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1 INTRODUCTION
Let © be an open subset of RY, N > 2. We consider the Dirichlet problem

—div(M (2)Vu) + pu = —div(u E(x)) + f(z) in Q,

(1)
u € Wy (),

where M : Q@ — RM is a measurable matrix field such that there exist a, 8 € R,
such that

(2) alfP < M(2)¢-¢ |M(x)| <8, aereQ, VEeRY,

(3) >0,

E : Q — RY is a vector field and f :  — R is a real function.

Guido Stampacchia proved that if Q is bounded, |E| € LY (Q), f € L~ (2) and
if 11 is large enough, problem (1) admits a unique weak solution w.
Moreover, he also proved that
-if |[E] € LN(Q) and f € L™(Q), 225 < m<Z, then the solution u of (1) is in
L™ (Q), with

() = )y =

N —2m’
m* being the Sobolev conjugate of m;
-if |[E| € LN(Q) and f € L™(2), m > ¥, then the solution u of (1) is in L>(£2).

Successively, Lucio Boccardo, in [1], studied the case p = 0, obtaining the same
results. We point out that the main difficulty here relies on the noncoercitivity of
the operator —div(M (x)Vu) + div(u E(z)) due to the presence of the second term
on which no smallness assumptions are done.

In this paper we generalize these existence, uniqueness and regularity results
to the case when €2 is unbounded. We explicitly observe that, since the domain
is unbounded, we need to assume hypothesis (3). Nevertheless, we still have the
noncoercitivity of the operator since we do not require that pu is large enough.
More precisely, we prove the unique solvability of problem (1) under the assumptions

(5) E| € LA(9) N MY ()
and
(6) e LN(Q) N LY (Q),



where MY (Q) is a functional space strictly containing LY (), described in Section

2.

Furthermore, we also generalize to the case of unbounded domains the regularity

results proving that

-if |[E] € L*(Q) N MJ'(2) and f € L'(Q) N L™(Q), 25 < m<Z, then the solution

u of (1) is in L™ (Q), with m** given by (4);

-if [E| € LA Q)N L7 (), r > N, and f € L*(Q) N L™(), m > I, then the solution

wof (1) is in L*>(9Q).

The techniques used to achieve these results issue from an idea of [1], inspired by

the papers of Guido Stampacchia [23, 24|, and by [7, 8, 10], where certain nonlinear

problems are treated. In [1] the author approximates the noncoercive problem by

coercive nonlinear problems and then passes to the limit. Here, due to the assump-

tion (5) on the coefficient appearing in the noncoercive term, one can pass to the

limit thanks to a compactness result in M () proved in [26] (see also Lemma 2.2).
For similar problems on bounded domains we refer the reader also to [2, 3,

5, 6, 11, 21, 27]. Linear coercive problems on unbounded domains are studied in
[15, 16, 17, 18, 19, 20].

2 THE SPACES MP?(Q2) AND M{(Q)

From now on, let  be an unbounded subset of RY, N > 2. We start recalling the
definitions and some properties of a class of spaces that were introduced for the first
time in [25].

Let us give some notation. The g-algebra of all Lebesgue measurable subsets
of 2 is denoted by (). Given O € X(Q), |O] is its Lebesgue measure, xo is its
characteristic function, and O(x,r) is the intersection ONB(z,r) (x € RY, r € R,),
where B(z, ) is the open ball with center in z and radius r. The class of restrictions

to € of functions ¢ € C5°(R") is denoted by D(€). For p € [1,4o00[, L,.(Q) is the
class of all functions g :  — R such that (g € LP(Q) for any ¢ € D(Q).
For p € [1, +o0], the space MP(f2) is the set of all the functions g in L} () such

that
(7) ||g||M?’(Q) = Sug ||9||Lp(ﬂ(a:,1)) < 400,
TE

endowed with the norm defined in (7). Moreover M{(€2) denotes the subspace of
MP(§2) made up of functions g € MP(Q2) such that

lim ||g||LP(Q(x71)) =0.

T—+00



We point out that

®) 17(0) € MY(9),
the inclusion being strict. Indeed, as shown in [26], the function
1
1_|_ ’SL’|O‘ S Mg(Q)avp >land Vo & RJF’

while for p > 1 and 0 < o < N/p

1

T £ P

Furthermore (see [26] for details) one has
9) MYQ) C MP(Q), MJQ) M) ifl<p<g<+oo.

