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Abstract 

Reduced Beam Section (RBS) have been introduced, with reference to steel structure, after 
the 1994 Northridge, CA Earthquake, due to the brittle failure of beam flange-column flange 
weldments. In the last decades the connections with RBS have been studied both from an 
analytical point of view and from an experimental point of view. A lot of experimental tests 
demonstrated that RBS connections designed according to the most modern seismic codes are 
able to protect the beam to column connection due to the yielding of the adjacent RBS. In this 
paper, a new idea regarding the use of steel RBS is presented: the possibility of using a steel 
RBS in a wooden beam. In this case, RBSs should constitute dissipative zones of the structure, 
leading to a much better seismic behavior of structure. In fact available ductility of steel is much 
higher if compared to the available ductility of wood.  

At this aim, the yielding of RBSs should precede the yielding not only of the beam to column 
connections, but also of all the intermediate wooden sections.  

In the work the role played by vertical loads and by the amount of section reduction are 
analyzed and accounted for, and in addition, the possibility that the beam to column connections 
are realized with a partial strength connection is considered.  

Keywords: Reduced Beam Section, Wooden Beam, Dog-Bone connection.  

1. Introduction 

According to the design philosophy of structures in seismic zone, structures should remain in 
elastic range during frequent seismic events, i.e. those having a return period similar to the 
service life of the structure. On the contrary, in the case of severe earthquakes, i.e. those having 
low probability of occurrence, damage of both structural and nonstructural elements coming 
from the development of dissipative mechanisms is accepted [1-5]. Therefore, only in the case 
of destructive earthquakes, the available ductility of the structure is to be exploited in order to 
dissipate the seismic input energy. Obviously, the dissipation should involve only particular 
zones of the structure, called dissipative zones, which have to be properly chosen and designed 
[6-15].  

In fact, the column yielding has to be absolutely avoided, because, due to the action of axial 
forces, they exhibit a poor ductility behaviour. Moreover, the failure modes which can result 
from column hinging could involve a limited number of dissipative zones. For these reasons, 
aiming at the complete development of the plastic reserves of the structure, modern seismic 
codes provide simple design criteria whose goal is the prevention of local failure modes.  

In the seismic design of steel moment resisting frames the use of full-strength connections 
having an over-strength with respect to the connected beam is generally required. In fact, in this 
way the exploiting of the beam plastic rotation capacity can be obtained. It is important to 
underline that the design objective can be achieved only if the random material variability and 
the over-strength of the connection due to the strain-hardening occurring before the flange local 
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buckling are considered. These over-strengths can significantly affect the structural detail of  
connection requiring additional elements like cover plates, haunches, etc.; which considerably 
increase the connection cost. An alternative solution is constituted by RBSs, because they can 
protect the beam to column connection by forcing the plastic hinge in a section of beam away 
from the column face [16-28]. For this reason experimental investigations [29-32] on the cyclic 
response of partial-strength connections increased in last years. RBS connection constitutes a 
particular typology of partial-strength connections, because its resistance is lower than the one 
of the connected beam.  

An alternative name of RBS connections is “dog-bones” because of its shape. In fact, due to 
the reduction of the beam flange width, the shape is similar to the classical "dog-bone" (Figure 
1).  

 

 
Figure 1: Typical shape of a “Dog-Bone” connection 

 
The wooden structures do not possess the ability to deform in the plastic range, not being 

the wood a ductile material. In addition the connections of such structures have a limited 
capacity to have deformations in the plastic range. For these reasons, the use of steel RBS is 
proposed. It can be constituted by an IPE profile connected to each of the two ends of the 
wooden beam. In addition, in order to obtain the exact amount of reduction, a part of flanges 
can be removed. In this way the classical steel “dog-bone” connection can be realized (Figure 
2). As an example, in Figure 2 a way of realizing steel RBS for wooden beam is represented. 
Obviously, the advantage above mentioned can be achieved only with a design procedure able 
to consider the "dog-bone" location with respect to the beam-to-column connection, the 
definition of the magnitude of the weakening to give to the steel part, the amount of vertical 
load acting on the beam and the possibility of having a partial strength connection between 
beam and column.  

