
More precisely, in Theorem 6.5 we show that if f ∈ L1(Ω)∩Lm(Ω), with 2N

N+2 ≤
m<N

2 , then u ∈ L
m∗∗(Ω), where m∗∗ is given by (4).

In Theorem 6.6, we prove that if we require stronger assumptions on E and f ,
namely if |E| ∈ L2(Ω) ∩ Lr(Ω), r > N , and f ∈ L1(Ω) ∩ Lm(Ω), m > N

2 , then
u ∈ L∞(Ω).
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To show Theorem 6.5, as done to obtain the existence of the weak solution
of problem (1), some preliminary results for the sequences Tk(un) and Gk(un) are
needed.

Namely, in Lemma 6.1, we obtain that if (2) and (3) hold, |E| ∈ L2(Ω)∩MN
0 (Ω)

and f ∈ L1(Ω) ∩ L
2N
N+2 (Ω), then for any k ∈ R+, the sequence Tk(un) is bounded

in Lm
∗∗(Ω), for every 2N

N+2 ≤ m < N
2 . An analogous result for the Gk(un), with

|E| ∈ L2(Ω) ∩MN
0 (Ω), cannot be obtained. Hence, in Lemma 6.2, we prove that

the sequence Gk(un) is bounded in Lm∗∗(Ω), for sufficiently large k, but under the
stronger assumption |E| ∈ L2(Ω) ∩ LN(Ω) and if f ∈ L1(Ω) ∩ Lm(Ω), with 2N

N+2 ≤
m < N

2 . Thus, if |E| ∈ L
2(Ω)∩LN(Ω) and f ∈ L1(Ω)∩Lm(Ω), with 2N

N+2 ≤ m < N
2 ,

fixed k sufficiently large, in view of (20), we get the boundedness of un in Lm∗∗(Ω).
This allows to obtain, in Corollary 6.4, that under the same hypotheses, the

weak solution u of problem (1) is in Lm∗∗(Ω).
Finally, in Theorem 6.5, we get the claimed regularity result for u, by approxi-

mation, assuming |E| ∈ L2(Ω) ∩MN
0 (Ω) and making use of Lemma 2.1.

Lemma 6.1. Assume (2), (3), |E| ∈ L2(Ω)∩MN
0 (Ω) and f ∈ L1(Ω)∩L

2N
N+2 (Ω). If

2N
N+2 ≤ m < N

2 , then, for any k ∈ R+, the sequence {Tk(un)} is bounded in Lm∗∗(Ω).
More precisely, there exists a positive constant C = C(N,m, α, S) such that

[ ∫
Ω

|Tk(un)|m∗∗
] 2

2∗

≤ C
(
k

2m∗∗
2∗

∫
Ω

|E|2 + k
2m∗∗

2∗ −1
∫
Ω

|f |
)
.(56)

Proof. Observe that the function |t|2(λ−1)t, with λ > 1, satisfies the hypotheses
of Lemma 3.1, provided that |t| ≤M , for some M > 0. Thus, since by Theorem 4.1

the function un ∈ L∞(Ω), we can take |Tk(un)|2(λ−1)Tk(un)
2λ− 1 , with λ = m∗∗

2∗ , as test
function in the variational formulation of problem (39).
Thus, by (2), (23), (25) and the Young inequality we get

α
∫
Ω

|Tk(un)|2(λ−1)|∇Tk(un)|2

≤
∫
Ω

|Tk(un)|2λ−1|E||∇Tk(un)|+ 1
2λ− 1

∫
Ω

|f ||Tk(un)|2λ−1

≤ α

2

∫
Ω

|Tk(un)|2(λ−1)|∇Tk(un)|2 + 1
2α

∫
Ω

|Tk(un)|2λ|E|2

18



+ 1
2λ− 1

∫
Ω

|f ||Tk(un)|2λ−1.

Hence,
α

2

∫
Ω

|Tk(un)|2(λ−1)|∇Tk(un)|2 ≤ k2λ

2α

∫
Ω

|E|2 + k2λ−1

2λ− 1

∫
Ω

|f |.