As already observed in [26], if ¢ € MP(Q2) the following three properties are
equivalent:
i) g € M),
i1) for any € € R there exist v.,0. € R, such that

(10) 0 € 2(Q), [0(0,0.)] < v. = [lgxollame < <.

iii) for any € € R there exist h., k. € R, such that

(DI = Gne) gllarey <&, O € XY, sup|O(z, 1)] < ke = [l Xo llarr(e) < &,

where, for h € R, (}, is a function of class C5°(R™) such that

(12) 0<¢G <1, Ch| =1, supp ¢, C B(O,Qh)

B(0,h)
If g belongs to M{(£2), a modulus of continuity of g in MJ(£2) is an application
ollg] : R, — R, such that

h—4o00

(18)1(0=G)allaren + 5w L9 o [umie) < o lg](h). with lim_of[g]() =0.
S

sup |O(z,1)|<

1
h
zEN

Let us remind some results proved in Lemma 3.1 of [26], see also [13], adapted
here to our needs, that allow us to approximate functions in M§ () by means of
sequences of functions in L'(Q) N LP(Q).



LEMMA 2.1. If g € ME(Q), with p > 1, then there exists a sequence gy, with
gn € LM(Q)NLP(Q), h €N, such that

(14) gn — g in MP(Q),
(15) lgn(2)| < lg(z)], a.e. inQ,VheN,
(16) ollgn] = ollg],Vh € N.

For the reader’s convenience, in next lemma we recall some results of [25] con-
cerning the multiplication operator

(17) uwe Wy?(Q) — gu e LA(Q),
where the function g belongs to MY ().

LEMMA 2.2. If g € MY(Q), then the operator in (17) is bounded and there exists a
positive constant ¢ such that

(18) lg ullz2) < cllgllum o lullwiz@)  Vue Wy?(Q),

with ¢ = ¢ (N).
Moreover, if g € MY (), then the operator in (17) is also compact.

3 PRELIMINARY RESULTS

Let k € R,. Recall Stampacchia’s definition of truncate:

|t <k,
(19) I(t) = {kﬁ if [t| > k,
and let
(20) Gi(t) =t — Ti(1).
Given u € Wy*(Q), we put
(21) Ay ={x € Q : |u(x)| > k}.

Let us recall a known result proved in [24] and generalized to the case of un-
bounded domains in [12].



LEMMA 3.1. Let G be a uniformly Lipschitz function such that G(0) = 0 and
we Wy(Q). Then Gou e W,2(Q).

The next lemma collects some useful properties of the composition of 7T} with
Gy, and u € W,?(Q), needed in the sequel.

LEMMA 3.2. For every u € Wy(Q) and k € R one has

(22) Ti(u) = Ty o u € Wy*(Q),
(23) Vu - VTi(u) = |[VTi(u)?, a.e. in Q,
(24) u Typ(u) > |Th(w)|?, a.e. in Q,
(25) u VT (u) = T (u) VI (u), a.e. in €,
(26) Gr(u) = Grou € Wy (Q),

(27) |Gr(uw)| < |ul, a.e. in $Q,

(28) lu| < |Gr(u)| + k, a.e. in Q,
(29) Vu - VGi(u) = |VGLW)|)?, a.e. in Q,
(30) u Gp(u) > |Gru)]?, a.e. in Q,
(31) supp Gi(u) C Ay,

(32) (Gr())a: = { gzz a.g.'e%nlgfzk, i=1...n.

PROOF. The staments in (22) and (26) can be obtained by Lemma 3.1, the other
properties are straightforward consequence of the definitions of Tj, Gy and Aj.
O

Let us now recall Lemma 4.1 of [24] by Stampacchia.

LEMMA 3.3. Let kg > 0 and ¢ : [ko, +00[— R be a non negative and non increasing
function such that

(33) ¢“>§mflwW%W Vh> k> k,

where C', v and § are positive constants, with 0 > 1. Then there exists
(34) d =250 [p(ko)] 5

such that

(35) (ko +d) = 0.

6



Lemma 3.3 allows us to prove the next result obtained following some techniques
used in [14, 23].

LEMMA 3.4. Assume (2), (3), |F| € L*(Q) and f € L%(Q) Then there exists a
unique solution u of the problem

—div(M(x)Vu) + pu = —div(F(z)) + f(x) in §,
(36)
ue Wy(Q).

If in addition |F| € LP(Q) and f € L%(Q), p > N, then the solution u is of class
L>(Q).

Proor. The Lax-Milgram Lemma gives the existence and uniqueness of the solu-
tion.