All these parameters play a role in the development of plastic hinges in the beam or in RBS 
and they need to be accounted for if the design goal is to assure the development of plastic 
hinges only in the steel “dog-bones” leaving the entire wooden beam and the beam-to-column 
connections in elastic range.  
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Figure 2: The steel “Dog-Bone” for a wooden beam 

 

2. Development of first plastic hinge  

In order to achieve the design goal, a very important problem is to be solved in seismic 
design of Moment Resisting Frames (MRFs): the identification of zones subjected to yielding 
in the beams. At this aim, the force acting on the beam in the seismic condition are to be 
identified. It is well known that in seismic condition, the loads on the structures are constituted 
by  an appropriate distribution of horizontal and vertical forces.  By considering the two effects 
separately,  the superposition principle can be applied as reported in  Figure 3 and the total 
bending moment diagram can be easily   obtained as reported in Figure 4, where the sections 
corresponding to the beam ends are identified with the numbers 1 and 5, the sections 
corresponding to the RBSs are called 2 and 4 and, finally, the section where the maximum 
bending moment occurs is characterised by number 3.  

It is evident that the aim of the procedure herein presented is to assure the development of 
plastic hinges in sections 2 and 4 when section 1, 3 and 5 are in elastic range.  

In order to find the most general solution, the non-dimensional resistance of beam to column 
connections can be expressed by means of following  parameter : 

𝑚𝑐 =
𝑀𝑝,𝑐𝑜𝑛

𝑀𝑏
  (1) 

where Mp,con is the plastic moment of the beam to column connection and Mb is the plastic 
moment of the wooden beam. Other important design parameters are: the location of the "dog-
bones" (which is denoted with the distance a in Figure 4), and the magnitude of the weakening 
characterising the "dog-bones" expressed as: 
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𝑚𝑑𝑏 =
𝑀𝑝,𝑑𝑏

𝑀𝑏
 (2) 

where Mp,db is the plastic moment of the weakened section of the IPE steel profile. To obtain 
the desired result, we assume mdb as fixed, while the location a of the "dog-bones" is considered 
as variable and is to be properly selected. It is easy to check that for sections 1 and 2 the bending 
moments due to vertical loads and horizontal forces have an opposite sign, in particular one is 
anticlock-wise and another is clock-wise, while for sections 3 and 4 they have the same sign, 
i.e. clockwise. 

 
Figure 3: Bending moment due to vertical loads and seismic forces. 

. 

 
Figure 4: Total beam bending moment diagram. 

For these reasons,  plastic hinge develops in beam sections 4 or 5 rather than in beam sections 
1 or 2 when horizontal forces increase. In particular we are interested in determining the 
conditions assuring the yielding of section 4, while sections 1, 2, 3 and 5 remain elastic, when 
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seismic horizontal forces increase. At this aim let us consider the expression of bending moment 
at the generic section x [33]-[34]: 

𝑀(𝑥) = 𝑀𝐴 + 𝑞
𝐿

2
𝑥 −

(𝑀𝐴 + 𝑀𝐵)

𝐿
𝑥 − 𝑞

𝑥2

2
 (3) 

And the value of xmax of  the abscissa where the bending moment reaches its maximum value 
[33]-[34]: 

𝑥𝑚𝑎𝑥 =
𝐿

2
−

𝑀𝐴 + 𝑀𝐵

𝑞𝑙
 (4) 

Using Eq.(3) and (4) the bending moment in sections 1,2,3,4 and 5 can be expressed as: 

Section 1                                              𝑀(𝑥 = 0) = 𝑀𝐴 (5) 

Section 2 

𝑀(𝑥 = 𝑎) = 𝑀𝐴 + 𝑞
𝐿

2
𝑎 −

(𝑀𝐴 + 𝑀𝐵)

