
Noname manuscript No.
(will be inserted by the editor)

Do Software Models Based on the UML Aid in Source-Code
Comprehensibility? Aggregating Evidence from 12 Controlled
Experiments

Giuseppe Scanniello · Carmine Gravino · Marcela
Genero · José A. Cruz-Lemus · Genoveffa
Tortora · Michele Risi · Gabriella Dodero

Received: date / Accepted: date

Abstract In this paper, we present the results of long-term research conducted in order to

study the contribution made by software models based on the Unified Modeling Language

(UML) to the comprehensibility of Java source-code. We have conducted 12 controlled ex-

periments in different experimental contexts and on different sites with participants with

different levels of expertise (i.e., Bachelor’s, Master’s, and PhD students and software prac-

titioners from Italy and Spain). A total of 333 observations were obtained from these experi-

ments. The UML models in our experiments were those produced in the analysis and design

phases. The models produced in the analysis phase were created with the objective of ab-

stracting the environment in which the software will work (i.e., the problem domain), while

those produced in the design phase were created with the goal of abstracting implementation

aspects of the software (i.e., the solution/application domain). Source-code comprehensibil-

ity was assessed with regard to correctness of understanding, time taken to accomplish the

comprehension tasks, and efficiency as regards accomplishing those tasks. In order to study

the global effect of UML models on source-code comprehensibility, we aggregated results

from the individual experiments using a meta-analysis. We made every effort to account for

the heterogeneity of our experiments when aggregating the results obtained from them. The

overall results suggest that the use of UML models affects source-code comprehensibility.

Indeed, models produced in the analysis phase might reduce source-code comprehensibility,

while increasing the time taken to complete comprehension tasks. That is, browsing source

code and this kind of models together negatively impacts on the time taken to complete

comprehension tasks without having a positive effect on the comprehensibility of source

code. One plausible justification for this is that the UML models produced in the analysis

phase focus on the problem domain. That is, models produced in the analysis phase say

Giuseppe Scanniello

University of Basilicata

E-mail: giuseppe.scanniello@unibas.it

Carmine Gravino, Genoveffa Tortora, Michele Risi

University of Salerno

E-mail: {gravino, totora, mrisi}@unisa.it

Marcela Genero, Jos´e A. Cruz-Lemus

University of Castilla-La Mancha

E-mail: {marcela.genero; joseantonio.cruz}@uclm.es

carmine gravino
DOI: 10.1007/s10664-017-9591-4

carmine gravino
Published in: Empirical Software Engineering journal.
This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10664-017-9591-4

2 Scanniello et al.

nothing about source code and there should be no expectation that they would, in any way,

be beneficial to comprehensibility. On the other hand, UML models produced in the de-

sign phase improve source-code comprehensibility. One possible justification for this result

is that models produced in the design phase are more focused on implementation details.

Therefore, although the participants had more material to read and browse, this additional

effort was paid back in the form of an improved comprehension of source code.

Keywords Aggregation, Heterogeneity, Unified Modeling Language, Controlled Experi-

ments.

1 Introduction

The Unified Modeling Language (UML) [46] is considered to be the de-facto standard in

the analysis, design, and evolution of object-oriented software [17,29], despite the fact that

domain specific modeling languages are increasing in popularity [34]. However, many soft-

ware companies are still reluctant to use UML because it is perceived to be difficult to learn

and use [2]. It may, therefore, be important, if not crucial, to investigate whether or not the

use of the UML makes a practical difference in software development and evolution, thus

possibly encouraging resilient companies to adopt UML.

The UML has been the subject of a number of empirical studies in the software engi-

neering field [11]. Of these studies, only a few are focused on the usage of this notation

throughout the software development life cycle [3]. This lack is even more evident in soft-

ware maintenance and evolution (e.g., [9,53]). Scanniello et al. [56] conducted an industrial

survey regarding the use of the UML in the software industry. The results showed that soft-

ware engineers wishing to deal with software maintenance and evolution very often have at

their disposal only UML-based models (or simply UML models) produced in the require-

ments engineering process (or analysis phase) and, in a few cases, those produced in the

design phase. Using the findings of this survey as a basis, we began long term research

with the aim of studying the contribution made by UML-based models produced in the

analysis and design phases to source-code comprehensibility. In particular, we conducted

12 controlled experiments with different kinds of participants [27,28,53–55]. In order to

aggregate the results of these experiments and to obtain the global effect of analysis and

design UML models on source-code comprehensibility, we carried out a meta-analysis on

the results obtained from the individual experiments. In this paper, we present the results of

this aggregation by attemping to answer the following research question:

– Do software models produced in the analysis and design phases aid the comprehension
of Java source code (assessed on the basis of the answers developers provide to ques-
tions on that code), and do these models affect the time taken to comprehend that code
and the efficiency with which that comprehension occurs?

The research work presented in this paper is based on that presented in [57], in which

we showed the preliminary results obtained after the aggregation of our 12 controlled ex-

periments. The current paper extends the previous work as follows: (i) we have considered

issues related to the heterogeneity of the individual experiments in the aggregation of their

results; (ii) we have considered an additional dependent variable, namely Efficiency, which

is computed as the ratio between the level of comprehension achieved when performing a

task and and the time required to complete it; and (iii) we have extended the discussion

concerning related work, experimental results, and threats to validity.

In this new paper, we provide a detailed description of the following main contributions:

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 3

– The results of global effect of analysis and design UML models on source-code com-

prehensibility;

– A discussion regarding the possible practical implications of the results of our study;

– How to deal with the heterogeneity of experiments when using a meta-analysis to ag-

gregate the results obtained from them.

This paper is organized as follows. We discuss related work in Section 2, while the back-

ground is presented in Section 3. Our long-term research is presented in Section 4, while the

results obtained are shown and discussed in Section 5. In Section 5, we also discuss the prac-

tical implications of the results of our study from the perspectives of both researchers and

professionals. We conclude the paper with our final remarks and future work in Section 6.