Let us prove the boundedness. Take Gy (u) as test function in the variational
formulation of (36) (this is allowed by (26)). Then by (2), (21), (29), (30), (31),
Holder and Sobolev inequalities one gets

o [IVG I +p [ 1Gw)P < [ 1FIVGw)] + [ 1711Gu(w)]
Q Q

< (IF oo A6l + A1 g A1V Gl
Whence . o
1G] 2+ @) < CUART7 + A7),
with C' = C(a, S, [|F||tr ), HfHL%(Q)) and where S is the Sobolev constant as in
Theorem 3.17 of [4].

Now, observe that since |Ay| — 0, as k — +o0o, we can assume that there

exists kg € R,y such that |Agx| < 1, for & > kg. Moreover, since p > N, then

1_ 1 _ 1 _ 2
2 " > <1-5 p,therefore

(37) |Gr (W) 2 @) < C/|Ak|%_%,W€ > ko,
with ¢’ = C'(a, S, || F|| 1r(02) HfHLg(Q))-

On the other hand, by (21) and (28)

h| Ay

1 “\ 5% N
& _ (/A Ik )2 < Nl ayy < NGl 4, + FI AR
h

7



Thus .
(38) (h = B)[Ap]7 < ||Ge(u)ll e (ayy,  Vh > k.

Putting together (37) and (38), we obtain

2727
Ak| p

|Ah‘ SC”| Vh>k2k0,

with O = C"(a, . | Fll o, 113
Finally, again as a consequence of the fact that N < p, one gets that % — 2;* > 1,

hence Lemma 3.3 applies and therefore there exists d € R, such that |Ag,.q| = 0,
thus v € L>(Q). o

4 EXISTENCE RESULT

Here, we want to prove the existence of a weak solution of (1). Following an idea of
[1], that issues from the papers of Guido Stampacchia and from [7, 8, 10], we use a
nonlinear approach to our linear problem.

Indeed, we consider the following nonlinear approximate problems

1 1 ) + 1 )
L+ Sfua 1T+ 2 [E@)]/) 1+ J|f

—div(M (x)Vuy,) + pa, = —div(
u, € Wy?(Q).

(39)

We start proving that, for every fixed n, a bounded weak solution w,, of (39) exists.
This is done in Theorem 4.1 for n = 1 and it can be analogously proved for n > 2.
Successively, in Theorem 4.6, we show that the sequence u, of the solutions of
problems (39) is bounded in Wy*(Q). To this aim, some preliminary results are
needed. Namely, in Lemma 4.2, we obtain that for any & € R, the sequence T} (u,,)
is bounded in VVO1 2(Q) and successively, in Lemma 4.5, we get that the sequence
Gr(uy) is bounded in W, *(Q) too, for sufficiently large k. Thus, fixed k sufficiently
large, in view (20), we get the boundedness of u, in W,?(Q). Finally, in Theorem
4.7, by approximation, we get the existence result of a weak solution of problem (1).

THEOREM 4.1. Assume (2), (3), |E| € L*(Q)N MY (Q) and f € LY(Q). Then there
exists a weak solution u of class L>(§2) of the following problem

u E(x) f
1+mypHE@ﬂ>+1+vv

—div(M (2)Vu) + pu = —div(
u € Wy?(Q).

(40)



PROOF. Let w € Wy?(Q). By Lemma 3.4 there exists a unique and bounded
solution u of the following problem

—div(M(z)Vu) 4 pu = —div< w E(z) )|) n /

(41) 1+ |w| 1+ |E( L+|fI
fu € Wy2(Q).

Consider then the operator
(42) P:we W,?(Q) = u=Pwe W,*(Q).

In order to prove our claim it is enough to show that P has a fixed point. To do
that we make use of the Schauder fixed point Theorem (in its formulation given, for
instance, in Theorem 1.11 of [4]).

Let us therefore show that the following two hypotheses are satisfied:

1. P admits a bounded and closed invariant convex set.
2. P is completely continuous.

1. Take u as test function in the variational formulation of (41). We have

E) Vu+/ fu

M . / 2 _ .
[ M@ V-Vt [ T+ 0| 1+]E@)
Q Q Q

Hence, by (2), (3) and by the Holder and Sobolev inequalities we obtain that there
exist two positive constants Cy = Cy(a, p) and C' = C(a, i, || E|| 2 () » ,9)

such that

f
H 1+ f] HL%(Q)

f

U < Col||E Vu +
[ul[f1.2(0) < ColllEll 20| V]| 20 H1+|f|

I 225 g 1l @) < Cllullw 2.
Therefore, if we consider the closed ball ||w||y12(q) < C, we obtain that ||Pw||w1.2@q) =
|ullw.2() < C. This concludes the proof of the first point.