𝐿
𝑎 − 𝑞

𝑎2

2
= 𝑞

𝑎(𝐿 − 𝑎)

2
+ 𝑀𝐴 (1 −

𝑎

𝐿
) − 𝑀𝐵

𝑎

𝐿
 

(6) 

 

Section 3                    𝑀(𝑥 = 𝑥𝑚𝑎𝑥) = 𝑞
𝐿2

8
+

(𝑀𝐴 − 𝑀𝐵)

2
+

(𝑀𝐴 + 𝑀𝐵)2

2𝑞𝐿2
 (7) 

Section 4                   𝑀(𝑥 = 𝐿 − 𝑎) = 𝑞
𝑎(𝐿 − 𝑎)

2
+ 𝑀𝐴

𝑎

𝐿
− 𝑀𝐵 (1 −

𝑎

𝐿
) (8) 

Section 5                                               𝑀(𝑥 = 𝐿) = −𝑀𝐵 (9) 

As above recalled, the conditions to be fulfilled in order to assure that sections 1, 2, 3 and 5 
remain in elastic range, while section 4 yields when seismic horizontal forces increase, can be 
expressed in the following way:  

Section 1  =>  MA < mcMb (10) 

Section 2 => M(x = a) < mdbMb (11) 

Section 3 => M(x = xmax) < Mb (12) 

Section 4 => M(x = L-a) = -mdbMb (13) 

Section 5   M(x=L) > -mcMb   =>       -MB > - mcMb             =>          MB < mcMb (14) 
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Now if we combine the yielding condition of “dog-bone” (Eq.(13)) with the expression of 
bending moment at the abscissa x=L-a given by Eq. (8), the following relation between MA and 
MB can be found: 

𝑀𝐵 = 𝑞
𝑎𝐿

2
+ 𝑀𝐴

𝑎

(𝐿 − 𝑎)
+ 𝑚𝑑𝑏𝑀𝑏

𝐿

(𝐿 − 𝑎)
 (15) 

This equation represents the relation existing between the end moments of the beam when 
the first plastic hinge occurs at section 4 (the right “dog-bone”) . By using Eq. (15) and (3), the 
design requirements (10), (11), (12) and (14) can be expressed as: 

𝑀𝐴 < 𝑀𝐴1   𝑤𝑖𝑡ℎ   𝑀𝐴1 = 𝑚𝑐𝑀𝑏 (16) 

𝑀𝐴 < 𝑀𝐴2    𝑤𝑖𝑡ℎ   𝑀𝐴2 =
𝑚𝑑𝑏𝐿

𝐿 − 2𝑎
𝑀𝑏 − 𝑞

𝑎(𝐿 − 𝑎)

2
 (17)  

𝑀𝐴 < 𝑀𝐴3   𝑤𝑖𝑡ℎ    𝑀𝐴3 = √2𝑞(𝐿 − 𝑎)2(1 + 𝑚𝑑𝑏)𝑀𝑏 − (
𝑞(𝐿 − 𝑎)2

2
+ 𝑚𝑑𝑏𝑀𝑏) (18) 

𝑀𝐴 < 𝑀𝐴5    𝑤𝑖𝑡ℎ   𝑀𝐴5 =
(𝑚𝑐 − 𝑚𝑑𝑏)𝐿 − 𝑎𝑚𝑐

𝑎
𝑀𝑏 − 𝑞

𝐿(𝐿 − 𝑎)

2
 (19) 

When the four inequalities reported above are satisfied, then the first plastic hinge develops 
in the right “dog-bone” if Eq. (13) is verified. In addition, the design goal requires that the 
second plastic hinge occurs in the left “dog-bone” when horizontal forces further increase. On 
the contrary, the yielding of section where the maximum bending moment occurs (section 3) 
and the section of the beam ends (section 1 and 5 close to the beam-to-column connections) has 
to be prevented, because, on one hand we want to avoid the yielding of wooden section and, on 
the other hand, we want to protect the beam-to-column connections. 