2 Related Work

In accordance with the research question stated previously, in this section we first focus on a

set of works which highlights the use of UML diagrams as a means to maintain source-code.

We conclude this section by presenting research work on model-based traceability, since the

use of traceability links is a viable means to support the comprehension and maintenance of

source code.

2.1 UML and Software Maintenance

There are two literature reviews related to the topic that should be taken into account [21,

64]. In the first place, Fern´andez-S´aez et al. [21] present a systematic mapping study (SMS)

whose goal was to discover the empirical evidence related to the use of UML diagrams in

source code maintenance and the maintenance of UML diagrams themselves. A total of 38

papers were found as a result of this SMS, including 66 empirical studies, but only two of

them were specifically focused on source-code maintenance ([5,15]). Zhi et al. [64] also

report another SMS but with a slightly different goal: the existing literature concerning soft-

ware documentation cost, benefit and quality. Once again, the same two works ([5,15]) are

directly related to source-code maintenance. These two empirical studies will be explained

below, together with another set of experiments which was published after the performance

of the two SMSs, and thus not included in them.

Using the aforementioned work as a basis, Dzidek et al. [15] performed an experiment

with a group of 20 professionals. Half of them used UML documentation to carry out a set

of modifications on a web-based system developed in Java, while the other half did not.

This was done to assess whether providing UML documentation reduced the effort required

to correctly implement a set of tasks regarding changes and increased the functional cor-

rectness and design quality of those changes. The results reported indicate that UML users

had to spend more time, especially when the documentation had to be updated. However,

the use of UML documentation was simultaneously always beneficial in terms of functional

correctness, since fewer faults were introduced into the software maintained. It is also im-

portant to highlight that the no-UML group of participants had more problems as regards

understanding the most complex part of the system.

Arisholm et al. [5] conducted two controlled experiments to assess whether UML doc-

umentation helped to reduce the effort required to change the source-code of a software

system. The original experiment was conducted in Oslo, Norway, and the second in Ottawa,

Canada. The first experiment was conducted with 20 3rd year undergraduate students, while

4 Scanniello et al.

the second was carried out with 4th year 78 undergraduate students. In both these experi-

ments, the independent variable was: using (or not using) UML documentation. The partic-

ipants’ performances were measured by considering the time required to perform changes,

excluding and including diagram modifications, correctness of these changes and the quality

of the changed design. The most important result obtained was: UML documentation does

not provide an advantage as regards time, although it helps to improve the correctness and

quality achieved when solving the most complex tasks.

Leotta et al. [45] present a pilot experiment carried out to relate the level of alignment

between UML documents and code and maintainers’ efficiency . A group of 21 undergrad-

uate students had to perform a set of 4 maintenance tasks on two systems using the Eclipse

framework while surfing the UML documents provided (sequence and class diagrams). Al-

though this was a pilot study, the results confirmed the general belief that a more aligned

documentation is of greater assistence during maintenance tasks.

Fern´andez-S´aez et al. [22] report a family of experiments carried out at two different

universities in Italy and Spain. The aim of this study was to assess whether the origin of

UML diagrams (the design phase of a life-cycle or a reverse engineering technique) influ-

ences the maintenance of the corresponding source-code. A controlled experiment and two

replications of it were performed. The authors involved a total of 149 MSc students (cat-

egorized according to their ability, which was calculated using their course grades). These

students had to carry out adaptive and corrective maintenance tasks. The main finding of

the work was that participants with a higher ability achieved better scores when using the

diagrams with a forward design origin, whilst low ability participants got better scores when

using reverse engineered diagrams. The authors provide a possible explanation for this situ-

ation by relating low levels of experience to difficulty in using (and/or understanding) UML

diagrams.

The last experiment in this list (Fern´andez-S´aez et al. [20]) reports a family of four

controlled experiments carried out by over 80 BSc and MSc students at three different uni-

versities in Italy, The Netherlands, and Spain. In this case, the goal was to analyze whether

a high or a low level of detail in UML diagrams has an impact on the maintainability of

source-code during a model-centric development. The maintainability of the source-code

was measured by means of its understandability and modifiability, and the participants had

to answer a multiple choice questionnaire to show how they had understood the system, in

addition to performing a set of corrective maintenance tasks to show how it could be mod-

ified. The results of the family of experiments indicated that diagrams with a high level of

details improved the understandability of the system, while those with a low level of details

improved its modifiability. However, the authors indicate that, when attempting to replicate

the study, the results obtained seemed to be incoherent and to have no clear tendency. After

a thorough evaluation of this, they discovered that the diagrams had possibly been used in-

correctly, or even not used at all, which would have led to the results obtained. They relate

this to the day-by-day situation in industry, when users’ false self-certainty may lead them

not to use (or not to use properly) the system documentation, and eventually find themselves

involved in unexpected and undesired situations as regards their maintenance duty.

Only a few evaluations of the benefits derived from the use of UML throughout the

whole software development life cycle have been reported [3]. This lack is even more ev-

ident in the software maintenance phase with regard to the benefits of employing UML

models in source code comprehension. In order to fill this gap, we present the results of

long-term research conducted to study whether or not UML-based models (produced in

both the requirements and analysis phases) aid source code comprehensibility. In particular,

we aggregate and synthesize the outcomes of 12 controlled experiments in different experi-

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 5

mental contexts and on different sites with participants who had different levels of expertise.

A total of 333 observations were obtained from these experiments. Our study is currently

the largest in the literature concerning the UML.

Table 1 presents a summary of the main features of these papers. The columns in the

table are labelled as:

– Ref: contains the bibliographical reference to the paper.

– Goal: describes the objective of the experiment.