2. Let w, — w weakly in Wy*(Q), we must show that Pw, — Pw in Wy*(Q).

Let w, = Pw, and « = Pw. Take u, — u as test function in the variational
formulations of (41) written in correspondence of w = w, and w = w, respectively.
We get

/M(:B)Vun-V(un—ﬁ)+/ iy, (up—1) = 1+w‘7;j o +E’<g()x)‘ -V (up—1u +/ fluj‘—ﬂu)
Q Q @ '




and

E() fun_u
1+\w\1+]E( e

/M(z)Vﬂ-V(un—ﬂ)+/ pt (U, —u)
Q
Subtracting the second equality from the first one we obtain

wy, w E(x) _
!M@)[V n ) +/“ /(1—|—|wn| el T EE) v

Hence, by (2), (3) and by the Holder inequality there exists a positive constant
C = C(a, p) such that

—12 W, w 1
L R [Con it w2l PO A C
whence _
Wy, w
n u ’ < o E )
[t — tllwr20) < H(l +wn| 14 |w|>’ | L2(9)

Now, by the compactness of the operator u € Wy2(Q2) — |E|lu € L*(), stated in
Lemma 2.2, since w, — w weakly in Wy*(Q), we obtain |E|w, — |E|w in L*(Q),
and therefore, up to a subsequence, w,, converges to w a.e. in {2. Thus the Lebesgue
dominated convergence Theorem applies and we get that

— 0.
L*(Q)

w
I+ I

1+ |w | 1+ |w]
This concludes our proof. 0

The estimates contained in the following Lemmas 4.2, 4.3 and 4.5 allow us to
prove the a priori bounds on {u,} of Theorem 4.6.

LEMMA 4.2. Assume (2), (3), |E| € L*(Q) N MY(Q) and f € LY(Q) N LY+ ().
Then, for any k € Ry, the sequence {Ty(uy)} is bounded in Wy*(Q). More precisely
we have:

a k?
(43) 2 / VT + / T < 5 / B+ k / 71

10



PROOF. Let us take Ty (u,) as test function in the variational formulation of (39),
this can be done in view of (22). We have

/ M(2) Vi - VTi(un) + i / wnTi (1)

_! 1|U,n|1+1|E( )| VTk< n)+§l/1+i|f|Tk( n)

In view of (2), (23), (24), (25) and by Young inequality we get

o [ IVTu(un) P+ 1 [ [Tiua)?
Q Q

< /\Tk(un)\ |E| |VT(u)| +/yf| T ()|
@ 0
- 3‘/ VIul” + 21(1/ [T (un) [ | B + / 1 Te(uwn)].

Therefore (43) follows.

LEMMA 4.3. Assume (2), (3), |E| € L*(Q) N MY (Q) and f € LY(Q) N L¥+2(Q).
Then the solutions u, of (39) satisfy

(14) [l < 151
Q Q

ProOOF. Let ¢ > 0 and take

) as test function in (39). We have
Unp,

M (z)Vu, - Vu, |, |2 E(x) Vu, fn tn,
(e + |unl) J 5+|un] 1+ |un|1+ |E(x)] (¢ + |unl) J € + |y

Since 2L < 1 we have, using (2) and the fact that |f,| < |f],

et|un|
|Vu,|? |0,,]? E -Vu,
as [ | </ /\fl
) (e + |unl) ) €+ |uy| €+ |uy|

11




Now, observe that Young inequality gives

ac [V, | |t |? 2
[Tl <5
2 Gt H) el S2a ) FEE

which concludes the proof letting ¢ — 0. o

REMARK 4.4. Remark that thanks to the estimate (44), one has
1
(45) meas{x €0 Jun() > k:} < ku/|f|.
Q

Thus, for any € > 0, it is possible to choose k. such that

(46) meas{x € Q: juy(z)| > k} <e Vk>k,VneN.

LEMMA 4.5. Assume (2), (3), |E| € L*(Q) N MY (Q) and f € LY(Q) N L¥+2(Q).
Then there exists k* € R, with k* = k*(N,ol¥[E]), such that the sequence {Gy(u,)}
s bounded in WOI’Q(Q), for every k > k*. More precisely we have:

an 5 196 + /|Gkun|2<—/|E|2 52[/|f|N+Q}NN

where S is the Sobolev constant as in Theorem 3.17 of [4].
ProOOF. Let k € Ry and n € N, define
Ap(k) ={z € Q: k < |u,(x)|}.