3. Location of second plastic hinge 

It is plain to see that as the seismic horizontal forces increase, MA value increases, and 
relationships (16), (17), (18) and (19) allow to identify the section where the second plastic 
hinge develops. At this aim, it is sufficient to check which is the minimum limit value among 
MA1, MA2, MA3 and MA5, in other words we can determine which condition is the first one to be 
unsatisfied when horizontal forces increase. In order to solve this problem, it is useful to 
compare the limit value MAi (with i=1,2,3,5). In particular the following conditions can be 
analysed:  

MA2 < MA3   condition A (20) 

This relation allows to determine the values of a  which assure that the yielding of  left “dog-
bone” (section 2) precedes the yielding of the of the beam in the section where the maximum 
bending moment is reached (section 3); 

MA2 < MA5   condition B (21) 

This relation identifies the a values able to assure that the yielding of the left “dog-bone” 
(section 2) precedes the yielding of the connection B (section 5);  

MA2 < MA1   condition C (22) 
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This relation allows to determine the values of  a  which assure that the yielding of  left “dog-
bone” (section 2) precedes the yielding of the connection A (section 1). 

Conditions (20), (21) and (22) have to be absolutely satisfied, because they assure the 
development of the second plastic hinge in the left “dog-bone”, while the yielding of the 
connections at the beam ends and of section where the maximum bending moment is achieved 
is prevented. In other words, relationships (20), (21) and (22) constitutes the design 
requirements. 

Starting from the above conditions the following non-dimensional relationships can be 
generated: 
 Condition A: 

4 (
𝑎

𝐿
)

3

+ [4√
𝑀𝑏

𝑞𝐿2
(𝑚𝑑𝑏 + 1) − 8] (

𝑎

𝐿
)

2

+ [4𝑚𝑑𝑏

𝑀𝑏

𝑞𝐿2
+ 5 − 6√

2𝑀𝑏

𝑞𝐿2
(𝑚𝑑𝑏 + 1)] (

𝑎

𝐿
)

+ 2√
2𝑀𝑏

𝑞𝐿2
(𝑚𝑑𝑏 + 1) − 1 − 4𝑚𝑑𝑏

𝑀𝑏

𝑞𝐿2
> 0 

(23) 

The solution of the equation (23) is given by: 

𝑎1

𝐿
<

𝑎

𝐿
<

𝑎2

𝐿
 (24) 

where 

𝑎1

𝐿
=

1

2
− √

(1 + 𝑚𝑑𝑏)

2

𝑀𝑏

𝑞𝐿2
− √

(1 − 𝑚𝑑𝑏)

2

𝑀𝑏

𝑞𝐿2
 (25) 

𝑎2

𝐿
=

1

2
− √

(1 + 𝑚𝑑𝑏)

2

𝑀𝑏

𝑞𝐿2
+ √

(1 − 𝑚𝑑𝑏)

2

𝑀𝑏

𝑞𝐿2
 (26) 

 Condition B: 

−2 (
𝑎

𝐿
)

4

+ 5 (
𝑎

𝐿
)

3

− 4 (1 +
𝑀𝑏

𝑞𝐿2
𝑚𝑐) (

𝑎

𝐿
)

2

+ [1 + 2
𝑀𝑏

𝑞𝐿2
(3𝑚𝑐 − 𝑚𝑑𝑏)] (

𝑎

𝐿
)

− 2
𝑀𝑏

𝑞𝐿2
(𝑚𝑐 − 𝑚𝑑𝑏) < 0 

(27) 

Whose solution is: 

𝑎

𝐿
<

𝑎3

𝐿
    (28) 

where: 

𝑎3

𝐿
= √𝑇1 + √𝑇2

3
+ √𝑇1 − √𝑇2

3
+

1

2
 (29) 

with T1 and T2 given by: 
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𝑇1 = [−
𝑀𝑏𝑚𝑑𝑏

2𝑞𝐿2
]   ;    𝑇2 = [− 

𝑀𝑏𝑚𝑑𝑏

2𝑞𝐿2
]