– Participants: presents the number of participants that took part in the experiment/s, plus

their type (students, professionals, etc.).

– Independent variable: describes the variable whose effect on the dependent variables is

to be studied. The values (treatments) of the independent variable are also presented.

– Dependent variables: presents the outcome variables, i.e., those affected by the changes

made to the independent variables.

– Tasks: describes the tasks to be performed by the participants as part of the experiment.

– Results: shows the main findings obtained in the experiment.

Some other empirical studies in industry related to the research question of this work

can also be found. For example, Scanniello et al. [56] show the results of an explorative

survey carried out to investigate the state of practice as regards the use of UML in soft-

ware development and maintenance. At that time, UML appeared to be the most widely

used modeling option for software development and maintenance. In particular, 74% and

75% of the companies interviewed employed UML in the development and maintenance

phases, respectively. The authors did not ask the remaining survey respondents which mod-

eling languages were used as an alternative to UML. The companies interviewed stated that

maintenance operations are commonly performed by practitioners who do not have a vast

amount of experience. According to the study, an ordinary maintenance operation, such as

making certain corrective changes, needs an effort range of between 1 and 5 persons/hour.

These values are multiplied by 10 in the case of an extraordinary maintenance operation,

such as perfective or adaptive changes.

Fern´andez-S´aez et al. [19] also present the preliminary findings of a case study whose in-

tention was to discover whether the investment in UML is justified by the benefits (improved

productivity and product quality) in software maintenance projects. They consequently fo-

cus on discovering what the cost and the payback of using UML in a software maintenance

project are. They carried out a case study in a multinational company with an IT department

of 800-1000 employees. They collected data from the files shared by the department and,

principally, by interviewing the companys personnel (20 useful interviews). They eventually

concluded that the employees reported several benefits of using UML: a better understand-

ing of the problem domain, improved communication, a reduction in software defects, an

improvement to the quality and a reduction in the software maintenance effort.

Garousi et al. [26] present a multi-method empirical approach, and include a survey, a

case study and some action-research in their proposal. A company providing satellite nav-

igation system products was changing its software development processes and intended to

measure which key factors were impacting on documentation usage (information sources,

life-cycle phase, document type, roles, degree of experience, and patterns of usage) and

which attributes were affecting the quality of the documentation. An exploratory survey was

conducted with 25 employees to assess the aforementioned factors and attributes. Its results

were reused in a case study during which the company data was employed, and the con-

clusion was reached that the usage of documentation differed according to the purpose for

which it was used, e.g., documentation was more frequently used for development purposes

6 Scanniello et al.

Table 1: Summary of experiments features

Ref. Goal Participants Independent

variable

Dependent

variables

Tasks Results

[5] Assessing

whether the

UML doc-

umentation

provided

helped to

reduce the

effort required

to change the

source-code

of a software

system.

20 + 78

under-

graduate

(3rd and

4th year)

students

Using (or

not) UML

documen-

tation

Time taken

to perform

changes, ex-

cluding and

including

diagram mod-

ifications,

correctness of

these changes

and quality of

the changed

design.

Performing

several op-

erations

related

to the

systems

used.

UML docu-

mentation does

not provide an

advantage as

regards time,

although it helps

to improve the

correctness and

quality achieved

when solving the

most complex

tasks.

[15] Assessing

whether pro-

viding UML

documentation

reduced the

effort required

to correctly

implement a

set of change

tasks, and

increased the

functional

correctness

and design

quality of

those changes.

20 profes-

sional de-

velopers

Using (or

not) UML

documen-

tation

Time taken

to perform

changes, ex-

cluding and

including

diagram mod-

ifications,

correctness of

these changes

(in terms of

the number of

submissions of

a solution with

a fault and

their relation

to the existing

functionalities)

and quality of

the changed

design.

Modifying

the exist-

ing classes

or adding

new ones

to change

the sys-

tem’s

behavior

(adding

new func-

tionalities,

changing

the origi-

nal ones,

etc.).

UML partici-

pants spent more

time than the

others updating

documentation,

but using UML

was benefi-

cial in terms

of functional

correctness

and helped

participants to

understand the

systems better

(especially the

more complex

ones).

[45] Relating

the level of

alignment

between UML

documents

and code and

maintainers’

efficiency.

21 under-

graduate

students

Documen-

tation

alignment

(values

more and

less)

Efficiency

as regards

performing

maintenance

tasks.

Execution

of four

main-

tenance

tasks on a

system.

A more aligned

documentation is

more helpful dur-

ing maintenance

tasks.

[22] Investigating

whether the

origin of UML

diagrams in-

fluences the

maintenance

of the cor-

responding

source-code.

20+51+78

MSc

students

Origin

of the

diagrams

(forward

designed

or reverse

engi-

neered)

Source-code

maintainabil-

ity, measured

by its effec-

tiveness and

efficiency.

Five dif-

ferent

tasks in-

cluding

adaptive

and cor-

rective

main-

tenance

tasks.

Participants with

a higher ability

achieved better

scores using

the diagrams

with a forward

design origin,

possibly because

UML helps more

experienced

users.

[20] Analyzing

the level of

detail in UML

diagrams and

checking its

impact on the

maintainability

of source-

code during a

model-centric

development.

65 BSc +

16 MSc

students

Level of

detail of

the UML

diagrams

(high or

low)

Modifiability

and under-

standability

of the source-

code, both

measured by

their effec-

tiveness and

efficiency.

Answering

3 multiple

choice

questions

(under-

stand-

ability)

and per-

forming 3

perfective

main-

tenance

tasks

(modifia-

bility).

Apparently,

diagrams with

a high level of

detail helped

participants to

understand the

system better

while those with

a low level of

detail helped

to maintain it.

Nevertheless,

these results

were fairly in-

consistent and

had no clear

tendency.