Thanks to Sobolev inequality, we obtain

α

2

[ ∫
Ω

|Tk(un)|λ2∗
] 2

2∗

≤ α

2S2

∫
Ω

|∇(|Tk(un)|λ)|2

= αλ2

2S2

∫
Ω

|Tk(un)|2(λ−1)|∇Tk(un)|2.
(57)

Therefore,

α

2

[ ∫
Ω

|Tk(un)|λ2∗
] 2

2∗

≤ λ2

S2

[k2λ

2α

∫
Ω

|E|2 + k2λ−1

2λ− 1

∫
Ω

|f |
]
.

The choice of λ gives then the result.

Lemma 6.2. Assume (2), (3), |E| ∈ L2(Ω) ∩ LN(Ω) and f ∈ L1(Ω) ∩ Lm(Ω). If
2N
N+2 ≤ m < N

2 , then there exists a k̃ ∈ R+, with k̃ = k̃(N, σoN [E]), such that the
sequence {Gk(un)} is bounded in Lm

∗∗(Ω), for every k > k̃. More precisely, there
exists a positive constant C = C(N,m, α, S, σNo [E]) such that[ ∫

Ω

|Gk(un)|m∗∗
] 2

2∗−
1
m′ ≤ C

(
k2 + ‖f‖Lm(Ω)

)
.(58)

Proof. Arguing as in the previous lemma, we observe that |Gk(un)|2(λ−1)Gk(un)
2λ− 1 ,

with λ = m∗∗

2∗ , can be taken as test function in the variational formulation of (39).
Then, following along the lines the proof of Lemma 5.4 in [1], with suitable modifi-
cations, we obtain the desired result.

Theorem 6.3. Assume (2), (3), |E| ∈ L2(Ω) ∩ LN(Ω) and f ∈ L1(Ω) ∩ Lm(Ω). If
2N
N+2 ≤ m<N

2 , then the sequence {un} is bounded in Lm∗∗(Ω). More precisely, there
exists a positive constant C = C(N,m, α, S, σNo [E]) such that

‖un‖m
∗∗

Lm∗∗ (Ω) ≤ C(‖E‖
2

2∗
L2(Ω) + ‖f‖

2
2∗
L1(Ω) + ‖f‖

2∗
2−2∗/m′

Lm(Ω) + 1).(59)
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Proof. The proof easily follows by (20), Lemma 6.1 and Lemma 6.2, once fixed
k > k̃.

Corollary 6.4. Assume (2), (3), |E| ∈ L2(Ω)∩LN(Ω) and f ∈ L1(Ω)∩Lm(Ω). If
2N
N+2 ≤ m<N

2 , then the weak solution u of (1) belongs to W 1,2
0 (Ω) ∩ Lm∗∗(Ω). More

precisely, there exists a positive constant C = C(N,m, α, S, σNo [E]) such that

‖u‖m∗∗Lm∗∗ (Ω) ≤ C(‖E‖
2

2∗
L2(Ω) + ‖f‖

2
2∗
L1(Ω) + ‖f‖

2∗
2−2∗/m′

Lm(Ω) + 1).(60)

Proof. By Theorem 6.3 we know that the sequence {un} is bounded in Lm∗∗(Ω).
Hence, up to a subsequence, un converges weakly to some function v in Lm∗∗(Ω). On
the other hand, in view of Theorems 4.6 and 4.7, up to a subsequence, un converges
weakly to u in L2(Ω), where u is the solution of (53). Thus∫

Ω

unϕ→
∫
Ω

uϕ

and ∫
Ω

unϕ→
∫
Ω

vϕ,

for every ϕ ∈ C∞0 (Ω).
Hence ∫

Ω

(u− v)ϕ = 0,

for every ϕ ∈ C∞0 (Ω). This gives u = v a.e. in Ω. Estimate (60) follows then by
(59).

Theorem 6.5. Assume (2), (3), |E| ∈ L2(Ω) ∩MN
0 (Ω) and f ∈ L1(Ω) ∩ Lm(Ω). If

2N
N+2 ≤ m<N

2 , then the weak solution u of (1) belongs to W 1,2
0 (Ω) ∩ Lm∗∗(Ω). More

precisely, there exists a positive constant C = C(N,m, α, S, σNo [E]) such that

‖u‖m∗∗Lm∗∗ (Ω) ≤ C(‖E‖
2

2∗
L2(Ω) + ‖f‖

2
2∗
L1(Ω) + ‖f‖

2∗
2−2∗/m′

Lm(Ω) + 1).(61)

Proof. Observe that since |E| ∈ L2(Ω) ∩MN
0 (Ω) by Lemma 2.1 we obtain that

there exists a sequence {Eh} with |Eh| ∈ L2(Ω) ∩ LN(Ω), h ∈ N, such that

lim
h→+∞

‖E − Eh‖MN (Ω) → 0,(62)
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‖Eh‖L2(Ω) ≤ ‖E‖L2(Ω), ∀h ∈ N,(63)
σNo [Eh] = σNo [E],∀h ∈ N.(64)

Let, now, uh, h ∈ N, be the solutions of the following problems:
−div(M(x)∇uh) + µuh = −div(uhEh(x)) + f(x) in Ω,

uh ∈ W 1,2
0 (Ω).