The use of Gi(u,) as test function in the variational formulation of (39) (that can
be done in view of (26)), (2), (28), (29) and (30) give that

a [ |VGi(un)® + p [ |Gr(un)]?
Q Q

(48)
< [ G ) |EIVGi(u,)] + & [ IEIVGiw,)| + [ [Gulw,)IIfI

12



By (31), Holder inequality and (18) of Lemma 2.2, we get that

LG BITGrn)] < ( a0 |BPIGH @) ( [ 19Gu(u) )
(19)

NI

< Bl (sl Gulun) o £ 9Grw) )

Therefore, by (48), (49) and Young inequality one has that, for e > 0,

a [ |VGi(un)® + p [ |Gr(un)l?
Q Q

< C“EHMN(An(k))<S{ VG (un)|? +S{ |Gk(un)|2> + ES{ VG (un)* + iiAf(k) |E?

L [ me] .

+6/|VGk un |2

Thus it results
= el Elarwauiey = 2¢| [19Gu(un)? + 1 = €l Bl .| [1Gu(n)

N+42
2 2N 7N
<& 1 EP+ gk | L1757

_1
4eS2
An (k)

Fix € so that 2¢ = ¢. Then (10) and (46) imply that there exists £* € R, such that
(50) N Ellar a, ) < mm{i‘ g} vk > k.

Let us explicitly observe that, in view of (10), (11) and by the definition (13) of
oN[E], one has k* = k*(N,ol¥[E]). This concludes our proof. 0

THEOREM 4.6. Assume (2), (3), |E| € L*(Q) N MY (Q) and f € L} (Q) N L%+ (Q).
Then the sequence {u,} of the solutions of problems (39) is bounded in Wy*(€).
More precisely, there exists a positive constant C' = C(N,a, p, S, 0N [E]) such that

(51) [l < CUENL @ + 11l + Hf|!2N7N(Q))-

13



PROOF. Let k* be given by Lemma 4.5. Definition (20) together with the estimates

(43) and (47) imply that for any k& > k* there exists a positive constant C' =
C' (e, p, S) such that

N2
(52) /qun|2+/|un!2 <C'(k? /]E|2+k; /]fH_ [/mﬁﬁg] " ).
Q Q Q Q Q
This gives (51). o
Finally, let us prove the existence result.

THEOREM 4.7. Assume (2), (3), |E| € L*(Q) N MY (Q) and f € L'(Q) N L¥+2(Q).
Then there exists u € Wy*(Q) weak solution of (1), that is

(53) /M(x)Vu-Vv+u/uv:/uE(m)-Vv+/fU, Vv e Wy?(Q).
QO 0 QO

Moreover, there exists a positive constant C' = C(N,a, i, S, 0N [E]) such that

(54) lulliiz@) < CUENL @) + 1@ +HfH2N7N o)

PROOF. The sequence {u,} is bounded in Wy*(Q) by Theorem 4.6. Then, up to
a subsequence, u,, converges weakly in Wol 2(Q) to a function w.
Since u, is a solution of (39), one has that

/M(x)Vun-Vv+u/unv
Q Q

(55) Bls)
/1+1\un|1—|—1|E( Vv +/1+1|f|

for every v € Wy *(Q). Let us to pass to the limit, as n — +oo, in (55).
Clearly

/M VWi, - VU—)/M \Wau - Vo

u/unv—>,u/uv

14
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Moreover

]_—f—frllmv — fU a.e. in
and F
1

Thus, by the Lebesgue dominated convergence Theorem one has

/5 +f;|fr“ﬁ)/f”‘

It remains to pass to the limit in

U, E(z)
- V.
! 14 Lu,| 1+ 2|E(2)]

Since wu,, converges weakly to u in W,?(Q), by Lemma 2.2 we obtain that |E|u,
converges strongly to | E|u in L*(Q2). Hence, by the Vitali Theorem (see, for instance,
[22]) one has that for any € > 0 there exists 2. C Q with |Q.| < 400 such that

/ lu,|?| E|* < e, uniformly with respect to n,
O\Q.
and there exists § > 0 such that for every A C Q with |A| < J, one has

/ |u,|*|E|* < e, uniformly with respect to n.
A

Now,

ol _VEOE 1
< u,|“|E|* < e,
foo T+ Hal? 0+ HE@DE = S, E

f _B@E
< u,|“|E|* < e,
IR e it v A

uniformly with respect to n and moreover, since u,, converges a.e. to u, one gets

and

Un |E(2)|

— ulE| a.e. in 9.
T+ a1+ L@ P

15



Thus, using again the Vitali Theorem, in the reverse sense, we obtain that

W Bl in L*(9).
5 1 14 LBy Bl L)

Passing to the limit, as n — 400, in (55) we obtain (53).
Estimate (54) follows then by (51). o

5 UNIQUENESS RESULT

In this section we prove the uniqueness of the solution of problem (1). To achieve
this result we follow some ideas of [1, 9].