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 7

than for maintenance purposes. Moreover, documentation the up-to-date-ness, accuracy and

completeness of document artifacts were identified as the most important and relevant qual-

ity attributes as regards improving documentation efficiency. Finally, all these results were

used in a set of action-research cycles for a continuous improvement of the company’s doc-

umentation efficiency.

Finally, Fern´andez-S´aez et al. [18] present the findings of a survey on the use of UML

in software maintenance. A total of 178 professionals from 12 different countries took part

in this survey. The main objectives of this survey can be summarized as follows: (i) to ex-

plore the extent to which UML diagrams are actually used in industry (59% of the answers

indicated the use of a graphical notation, 43% UML), (ii) to acknowledge which was the

most effective UML diagram for software maintenance (as expected, class, use case, se-

quence and activity diagrams), (iii) to discover what the perceived benefits of using UML

were (less time needed for a better understanding and, thus, an improved defect detection),

and (iv) to contextualize what kind of companies used UML documentation during software

maintenance (larger teams seem to use UML more frequently).

2.2 Model-based traceability

Traceability can be considered as an important related concept, since the comprehension of

source code supported by the use of models is affected by the possibility of implicitly iden-

tifying relationships between source code and software models. When traceability informa-

tion is explicitly documented in addition to the models, it can help developers to compre-

hend source code. In the following, we highlight empirical studies dealing with model-based

traceability when UML is used to represent artifacts, along with those that analyze source

code comprehension and analysis. For example, Lehnert et al. [44] combine impact analy-

sis, multi-perspective modeling, and horizontal traceability analysis to support the specifi-

cation of models and the development of source code and test cases. They propose a unified

meta-model approach that can be supplied by the Eclipse Modeling Framework [16] and

a centralized model repository. The approach makes it possible to analyze the dependen-

cies between software artifacts according to the type of change which is applied to them.

The idea is to verify the interplay of change operations and dependency relations between

models and code with the aim of identifying the propagation of further changes.

Hammad et al. [31] propose an approach with which to automatically determine whether

a change in the source code affects the design of the system (i.e., UML class diagrams). The

aim of this approach is to maintain consistency between developed code and models by ex-

ploiting code-to-design traceability when the source code evolves. The proposed approach,

along with the prototype implemented, were assessed by performing a case study based on

the commits extracted from four open source projects during a three years period. The results

revealed that most of the code changes do not impact on the software models. Furthermore,

these commits regard a smaller number of changed files and less lines of code with regard

to commits that impact on software models. Another interesting result is that most bug fixes

do not impact design.

Settimi et al. [58] assess the effectiveness of information retrieval techniques as regards

tracing new and changed requirements to UML artifacts, code, and test cases. The authors

summarize the most important result from their research as follows: tracing to UML ele-

ments provides a higher perspective of the proposed change than would be possible if links

were generated directly to the code and supports the growing trend toward Model Driven

8 Scanniello et al.

Development. One possible implication is that this kind of link might reduce the effort re-

quired to analyze the impact of the changes.

Cariou et al. [12] present an approach that focuses on the object collaboration. This is

recognized as an important building block with which to structure object-oriented design

in a distributed context. In an attempt to deal with the problem of the deterioration of the

collaboration information during the detailed design process, a process and an architecture

is proposed to preserve object collaboration information, from the analysis to design and

implementation. The idea is to employ UML collaboration diagrams, with the addition of

OCL constraints that follows specific rules to suit component specification requirements.

This specification can be successively transformed into various low-level implementation

designs depending on non-functional constraints by means of a refinement process.

Pavalkis et al. [48] extend UML by defining a model-driven domain specific language

engine in order to manage traceability schemas and traceability analysis means. The authors

specifically propose a framework that can be used to derive properties in order to trace

project artifacts. The authors run several case studies to show how the framework can be used

to adapt their solution to a particular development method and domain specific language in

a development process, and to automate the maintenance of traceability relations.

The proposal by Tang et al. [61] is focused on the understanding of design rationale

to support the detection of inconsistencies, omissions, and conflicts in an architecture de-

sign. The model incorporates design rationale, design objects and their relationships, and

traceability methods are applied so as to change impact analysis and root cause analysis.

The UML notation is used to represent the AREL model, which is an acyclic graph that

relates elements of the architecture to their rationale by exploiting the ARtrace directional

link (namely, UML stereotyped association) [62].

Pavalkis et al. [49] propose an approach with which to improve vertical traceability of

UML models, thus eliminating the additional complexity involved in defining and maintain-

ing traceability information in the software projects. Indeed, traceability information is not

statically managed and memorized, but the use of derived properties allows the dynamic

calculation of this information, which is then analyzed using dedicated and already existing

tool-specific means. The application of the approach to a particular development process

has shown that it allows the completeness of the project to be validated and the impact of

changes to be analyzed, without boring the users with issues related to the management of

traceability information.

3 Background

As the number of empirical studies grows, the need to aggregate evidence from multiple

primary empirical studies (e.g., experiments) increases [63]. There are two main reasons

for aggregating evidence. Firstly, new research should always take existing knowledge into

consideration as its starting point. That is, reviews summarizing the outcomes of various

intervention trials are an efficient method by which to obtain the “bottom line” regarding

what works and what does not. Secondly, primary empirical studies may together provide

answers to research questions, when these studies alone are not sufficient to answer these

research questions. In Section 3.1, we first briefly introduce strategies that can be used to

summarize and synthesize outcomes from different empirical studies/experiments. When

primary studies are synthesized using statistical methods (i.e., using a meta-analysis), it

is crucial to verify whether or not these studies are heterogeneous [50]. In Section 3.2 and

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 9

Section 3.3, we present some background on how to deal with heterogeneity in meta-analysis

studies. Finally, we present the process we have defined to deal with heterogeneity.