(65)

In view of Theorems 4.7 and 6.4 and by (63) and (64) one has

‖uh‖2
W 1,2(Ω) ≤ C ′(‖E‖2

L2(Ω) + ‖f‖L1(Ω) + ‖f‖2L
2N
N+2 (Ω)),(66)

with C ′ = C ′(N,α, µ, S, σNo [E]), and

‖uh‖m
∗∗

Lm∗∗ (Ω) ≤ C ′′(‖E‖
2

2∗
L2(Ω) + ‖f‖

2
2∗
L1(Ω) + ‖f‖

2∗
2−2∗/m′

Lm(Ω) + 1),(67)

with C ′′ = C ′′(N,m, α, S, σNo [E]).
Therefore there exist u′ and u′′ such that, up to subsequences,

uh ⇀ u′ weakly in W 1,2(Ω),
uh ⇀ u′′ weakly in Lm∗∗(Ω).(68)

Hence u′ = u′′ ∈ W 1,2
0 (Ω) ∩ Lm∗∗(Ω).

Furthermore,

‖u′‖m∗∗Lm∗∗ (Ω) ≤ C ′′(‖E‖
2

2∗
L2(Ω) + ‖f‖

2
2∗
L1(Ω) + ‖f‖

2∗
2−2∗/m′

Lm(Ω) + 1).(69)
Now set

ah(w, v) =
∫
Ω

M(x)∇w · ∇v + µ
∫
Ω

wv −
∫
Ω

wEh(x) · ∇v,

a(w, v) =
∫
Ω

M(x)∇w · ∇v + µ
∫
Ω

wv −
∫
Ω

wE(x) · ∇v,

w, v ∈ W 1,2
0 (Ω).

One has
ah(w, v) = a(w, v)−

∫
Ω
w (Eh − E) · ∇v(70)

w, v ∈ W 1,2
0 (Ω).

Then, since u is the solution of problem (1) and uh of (65), by (70) we get
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a(u, v) =
∫

Ω fv dx = ah(uh, v)

= a(uh, v)−
∫

Ω uh (Eh − E) · ∇v.
(71)

Therefore, passing to the limit as h→ +∞, since the first convergence in (68) takes
place in W 1,2

0 (Ω) and taking into account the Hölder inequality, the embedding
results of Lemma 2.2 and the convergence in (62) one gets

a(u, v) = a(u′, v).(72)

Thus u = u′ and therefore u belongs to Lm∗∗(Ω) and satisfies estimate (61).

Now, let us finally prove that if |E| ∈ L2(Ω) ∩ Lr(Ω), r > N , and f ∈ L1(Ω) ∩
Lm(Ω), m > N

2 , then the solution u is bounded.
We follow Stampacchia’s method ([23], see also [1]) that relies on the boundedness

of the function log(1 + |u|).

Theorem 6.6. Assume (2), (3). If |E| ∈ L2(Ω) ∩ Lr(Ω), r > N , and f ∈ L1(Ω) ∩
Lm(Ω), m > N

2 , then the weak solution u of (1) belongs to W 1,2
0 (Ω) ∩ L∞(Ω).

Proof. Let us define the function

G(t) =


0, if |t| ≤ l,
t

1+t −
l

1+l , if t > l,
t

1−t + l
1+l , if t < −l,

with l ∈ R+.
Let u ∈ W 1,2

0 (Ω) be the solution of (1). In view of Lemma 3.1, we can take G(u)
as test function in the variational formulation of (1) obtaining that∫

u>l

M(x)∇u · ∇
( u

1 + u

)
+

∫
u<−l

M(x)∇u · ∇
( u

1− u
)

+ µ
∫
u>l

u
( u

1 + u
− l

1 + l

)
+ µ

∫
u<−l

u
( u

1− u + l

1 + l

)

=
∫
u>l

uE(x) · ∇
( u

1 + u

)
+

∫
u<−l

uE(x) · ∇
( u

1− u
)
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+
∫
u>l

f
( u

1 + u
− l

1 + l

)
+

∫
u<−l

f
( u

1− u + l

1 + l

)
.