THEOREM 5.1. Assume (2), (3), |E| € L*(Q) N MY (Q) and f € LY(Q) N L7+ ().
Then the weak solution u of (1) is unique.

PROOF. Let u, w be weak solutions of (1) and let 6 € Ry and € €]0,[. We use
T.(u — w) as test function in the variational formulation of problem (1), written in
correspondence of the solutions u and w respectively. This can be done in view of
(22). By subtracting we obtain

/M(x)V(u —w)VT(u—w)+ p /(u —w)T(u—w)

—/ u—w)E(x)VT(u—w).
By (2), (23), (24) and (25) we have

o [INT(u-w)P 4 [ITw-w)P<e [ |E@IVT(u-w)
Q Q 0<|u(x)—w(z)|<e

and the Holder inequality gives then

min{a, M}(/]VT U — w ’2+/\T U — W >’2)

<e(J |E<x>|2) (/|VTu— ).

0<|u(z)—w(x)|<e

16



Therefore

minfo, 1 })*( [IVLG@—w)P + [ITw-w)P) <& [ |BR

0<|u(z)—w(z)|<e

Then

62

(min{a, 1) 2 BT

0<|u(z)—w(z)|<e

[ M-l < [ITw-w)?<
o< |u(z)—w(z)| Q
Thus

62

(min{av, p1})?

0<|u(z)—w(x)|<e

e meas({6 < |u(z) —w(x)|}) < |E|?.

Since

N0 < Jux) — w(z)] < e} = {0 < Ju(z) — w(x)| < 0} =0,

e>0

the continuity of the measure with respect to intersection then implies that
meas({0 < |u(x) —w(x)| <€}) — 0, ase — 0.

Then
|E|* — 0,
0<|u(z)—w(z)|<e
and so meas{d < |u(z) — w(x)|} = 0 for any § > 0, that is u(z) = w(x) almost
everywhere. 0

6 REGULARITY RESULTS

This section is devoted to the proof of two regularity results for the weak solution
u € Wy?(Q) of problem (1).

More precisely, in Theorem 6.5 we show that if f € LY(Q)N L™(Q), with 2% <
m<%, then uw € L™ (Q), where m™* is given by (4).

In Theorem 6.6, we prove that if we require stronger assumptions on £ and f,
namely if [E| € L*(Q) N L"(Q), r > N, and f € L'(Q) N L™(Q), m > &, then
u € L>(Q).

17



To show Theorem 6.5, as done to obtain the existence of the weak solution
of problem (1), some preliminary results for the sequences Ty (u,) and Gg(u,) are
needed.

Namely, in Lemma 6.1, we obtain that if (2) and (3) hold, |E| € L?(2) N M ()
and f € L'(Q) N L%(Q) then for any k£ € Ry, the sequence Ty (u,) is bounded
in L™ (), for every Nfz <m < % An analogous result for the Gj(u,), with
|E| € L*(Q) N M{¥(2), cannot be obtained. Hence, in Lemma 6.2, we prove that
the sequence Gy(u,) is bounded in L™ (Q), for sufficiently large k, but under the
stronger assumption |E| € L*(Q) N LY () and if f € L*(Q) N L™(Q), with ]\2,1[2 <
m < & Thus, if |E| € L*(Q)NLY(Q) and f € L(Q)NL™(Q), with ]3172 <m<¥
fixed k: sufficiently large, in view of (20), we get the boundedness of u, in L™ (Q)

This allows to obtain, in Corollary 6.4, that under the same hypotheses, the
weak solution u of problem (1) is in L™ ().

Finally, in Theorem 6.5, we get the claimed regularity result for u, by approxi-

mation, assuming |E| € L?(2) N MY (Q) and making use of Lemma 2.1.

LEMMA 6.1. Assume (2), (3), |E| € L2(Q) N MY (Q) and f € LY(Q) N LV (Q). If
]\27172 <m < &, then, for any k € Ry, the sequence {T),(u,)} is bounded in L™ (£2).
More preczsely, there exists a positive constant C = C'(N,m,«, S) such that

)m**];sc k [151).