3.1 Aggregating Results from Primary Studies

The collection, synthesis, and review of empirical evidence must comply with scientific

standards. There are several strategies with which to summarize and synthesize outcomes

from different empirical studies/experiments. For example, a systematic literature review is

a means used to collect and synthesize empirical evidence from different empirical stud-

ies [42]. A systematic literature review is referred to as a secondary study, while the empiri-

cal studies in such a review are referred to as primary studies. A systematic literature review

has a research question, similar to that in primary studies. If the research question is more

general (or if the field of research is less explored) a mapping study may be carried out.

When a set of empirical studies on a topic is collected, synthesis or aggregation takes

place. A synthesis based on statistical methods is referred to as a meta-analysis [63]. It can

be applied to analyze the outcomes of several dependent and/or independent studies/experi-

ments. The most important advantage of using a meta-analysis is that this kind of secondary

study makes it possible to achieve a higher statistical power for the variable of interest than

primary studies. Although there is no accepted minimum number of primary studies in a

meta-analysis, a minimum of 10 primary studies can be considered acceptable [50].

3.2 Assessing Heterogeneity

Studies may vary. In fact, the assumption that the studies are all representative samples of

the overall true effect and only differ owing to sampling error is not always valid. In this

situation, the studies are said to be heterogeneous [50]. It is useful to distinguish between

different types of heterogeneity. According to Higgins and Green [32], we can distinguish

the following kinds of heterogeneity: clinical, methodological, and statistical. Variability in

the participants, interventions, and outcomes studied may be described as clinical hetero-

geneity. Variability in study design and risk of bias may be described as methodological

heterogeneity. Finally, variability in the intervention effects being evaluated in the different

studies is known as statistical heterogeneity. This kind of heterogeneity can be considered a

consequence of clinical heterogeneity or methodological heterogeneity, or both, among the

primary studies. In the following part of this section we will focus on statistical heterogene-

ity and we refer to it simply as heterogeneity.

In a meta-analysis, the means usually employed to assess whether a set of single studies

is the Cochran’s Q test [50]. This test measures the deviation of observed effect sizes from

an underlying overall effect size. The most frequently used cut-off point is 0.1. If the value is

lower than this threshold, we can reject the null hypothesis (i.e., the primary studies are not

heterogeneous) and we can then assume that studies are heterogeneous. The Cochran’s Q

test informs us only about the presence of heterogeneity, but it does not report on the extent

of that heterogeneity [33]. Possible measures of heterogeneity are I-squared and tau-squared.

The I-squared measure is the percentage of total variation across experiments that is owing

to heterogeneity rather than chance. Thresholds for the interpretation of I-squared values

can be misleading because the importance of inconsistency depends on two main factors:

(i) magnitude and direction of effects and (ii) strength of evidence for heterogeneity (e.g.,

p-value from the chi-squared test, or a confidence interval for the I-squared measure). A

10 Scanniello et al.

guide to the interpretation of I-squared values is based on the intervals suggested by Higgins

and Green [32]:

– 0% to 40%: heterogeneity might not be important;

– 30% to 60%: a moderate heterogeneity may be present among the primary studies;

– 50% to 90%: a substantial heterogeneity may be present among the primary studies;

– 75% to 100%: considerable heterogeneity may be present among the primary studies.

Tau-squared is an absolute measure of heterogeneity. It is a measure of the standard

deviation of effect sizes across the experiments. Values greater than 1 indicate that primary

studies are heterogeneous [50].

Huedo-Medina et al. [33] stated that I squared should be used as a complement to the

Cochran’s Q test. Since both Tau-squared and I-squared are measures of heterogeneity, these

measures can be considered both as a complement to the Cochran’s Q test. That is, the

heterogeneity of the primary studies can be measured by either (or both) Tau-squared or

I-squared if the Cochran’s Q test rejects the null hypothesis that these studies are not hetero-

geneous.

If studies are not heterogeneous (i.e., they are homogeneous), they should be combined

in a meta-analysis using a fixed effect model. This model assumes that the size of the treat-

ment effect is the same (fixed) across all the experiments.

3.3 Dealing with Heterogeneity

A number of options are available if (statistical) heterogeneity is identified among a group

of primary studies that would otherwise be considered suitable for a meta-analysis. For

example, Higgins and Green [32] suggested:

1. Check again that the data are correct. Severe heterogeneity can indicate that data have

been incorrectly extracted and/or used. For example, if standard errors have mistakenly

been entered as standard deviations for continuous outcomes [32].

2. Do not do a meta-analysis. If there is considerable variation in results, and particularly

if there is inconsistency in the direction of the effect, it may be misleading to quote an

average value for the effect.

3. Explore heterogeneity. The goal is to determine the causes of heterogeneity. This is

problematic since there are often many characteristics that vary across primary studies

from which one may choose. Heterogeneity may be explored by conducting sub-group

analyses. Each of these groups should have a minimum of 4 studies/experiments [24].

Explorations of heterogeneity can at best lead to the generation of hypotheses. They

should be interpreted with caution. Investigations of heterogeneity when there are very

few studies are of questionable value.

4. Ignore heterogeneity. Heterogeneity can be ignored and a fixed effect meta-analyses can

be performed. The pooled effect estimate from a fixed effect meta-analysis is normally

interpreted as being the best estimate of the intervention effect. However, the existence

of heterogeneity suggests that there may not be a single intervention effect but rather

a distribution of intervention effects. The pooled fixed effect estimate may be thus an

intervention effect that does not actually exist in any population, and, therefore, have a

confidence interval that is both meaningless and too narrow.

5. Perform a random effects meta-analysis. A random effects meta-analysis may be used to

incorporate heterogeneity among primary studies. This is not a substitute for a thorough

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 11

investigation of heterogeneity. It should be intended primarily for heterogeneity that

cannot be explained.