Whence, taking into account that the third and fourth integrals on the left-hand side
of the previous equality are non negative, by simple calculation and since |G(u)| ≤ 1,
we get ∫

|u|>l

M(x) |∇u|
2

(1 + |u|)2 ≤
∫
|u|>l

|u|
1 + |u| |E|

|∇u|
1 + |u| +

∫
|u|>l

|f |.

Now, by (2) and Young inequality we have

α

2

∫
|u|>l

|∇u|2

(1 + |u|)2 ≤
1

2α

∫
|u|>l

|E|2 +
∫
|u|>l

|f |,

which implies (with l = ek − 1)

α

2

∫
log(1+|u|)>k

|∇ log(1 + |u|)|2 ≤
∫

log(1+|u|)>k

[ 1
2α |E|

2 + |f |
]
.

Now, set v = log(1+ |u|) and g = |E|2
2α + |f |, the previous inequality can be rewritten

as
α

2

∫
|v|>k

|∇v|2 ≤
∫
|v|>k

|g|.

Since g belongs to Lq(Ω), for some q > N
2 , Sobolev and Hölder inequalities give

‖Gk(v)‖L2∗ (Ω) ≤ C‖g‖
1
2
Lq(Ω)|Ak|

1
2−

1
2q ,(73)

with C = C(α, S) positive constant, and where Gk is defined in (20) and

Ak = {x ∈ Ω : |v(x)| > k}.

By (28) one has

h|Ah|
1

2∗ =
( ∫

Ah

|h|2∗
) 1

2∗ ≤ ‖v‖L2∗ (Ah) ≤ ‖Gk(v)‖L2∗ (Ah) + k|Ah|
1

2∗ .

Thus
(h− k)|Ah|

1
2∗ ≤ ‖Gk(v)‖L2∗ (Ah), ∀h > k.(74)
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For a fixed k0 > 0, combining (73) and (74), we get then

|Ah| ≤ C2∗‖g‖
2∗
2
Lq(Ω)

|Ak|
2∗
2 −

2∗
2q

(h− k)2∗ , ∀h > k ≥ k0.

Finally, since q > N
2 , one gets that 2∗

2 −
2∗
2q > 1, hence Lemma 3.3 applies and

therefore there exists d ∈ R+ such that |Ak0+d| = 0. This gives v ∈ L∞(Ω) and

‖v‖L∞(Ω) ≤ k0 + d,

where
d = 2

2∗(q−1)
2∗(q−1)−2qC‖g‖

1
2
Lq(Ω)|Ak0|

1
2−

1
2q−

1
2∗

and C = C(α, S).
In conclusion, we have proved that there exists a positive constant L such that

‖ log(1 + |u|)‖
L∞(Ω)

≤ L,

and so
‖u‖

L∞(Ω)
≤ eL − 1.

Acknowledgements
The authors warmly thank Lucio Boccardo for the fruitful discussions and sugges-
tions and the referee for the valuable comments.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
The authors conceived and wrote this article in collaboration and with same respon-
sibility. All of them read and approved the final manuscript.

24



References
[1] L. Boccardo: Some developments on Dirichlet problems with discontinuous

coefficients; Boll. Unione Mat. Ital., 2 (2009), 285-297.

[2] L. Boccardo: Finite energy solutions of nonlinear Dirichlet problems with dis-
continuous coefficients; Boll. Unione Mat. Ital., 5 (2012), 357-368.

[3] L. Boccardo: Dirichlet problems with singular convection terms and applica-
tions; J. Diff. Eq., 258 (2015), 2290-2314.

[4] L. Boccardo, G. Croce: Esistenza e regolarità di soluzioni di alcuni problemi
ellittici; Pitagora Ed., 2010.

[5] L. Boccardo, A. Dall’Aglio, L. Orsina: Existence and regularity results for
some elliptic equations with degenerate coercivity, dedicated to Prof. C. Vinti
(Perugia, 1996); Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51-81.