2

+ [2
𝑀𝑏𝑚𝑐

3𝑞𝐿2
−

1

12
]

3

 (30) 

 Condition C: 
By means of Eq.(16) and (17) this condition provides: 

2 (
𝑎

𝐿
)

3

− 3 (
𝑎

𝐿
)

2

− (4𝑚𝑐

𝑀𝑏

𝑞𝐿2
− 1) (

𝑎

𝐿
) + 2(𝑚𝑐 − 𝑚𝑑𝑏)

𝑀𝑏

𝑞𝐿2
> 0 (31) 

With the aim of showing that this condition is always verified if condition B is verified, it is 
useful to write the condition B (Eq. (27)) as follows: 

(
𝑎

𝐿
− 1) [−2 (

𝑎

𝐿
)

3

+ 3 (
𝑎

𝐿
)

2

− (4𝑚𝑐

𝑀𝑏

𝑞𝐿2
+ 1) (

𝑎

𝐿
) + 2(𝑚𝑐 − 𝑚𝑑𝑏)

𝑀𝑏

𝑞𝐿2
] < 0 (32) 

So that the product between the two terms in parentheses is lower than zero, if a/L <1 (as 
always is), the term in square brackets must necessarily be greater than zero: 

[−2 (
𝑎

𝐿
)

3

+ 3 (
𝑎

𝐿
)

2

− (4𝑚𝑏

𝑀𝑏

𝑞𝐿2
+ 1) (

𝑎

𝐿
) + 2(𝑚𝑏 − 𝑚𝑑𝑏)

𝑀𝑏

𝑞𝐿2
] > 0 (33) 

Now it is easy to verify that the first member of Eq. (31) is greater than the first member of 
Eq. (33) when the following condition is satisfied: 

−4 (
𝑎

𝐿
)

3

+ 6 (
𝑎

𝐿
)

2

− 2 (
𝑎

𝐿
) < 0 (34) 

the solution of this inequality is: 

0 <
𝑎

𝐿
<

1

2
     𝑎𝑛𝑑       

𝑎

𝐿
> 1 (35) 

Assuming that a/L is always greater than zero and lower than ½ (because the reduced section 
cannot be realized beyond the midspan) it can be concluded that condition C is verified if 
condition B is verified.  

So that the final result can be summarized as: 
𝑎1

𝐿
<

𝑎

𝐿
< 𝑚𝑖𝑛 {

𝑎2

𝐿
;
𝑎3

𝐿
} (36) 

From a graphical point of view the results of these relationships are presented in Figure 5, 
Figure 6 and Figure 7 for mdb equal to 0.60-0.80 and mc greater than mdb. It is easy to check that 
if a value of mc equal or smaller than mdb is considered, then the values obtained for  𝑎3/𝐿 are 
negative and according to eq. (36) no solution is available. This result appears to be evident 
because the bending moment at the connection B (section 5) is always greater than the bending 
moment occurring in the adjacent “dog-bone”, as a consequence, if the resistance of the 
connection is smaller than the resistance of the “dog-bone”, the yielding of the latter cannot 
precede the yielding of the former.  

The obtained result can be furtherly simplified by means of the following considerations: if 
a2/L > a3/L then  𝑚𝑖𝑛{𝑎2/𝐿; 𝑎3/𝐿} = 𝑎3/𝐿 and a so a2 does not play any rule and can be 
neglected. In the opposite case when a2/L < a3/L, from a numerical analysis it is easy to check 
that the point where the maximum bending moment is obtained is outside of the beam, i.e. the 
value of xmax is negative. In this case, the requirement provided by condition A is not effective 
and, as a consequence, a2 does not play any rule and can be neglected.  

So that it can be concluded that the final result is: 
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𝑎1

𝐿
<

𝑎

𝐿
<

𝑎3

𝐿
 (37) 

For the given vertical load q, the given value of mdb, mc and Mb, if the location of the “dog-
bones” respects the condition (37) then plastic hinges will develop in both “dog-bones” leaving 
the wooden beam and the beam to column connections in elastic range when horizontal forces 
increase.  