6. Change the effect measure. Heterogeneity may be an artificial consequence of an inap-

propriate choice of the effect measure (dependent variable). Furthermore, the choice of

the effect measure for dichotomous outcomes (odds ratio, relative risk, or risk differ-

ence) may affect the degree of heterogeneity among results. When control group risks

vary, homogeneous odds ratios (or risk ratios) could lead to heterogeneous risk differ-

ences (and vice versa).

7. Exclude studies. Heterogeneity may be owing to the presence of one or two outlying

studies. That is, the results of these studies could conflict with the results of the re-

maining studies. In general, it is unwise to exclude studies on the basis of their results.

This may introduce bias into the meta-analysis results. However, if an obvious reason

for the outlying result is apparent, the study might be removed with more confidence.

It is advisable to perform analyses both with and without outlying studies as part of a

sensitivity analysis. Whenever possible, potential sources of diversity that might lead to

heterogeneity should be specified in the experimental protocol. When excluding stud-

ies, a researcher should also take into consideration the number of studies to be then

considered in the meta-analysis, thus avoiding losing the representativeness of results.

3.4 A Process Based Approach to Deal with Heterogeneity

We employed the strategies by Higgins and Green [32] as a basis to define a process with

which to better deal with (devised statistical) heterogeneity in meta-analysis studies. Fig-

ure 1 shows this process as an activity diagram with object flow, where the activities are the

phases of the process and the objects represent the input/output to these phases. In particular,

the process first suggests checking data from individual experiments to be sure that they are

correct (CheckingData). This is performed before checking that the secondary studies are

heterogenous. The phasse in charge of assessing whether secondary studies are statistically

heterogenous is AssessingHeterogeneity. If the secondary studies are not heterogenous, a

meta-analysis will take place in PerformingFixedEffectModel. If the secondary studies are

heterogeneous, the researcher can decide not carry out a meta-analysis (the flow is placed

in the end-node) or to go ahead with the process. In the latter case, the researcher can de-

cide whether or not to ignore heterogeneity. Ignoring heterogeneity implies the execution of

PerformingFixedEffectModel. On the other hand, the researcher can decide whether or not

to incorporate the heterogeneity into a meta-analysis. If the researcher decides to incorpo-

rate the heterogeneity, the meta-analysis will take place by executing PerformingRandom-
EffectsModel. That is, a random effects model will be applied to all the primary studies. It is

also possible to either explore or not explore heterogeneity. If heterogeneity is not explored,

the researcher can decide to choose a different effect measure (or dependent variable) in

order to aggregate the results in a meta-analysis (ChangingEffectMeasure). There are two

ways in which to carry out an exploring: by excluding one or two outlying primary studies

(ExcludingStudies) or by identifying sub-groups of experiments (IdentifyingSubGroups). In

the case of the researcher excluding one or two outlying studies, meta-analysis takes place

with a single group of studies. This implies that the process in Figure 1 is instantiated only

once. If sub-groups of experiments are identified, the process is instantiated for each of these

sub-groups.

12 Scanniello et al.

(a) CheckingData

(g) IdentifyingSubGroups

(d) PerformingRandomEffectsModel
(e) ChangingEffectMeasure

(f) ExcludingStudies

Heterogeneous?

(c) PerformingFixedEffectModel

:Experiments*

:Experiments

(b) AssessingHeterogeneity

NO

YES
YES

PerformingMeta
Analysis?

YES

NO

Ignoring
Heterogeneity?

YES

Incorporating
Heterogeneity?

YES

NO

NOExploring
Heterogeneity?

Experiments
Cleaning?

NO

YES

:Experiments

NO

Fig. 1: The process defined to deal with statistical heterogeneity, in which each phase has a

label (i.e., a, b, c, d, e, f, or g) associated with it. This allows a rapid reference to the phases

in the process.

In order to show the different instances

1

of the process shown in Figure 1, we used

regular expressions in which the symbols are those used to label the phases of the process

shown in Figure 1: a, b, c, d, e, f , and g. For example, the label for CheckingData is a.

We also considered the empty symbol (i.e., ✏). The regular expression defined is shown as

follows:

ab((eab)⇤(gb)⇤(fb)⇤)⇤(c|d|✏)

We used regular expressions to provide a more compact representation of the instances of

this process. In particular, our solution makes it possible to establish a clear link between the

instances in our process and the sentences in the language described by means of the regular

expression shown previously. We shall also use the sentences from the regular expression to

facilitate our discussion on how we dealt with heterogeneity in the study presented in this

paper. For example, the sentence abc means that we checked data, assessed heterogeneity,

and performed a fixed effect model to aggregate results. However, our compact represen-

tation does not make it evident whether we execute PerformingFixed EffectModel because

heterogeneity is ignored or because the experiments are homogeneous. We deal with this

ambiguity by underlining sentences in the regular expression defined to indicate that the

1

An instance of a process is a sequence of the activities/phases.

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 13

experiments are homogeneous. The sentence abc, therefore, indicates that the experiments

are heterogeneous, while abc indicates that they are homogeneous. In both cases the se-

quences in which the phases are performed is: CheckingData, AssessingHeterogeneity, and

PerformingFixed EffectModel.

4 Our Long-Term Investigation

In a survey we conducted in 2009 [56], the main results suggested that, in order to deal with

software maintenance and evolution tasks, many of the companies interviewed use UML

diagrams produced in the requirements analysis

2

phase and, in a few cases, those produced

in the design

3

phase. The most frequently used UML diagrams were: use case, class, and se-

quence diagrams. Another result of this survey was: maintenance operations were performed

by practitioners with a few years of experience in software development and maintenance

and maintenance operations were supported by models produced in the analysis and design

phases. To this end, companies generally employ developers with a Bachelor’s or Master’s

degree in Computer Science and with between 1 and 5 years’ experience.