PROOF. Observe that the function [¢[**~Y¢, with A > 1, satisfies the hypotheses

of Lemma 3.1, provided that [t| < M, for some M > 0. Thus, since by Theorem 4.1

T, 2()\—1)T sk
22 —1 2

function in the variational formulation of problem (39).

Thus, by (2), (23), (25) and the Young inequality we get

_|_

(56) {

the function u, € L*(f2), we can take , as test

/m DIV T ()

</mmu”HHWﬂm» ﬂﬂmuﬂ”l
(0

sg/mwm“”wm%W+%/mmmwm2
Q Q

18



1 22—1
o / 1T )P

Hence,
k2)\ 1
f/|Tkun|“WTkun|2 /| 2+ /If\
Thanks to Sobolev inequality, we obtain
2
o a2 | 2F 2
. 3|/ < g [I9 0TGP
a)’® 2 A—1)
= 5o | D) PO VT ()
Q
Therefore,
2
L] /\2 k2)\ k‘2’\ 1
[/|Tkunyk2} < Gl [197+ 5= [ V1)
Q
The choice of A\ gives then the result. 0

LEMMA 62 Assume (2), (3), |[E| € L*(Q) N LN(Q) and f € Ll(Q) NnL™Q). If

]\2[12 <m , then there exists a k € Ry, with k = k(N,o,N[E]), such that the

sequence {Gk(un)} is bounded in L™ (Q), for every k > k. More precisely, there
exists a positive constant C = C(N,m,«, S, N[E]) such that

1

(58) |/ |Gk<un>|m**]22*_”“ < (R + | fllime).

|Ge(n) PV G ()
- 20— 1 ’
with A = %, can be taken as test function in the variational formulation of (39).
Then, following along the lines the proof of Lemma 5.4 in [1], with suitable modifi-
cations, we obtain the desired result. 0

PrROOF. Arguing as in the previous lemma, we observe that

THEOREM 6.3. Assume (2), (3), |E| € L*(Q) N LY (Q) and f € L*(Q) N L™(Q). If

]\2[12 < m<%, then the sequence {u,} is bounded in L™ (Q). More precisely, there

exists a positive constant C = C(N,m,«, S,oN[E]) such that

2 2*/m )

(59) CUEN 20

@ =
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PROOF. The proof easily follows by (20), Lemma 6.1 and Lemma 6.2, once fixed
k> k. O

COROLLARY 6.4. Assume (2), (3), |E| € L2(QQ)NLN(Q) and f € L*(Q)NL™(Q). If
]\2712 < m<%, then the weak solution u of (1) belongs to Wy (Q) N L™ (). More

precisely, there exists a positive constant C = C(N,m,«, S,oN[E]) such that

o

2 2
P2y T2 g +||f||,§n?(é'" 1).

PROOF. By Theorem 6.3 we know that the sequence {u,} is bounded in L™ ().
Hence, up to a subsequence, u, converges weakly to some function v in L™ (2). On
the other hand, in view of Theorems 4.6 and 4.7, up to a subsequence, u,, converges
weakly to u in L*(Q), where u is the solution of (53). Thus

/ungp—>/ugp
Q

Q

/Un@—>/7)907
Q

Q

/(u—v)wz

for every ¢ € C§°(Q2). This gives u = v a.e. in Q. Estimate (60) follows then by
(59). 0

(60) m*i*(m <C(|E

and

for every ¢ € C§°(Q).
Hence

THEOREM 6.5. Assume (2), (3), |E| € L*(Q) N MY (Q) and f € LY(Q)NL™(Q). If

]\2[% < m<%, then the weak solution u of (1) belongs to Wy (Q) N L™ (Q). More

precisely, there exists a positive constant C = C(N,m,«, S,0N[E]) such that

o

2 2
2@ A ||f||im2(ém 1).

PROOF. Observe that since |E| € L*(Q) N MéV(Q) by Lemma 2.1 we obtain that
there exists a sequence {Ej,} with |E,| € L*(Q) N LY (), h € N, such that

(61)

e < C(IE

(62) hgffoo |E — Epllpn @) — 0,
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(63) ||Eh||L2(Q) < ||E||L2(Q Vhe N,

(64) oN[E,] = oN[E],Vh € N.
Let, now, uy, h € N, be the solutions of the following problems:
—div(M (z)Vup) + puy, = —div(uy, Ep(x)) + f(z) in Q,
(65)
up € WOL2(Q>

In view of Theorems 4.7 and 6.4 and by (63) and (64) one has
28
(66) lunllivrz@) < C'(IENZ20) + I e + IFIPL (),

with C" = C'(N, a, i, S, oN[E]), and

*x l* * I/
(67) Iy < C([E]| B2y + ||f||L1 + ||f||2m2 7 +1),

with C” = C"(N,m,a, S, oN[E]).
Therefore there exist u’ and u” such that, up to subsequences,

up, — ' weakly in Wh2(Q),

(68) up, — u” weakly in L™ (Q).