 

 
Figure 5: Limit values of a1/L, a2/L and a3/L for mdb = 0.60 and mc=1.00. 

 

 

 
Figure 6: Limit values of a1/L, a2/L and a3/L for mdb = 0.70 and mc=0.80. 
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Figure 7: Limit values of a1/L, a2/L and a3/L for mdb = 0.80 and mc=1.00. 

 

4. Design abachi and comparison regarding the current codes provisions 

Different design abachi, accounting for all the parameters involved in the design process, 
can be derived starting from the result obtained in the previous section.  

In particular, by considering a given value of mc, equations providing the limit values a1/L  
and a3/L can be determined for all the possible values of mdb and qL2/Mb. In such a way, the 
abachi reported in Figure 8 (for mc equal to 1), Figure 9 (for mc equal to 0.9),  Figure 10 (for mc 
equal to 0.8),  and Figure 11 (for mc equal to 0.7), are obtained.  

As already noted, if the value of  mc is equal or smaller than the value of mdb no solution can 
be found, because if the resistance of the beam to column connections is smaller than the 
adjacent RBS, the yielding of the latter section cannot precede the yielding of the former one. 
Furthermore, it is evident that by increasing the value of non-dimensional vertical load the 
available range of a/L decreases.  

In fact, from Figure 8, it can be observed that for a value of non-dimensional load lower than 
six,  only an upper limit is effective, because the lower one  becomes negative, so that it does 
not provide any condition.  
From the same figure it can be noted that by decreasing the value of non-dimensional vertical 
load from five to zero the upper limit increases.  

On the contrary, when the value of the vertical load is equal or greater than six, also a lower 
bound is obtained. Consequently, in this case a range for a/L is provided. 
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Figure 8: Design abacus for mc =1.00  

 
As an example, considering the abacus given in Figure 8, if a vertical load qL2/Mb equal to 

8 is assumed, no solution is available for values of mdb greater than 0.75. On the contrary, a 
range, which increases as mdb decreases, can be found for values of mdb lower than 0.75. As it 
can be observed from the figure, if a bigger value of vertical load is considered, a smaller value 
of the range is obtained. In fact, with the increase of vertical load, there is a decrease of the 
upper limit and an increase of the lower limit of a/L. As an example for mc=1 if qL2/Mb=8 and 
mdb = 0.70  the available range for a/L  is [0.037-0.056], while if mdb = 0.60, for the same value 
of vertical load, the available range increases, because it is given by [0.025-0.072] Figure 8.  

 

 
Figure 9: Design abacus for mc =0.90  
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Figure 10: Design abacus for mc =0.80  

 

 
Figure 11: Design abacus for mc =0.70  

 
At the aim of applying in a correct way the obtained abaci it is of fundamental importance  

to clarify the meaning of parameters a and L. In fact, a is the distance between the beam to 
column connections and the middle point of the RBS, while L is the distance between the two 
connections as depicted in Figure 12, where the length of the reduced beam section has been 
reported and indicated with b.  
Consequently L is a quantity which is different from the bay span Li. Obviously the relation 
between L and Li can be obtained form Figure 12 as:  
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𝐿 = 𝐿𝑖 − 𝐻𝑐1/2 − 𝐻𝑐2/2 (38) 

being Hc1 and Hc2 the section heights of the column. This observation is very important, 
because in the design phase of beams and “dog-bones”, column sections are still unknown, and, 
as a consequence, L is still unknown. So that, in this phase, only the value of Li is available. 
From a practical point of view, even if it is an important aspect, this fact does not represent a 
big problem, because a value for Hc1 and Hc2 can be assumed as first attempt. What is important 
to underline is that at the end of the frame design, the value of L which is to be used in the 
abacus is the one given in eq.(38) and represented in Figure 12. 