The main results of the aforementioned industrial survey were used as a basis to begin

the long-term research shown in this paper. We quantitatively studied to what extend de-

velopers understand source code when they were provided with source code alone or with

source code and UML software models together. Our research consisted of the following

two main directions, which were carried out in parallel:

– In the first direction of our long term research, we studied the comprehension of source

code when it was complemented with analysis models (i.e., models produced in the re-

quirements engineering process) based on the UML notation: use case diagrams, class

diagrams, and sequence diagrams. In particular, use case diagrams and use cases (textual

description of the use cases in the use case diagrams) were employed to represent func-

tional requirements. These requirements are represented with successful use cases. The

participants were also given exceptional and/or boundary conditions. Class diagrams

were used to abstract the objects from the problem domain (i.e., the object or concep-

tual model), while sequence diagrams (also produced in the requirements engineering

phase) were used to model the dynamic and/or functional behavior of the software [10].

First, we conducted a pilot study with Computer Science Bachelor’s degree students at

the University of Basilicata. The results of this pilot study were presented in [28] and

can be summarized as follows: the use of analysis models does not significantly im-

prove the comprehension of source-code. We successively conducted a family of four

controlled experiments on this subject [53], the goal of which was to strengthen the

findings obtained in the pilot study. The experiments were carried out with students and

practitioners from Italy and Spain who had different abilities and levels of experience

with the UML. The results attained indicated that UML analysis models did not appear

to improve source-code comprehensibility, thus confirming the results from the pilot

study.

– In the second direction, we conducted two kinds of controlled experiments. The main

goal of the second direction of our research was to study the comprehension of source

2

It is also called requirements engineering process and it is the process of determining user expectations

(i.e., requirements) as regards a new or modified product.

3

It maps the requirements onto the software architecture that defines the components, their interfaces and

behaviors. The design document describes a plan with which to implement the requirements.

14 Scanniello et al.

code when it was complemented with design models (i.e., models produced in the design

phase) based on the UML. In particular, the two kinds of controlled experiments were

conducted in parallel and pursued the following main goals:

(i) Assessing the potential benefits derived from the use of UML class and sequence di-

agrams (both produced in the design phase) as regards the comprehension of object-

oriented source-code [27]. Two experiments with Computer Science Bachelor’s and

Master’s degree students were, therefore, conducted. The data analysis revealed that

those participants with more experience of the UML and computer programming

(i.e., Master’s degree students) benefitted from the use of UML models produced in

the design phase (from here on UML design models, also).

(ii) Investigating whether providing source code with UML class diagrams used to

graphically document design-pattern instances

4

improves source-code comprehen-

sibility. This implies that more diagrams refer to the same piece of software and

each of them can be seen as an excerpt of the entire class diagram of that piece

of software. This is the main difference between this aspect of our second research

direction and that just before. We conducted an experiment with Master’s degree

students [54]. The control group of this experiment comprised students who were

given source code alone without any reference to the design-pattern instances con-

tained in it. We carried out four successive controlled experiments with participants

who had different experience as regards programming and software modeling (i.e.,

Bachelor’s, Master’s, and PhD students and practitioners) [55]. The effect of textu-

ally documented design-pattern instances was also studied. Data regarding this kind

of documentation was clearly not considered in the study presented in this paper,

since the UML was not used.

All 12 experiments (primary studies) briefly described above and summarized in Table 2

were carried out by following the recommendations provided in [40,43,63]. In this section,

we summarize the planning and the operation phases of these experiments and provide the

most salient information concerning the study presented in this paper.

The experiments are reported according to the guidelines suggested by Jedlitschka et

al. [38]. For replication purposes, we have made the raw data regarding of all our experi-

ments available on the web.

5

4.1 Goal

According to the Goal Question Metrics template [8], the goal of the study presented in this

paper is: to analyze the use of UML analysis and design models for the purpose of under-

standing their utility with respect to the comprehensibility of object-oriented source code

from the point of view of the software engineer in the context of students and practitioners.

4.2 Context Selection

We used different software systems and UML diagrams in our study. The systems used were

those described in the fifth column of Table 2, while the diagrams are those shown in the

4

Design-pattern instances can be seen as a micro-architecture that developers copy and adapt to their

particular designs in order to solve the recurrent problem described by the design pattern [10,25].

5

www2.unibas.it/gscanniello/SourceCodeComprMetaAnalysis/data.xlsx

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 15

second column of this table. All the experimental objects were desktop applications and

were implemented in Java. We used the Music Shop

6

and Theater Ticket Reservation

7

ap-

plications. Moreover, their models were created in a course on Advanced Object-Oriented

Programming (AOOP). The lecturer of this course was involved in neither the study pre-

sented here nor those shown in Table 2, which allowed us to mitigate possible threats to

construct validity (Experimenters’ Expectancies). We used the source code that the lec-

turer selected from among the software systems developed by the students on the AOOP

course. We did not have any control over the selection process. However, we reviewed the

documentation and models to find possible issues. It was not necessary make any consid-

erable modifications. We only removed possible typographical errors and indented source

code when appropriate. Source-code comments were removed to avoid their presence hav-

ing any effect on the results. That is, the effect of source-code comments could have been

confused (or could have interacted) with the main factor being studied. This design choice

could have affected external validity and it is further discussed in Section 5.4.2. The students

that developed the experimental objects did not participate in the experiments. In order to

deal with the threat to external validity, we also used open-source software. We selected a

chunk (i.e., a vertical slice) of JHotDraw v5.1. This chunk included: (i) 10 instances of de-

sign patterns in total — two instances for the State design pattern and one instance for the

following design patterns: Adapter, Strategy, Decorator, Composite, Observer, Command,

Template Method, and Prototype — and (ii) the design patterns considered were well-known

and widely adopted [25]. We documented the design-pattern instances present in the source

code using both the JHotDraw documentation and the PMARt dataset [30]. This allowed us

to document both intentional and unintentional design-pattern instances. Although traceabil-

ity links are important as regards identifying relationships between source code and software

models (see Section 2.2), we avoided providing them to the participants. The rationale for

this was that making this information available to a developer could affect source code com-

prehensibility in an undesirable way, i.e., concealing the effect of the use of software models

on source code comprehension. However, this design choice could have affected the exter-

nal validity, since traceability links could be available (e.g., post-facto) to support program

comprehension tasks in the software industry [4].