[6] L. Boccardo, J.I. Diaz, D. Giachetti, F. Murat: Existence and regularity of
renormalized solutions for some elliptic problems involving derivatives of non-
linear terms; J. Diff. Eq., 106 (1993), 215-237.

[7] L. Boccardo, T. Gallouët: Nonlinear elliptic and parabolic equations involving
measure data; J. Funct. Anal., 87 (1989), 149-169.

[8] L. Boccardo, T. Gallouët: Nonlinear elliptic equations with right hand side
measures; Comm. Partial Differential Equations, 17 (1992), 641-655.

[9] L. Boccardo, T. Gallouët, F. Murat: Unicité de la solution pour des equations
elliptiques non linéaires; C. R. Acad. Sc. Paris, 315 (1992), 1159-1164.

[10] L. Boccardo, D. Giachetti: Existence results via regularity for some nonlinear
elliptic problems; Comm. Partial Differential Equations, 14 (1989), 663-680.

[11] L. Boccardo, L. Orsina, A. Porretta: Some noncoercive parabolic equations
with lower order terms in divergence form. Dedicated to Philippe Bénilan; J.
Evol. Equ., 3 (2003), 407-418.

[12] G. Bottaro, M.E. Marina: Problema di Dirichlet per equazioni ellittiche di tipo
variazionale su insiemi non limitati; Boll. Un. Mat. Ital., 4 (1973), 46-56.

25



[13] L. Caso, R. D’Ambrosio, S. Monsurrò: Some remarks on spaces of Morrey type;
Abstr. Appl. Anal. vol. 2010 (2010), 22 pages.

[14] C. Miranda: Alcune osservazioni sulla maggiorazione in Lν delle soluzioni deboli
delle equazioni ellittiche del secondo ordine; Ann. Mat. Pura Appl., 61 (1963),
151-169.

[15] S. Monsurrò, M. Salvato, M. Transirico: W 2,2-a priori bounds for a class of
elliptic operators; Int. J. Differ. Equ., vol. 2011 (2011), 17 pages.

[16] S. Monsurrò, M.Transirico: A Lp−estimate for weak solutions of elliptic equa-
tions; Abstr. Appl. Anal., vol. 2012 (2012), 15 pages.

[17] S. Monsurrò, M.Transirico: Dirichlet problem for divergence form elliptic equa-
tions with discontinuous coefficients; Bound. Value Probl., vol. 2012 (2012),
20 pages.

[18] S. Monsurrò, M.Transirico: A priori bounds in Lp for solutions of elliptic equa-
tions in divergence form; Bull. Sci. Math., 137 (2013), 851-866.

[19] S. Monsurrò, M.Transirico: A W 2,p-estimate for a class of elliptic operators; Int.
J. Pure Appl. Math., 83 (2013), 489-499.

[20] S. Monsurrò, M.Transirico: A weighted W 2,p-bound for a class of elliptic oper-
ators; J. Inequal. Appl., 263 (2013), 11 pages.

[21] G. Moscariello: Existence and uniqueness for elliptic equations with lower-order
terms; Adv. Calc. Var. 4 (2011), 421-444.

[22] D. Pascali, S. Sburlan: Nonlinear mappings of monotone type; Martinus Nijhoff
Publishers, The Hague, Sijthoff and Noordhoff International Publishers, Alphen
aan den Rijn, 1978.

[23] G. Stampacchia: Le probléme de Dirichlet pour les équations elliptiques du
second ordre à coefficients discontinus; Ann. Inst. Fourier (Grenoble), 15
(1965), 189-258.

[24] G. Stampacchia: Equations elliptiques du second ordre à coefficients disconti-
nus; Séminaire de mathématiques supérieures, Université de Montréal, 4e ses-
sion, été 1965, Les presses de l’Université de Montréal (1966).

26



[25] M. Transirico, M. Troisi: Equazioni ellittiche del secondo ordine a coeffi-
cienti discontinui e di tipo variazionale in aperti non limitati; Boll. Un. Mat.
Ital., 7 (1988), 385-398.

[26] M. Transirico, M. Troisi: Equazioni ellittiche del secondo ordine di tipo non
variazionale in aperti non limitati; Ann. Mat. Pura Appl., 4 (1988), 209-226.

[27] G. Zecca: Existence and uniqueness for nonlinear elliptic equations with lower-
order terms; Nonlinear Anal., 75 (2012), 899-912.

27