 

 
Figure 12: Difference between L and Li 

Another important consideration regarding the utility of the above abaci concerns the 
design provision nowadays available in current codes ([35] [36]) for the design of RBS. In 
fact, the only available suggestion is the maximum bending moment expected at the beam-to-
column connection, which is obtained by  a free body diagram as:  

𝑀𝑚𝑎𝑥,𝑐𝑜𝑛 = 𝑚𝑑𝑏𝑀𝑏 + 𝑉𝑑𝑏𝑎 (39) 

where Vdb is the maximum shear strength in the reduced beam section given by: 

𝑉𝑑𝑏 =
2𝑚𝑑𝑏𝑀𝑏

𝐿 − 2𝑎
+ 𝑞

(𝐿 − 2𝑎)

2
 (40) 

The design requirement provided by codes is  

𝑀𝑚𝑎𝑥,𝑐𝑜𝑛 ≤ 𝑀𝑝,𝑐𝑜𝑛    ⇒   𝑚𝑑𝑏𝑀𝑏 + 𝑉𝑑𝑏𝑎 ≤ 𝑀𝑝,𝑐𝑜𝑛 ⇒  𝑎 ≤
𝑀𝑝,𝑐𝑜𝑛+𝑚𝑑𝑏𝑀𝑏

𝑉𝑑𝑏
    (41) 

So that an upper limit for the location of RBS is determined, but no lower bound is given. This 
is not correct, because when a lower limit is given in the abaci above reported, it means that the 
condition A is not satisfied if a<a1. In these cases, if a is lower than a1, the second plastic hinge 
will not develop in the second dog bones (section 2), but in the section of the beam where the 
maximum bending moment is reached (section 3). So that the yielding of a wooden section is 
not avoided. In other words, the limit value of a provided in equation (41) could be not enough. 
In fact, by satisfying the equations (39), we can be sure that (with reference to Figure 4) the 
yielding of right “dog bone”(section 4) will precede the yielding of connection B (section 5), 

L’ 

Hc1 

a a 
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but then we have no information regarding the formation of second plastic hinge. So we cannot 
be sure that the second plastic hinge will develop in the second “dog-bone” rather than in one 
of the connections (section 1 or 5) or in the section where the maximum moment is achieved  
when horizontal forces increase. This information can be cached only by solving the equations 
provided in Session 3. In addition, the upper limit provided by equation could be different from 
the actual upper limit because it is obtained on a final structural scheme with two plastic hinges 
in the two RBSs, but the intermediate scheme characterized by only one plastic hinge is 
completely neglected. It can be concluded that the current codes provisions for the design of 
RBSs are not able to avoid the yielding of a connection or the yielding of the wooden section 
where the maximum bending moment is achieved. The desired design goal can be reached only 
if the limits provided by the obtained abaci are respected.  

4. Conclusions  

In this paper the use of steel reduced beam section in a wooden beam have been proposed 
and analysed. The goal of the proposed design method is the protection of beam to column 
connections and of all intermediate sections of the wooden beam when horizontal forces 
increase. In particular, the yielding of both “dog-bones” is to be promoted, leaving all the other 
sections in elastic range.  

The procedure takes into account the possibility that the beam to column connection is a 
partial strength connection, because, as often happens for wooden structures, it is  not able to 
transmit to the column the entire plastic moment of the beam. 

From the obtained results it can be observed that the smallest mdb value provides the widest 
range for the realization of the “dog-bones”; in fact, increasing mdb the range identified by a 
reduces up to zero for mdb = mc.  

The provided design abachi constitute an easy way to understand if the beam-to-column 
connections and all the wooden beam sections are protected or not by the realization of a “dog-
bone” when horizontal forces increase. In fact, all the parameters involved in the design process 
are necessary in order to use the abaci; in particular, the non-dimensional resistance of the “dog-
bones” mdb, the non-dimensional resistance of the beam to column connection mc, the non-
dimensional distance of the “dog-bone” from the beam to column connection a/L, and the non-
dimensional value of vertical load qL2/MP. 
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