Hence v’ = u” € W,*(Q) N L™ ().

Furthermore,
(69) =) < CIEN @) + 11170y + 17l i 2*”” +1).
Now set

ap(w,v) = /M(x)Vw-Ver,u/wv—/wEh(x)-Vv,

a(w,v):/M(x)Vw-Vv—i—,u/wv—/wE(x)-Vv,

w,v € Wy2(Q).
One has
(70) ap(w,v) = a(w,v) — /Qw (Ep,—E)-Vvu

w,v € Wy*(Q).
Then, since u is the solution of problem (1) and wy, of (65), by (70) we get
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a(u,v) = [o fv de = ap(up,v)
(71)
= a(up,v) — Jqun (Ep — E) - V.
Therefore, passing to the limit as h — 400, since the first convergence in (68) takes
place in Wol 2(Q) and taking into account the Holder inequality, the embedding
results of Lemma 2.2 and the convergence in (62) one gets

(72) a(u,v) = a(u',v).

Thus v = «' and therefore u belongs to L™ () and satisfies estimate (61).

Now, let us finally prove that if |E| € L*(Q) N L"(Q), r > N, and f € L'(Q) N
L™(Q), m > &, then the solution u is bounded.

We follow Stampacchia’s method ([23], see also [1]) that relies on the boundedness
of the function log(1 + |ul).

THEOREM 6.6. Assume (2), (3). If |E| € L*(Q)NL"(Q), r > N, and f € L*(Q) N
L™Q), m > &, then the weak solution u of (1) belongs to Wy (Q) N L®(Q).

PROOF. Let us define the function

0, if |t| <1
G(t) = { T~ 1-le itt>1,

b, ift< -l

with [ € R,.
Let u € Wy () be the solution of (1). In view of Lemma 3.1, we can take G/(u)
as test function in the variational formulation of (1) obtaining that

/M(:v)Vu-V(lj_u)%- / M(z)Vu - v<1—u)

u>1 u<—l
l U {
“‘/ 1+u 1+l)+“u</_l“(1—u+1+l)
_/uE . 1iu)+ / wB(z) .v(lﬁu)
u>l u<—l
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+/f(1—1:u 1+l /fl—u lj—l)

u>l u<—l

Whence, taking into account that the third and fourth integrals on the left-hand side
of the previous equality are non negative, by simple calculation and since |G (u)| < 1,

we get
[Vul® |ul IWI
M(z +/
||/>z <>1—|—|u|2_ 1+|| 1+|| ||z’f|

Now, by (2) and Young inequality we have

|Vul? 1 / 2
= [ E / 7
2 (1+ |u! 2 B+ /1
Ju|>1 |u|>1

which implies (with [ = e* — 1)

Q 1

s Viogl+u)P< [ [o-IBR 1]
log(1+|ul)>k log(1+4|ul)>k

Now, set v = log(1+|u|) and g = ‘El +|f], the previous inequality can be rewritten

as
(0%

S vt [l

[v|>k [v|>k

Since g belongs to LI(€2), for some ¢ > & Sobolev and Hélder inequalities give

(73) 1GR() 22 (@) < Cllgll fogey Arl>™21,
with C' = C(«, S) positive constant, and where Gy, is defined in (20) and

Ay ={z € Q : |v(z)| > k}.

By (28) one has

1
= ([ 1) < llollzera < 1G24,
Ap

Thus .
(74) (h = B ALF <[ Gel0)lz(ay Yh> b
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For a fixed ky > 0, combining (73) and (74), we get then

% *

| Ag| 2

2* 2
’Ah| <C g”ﬁz(g)m, Vh >k > k.
Finally, since ¢ > 7, one gets that 5 — % > 1, hence Lemma 3.3 applies and

therefore there exists d € R, such that |Ag, 4| = 0. This gives v € L>(2) and
V]| 2o () < ko + d,

where . )
4 = 275 g b A
1911200y | Ao |
and C' = C(a, 9).

In conclusion, we have proved that there exists a positive constant L such that

and so
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