We conducted all the experiments, with the exception of DePra (see Table 2), in research

laboratories. DePra was conducted at the participants’ companies. All the experiments were

conducted under controlled conditions. The most participants’ salient characteristics are

summarized in Table 2 (third column). Participation in the experiments was on a voluntary

basis. The participants were not paid. Each participant took part in only one experiment.

Further information on the experimental objects and their selection process, along with the

characteristics of the participants in the experiments, can be found in [27,28,53–55].

6

This is a software system that is used to sell and manage CDs/DVDs in a music shop. The feature search
for a singer was used in the experiments: the user inserts a string (e.g., the surname of the singer), and

the system then searches for all the singers that satisfy the search criterion and shows them in a list of the

associated information.

7

IThis is a software system with which to book and buy theater tickets. The feature buy a theater ticket was

used in the experiments: the system shows the list of the available tickets for a given theater and performance,

and the user then chooses the ticket and inserts data about the spectator.

1
6

S
c
a
n

n
i
e
l
l
o

e
t

a
l
.

Table 2: Summary of the experiments

⇤

Experiment UML Diagrams

Number of Participants

and Kind

Design Exp. Objects

Results

Comprehension Completion time

AnBsc [28] Use case, class, and se-

quence

16 3rd year Bachelor’s

degree students

- One-factor-with more

treatments

- Randomized

A chunk of Music Shop

software system

implemented in Java

A chunk of a Theater

Ticket Reservation system

implemented in Java

The difference is

not statistically

significant

Not considered

DeBscExp1 [27]

Class and sequence

16 2nd year Bachelor’s

degree students

- Crossover design

- Randomized

The difference is

not statistically

significant

The difference is

statistically signifi-

cant. More time taken

when models used

DeMscExp1 [27] 16 second year Master’s

degree students

The difference is sta-

tistically significant.

Better comprehension

when models used

The difference is

not statistically

significant

AnMscExp1 [53]

Use case, class, and

sequence

24 1st year Master’s de-

gree students

- Crossover design

- Ability as blocking

factor

The difference is

not statistically

significant

Not considered

AnMscExp2 [53] 22 2nd year Master’s de-

gree students

The difference is

not statistically

significant

AnMscExp3 [53] 22 1st year Master’s de-

gree students

The difference is sta-

tistically significant.

Better comprehension

when models not used

AnPra [53] 18 Practitioners The difference is

not statistically

significant

DeMscExp2 [54]

Class

24 1st year Master’s de-

gree students

-One-factor-with more

treatments

- Ability as blocking

factor for students

- Years of working

experience as blocking

factor for practitioners

JHotDraw: a

two-dimensional graphics

framework for structured

drawing editors

implemented in Java. A

chunk (i.e., vertical slice)

of the entire software was

selected

Analysis of compre-

hension not presented

The difference is sta-

tistically significant.

Less time taken when

models used

DePra [55] 16 Practitioners The difference is sta-

tistically significant.

Better comprehension

when models used

The difference is

not statistically

significant

DeMscExp3 [55] 16 1st year Master’s de-

gree students

The difference is not

statistically

significantDeBscExp2 [55] 15 3rd year Bachelor’s

degree students

DePhd [55] 10 Ph.D students The difference is sta-

tistically significant.

Better comprehension

when models used

⇤
The labels of the experiments are expressed using the upper-camel case notation. Each compound word has a specific meaning. The first word suggests the kind of UML-based documentation: (An)

stands for those documents produced in the analysis phase and (De) stands for those documents produced in the design phase. The second word indicates the kind of participant. For example, Pra and

Msc stand for practitioner and Master’s degree student, respectively. The third word is a progressive id for the experiment. We used id to better discern each experiment that was based on the same kind

of documentation and involved the same kind of participants.

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 17

4.3 Selection of Variables

In each experiment, we considered those participants who were given source code alone as

comprising the control group, while the treatment group comprised students who were given

source code with software models based on the UML. The independent variable (from here

on manipulated factor or main factor, also) considered in each primary study was, therefore,

method. This variable is nominal and can assume the following two values: models (UML-

based models and source code without comments) and source code (source code without

comments).

The effect of the manipulated factor was analyzed on the following chosen constructs:

– Comprehension. This denotes the comprehension level of the source code achieved by

a software engineer.

– Completion time. This denotes the time a software engineer takes to accomplish a com-

prehension task.

We used questionnaires to assess source-code comprehensibility. The correctness and

completeness of the answers provided in these questionnaires were quantitatively evaluated

by using an information-retrieval-based approach. Each answer was provided in the form of

string items (e.g., a sequence of method/class names and/or the text messages shown to a

user), which were compared with the expected items. We measured the correctness of the

answers by using the precision measure, while the completeness was measured by means of

the recall measure. In order to obtain a single measure for all the questions in a questionnaire,

we computed the overall average of the F-measure values (i.e., a balanced harmonic mean

of precision and recall). The F-measure was used to estimate the comprehension variable.

F-measure values range in between 0 and 1. This was the dependent variable (or response

variable) used to assess the comprehension construct. The higher the value of this variable,

the greater the comprehensibility of source-code was.

We estimated the completion time construct using the overall time (expressed in min-

utes) taken to answer a comprehension questionnaire. The higher the value of time, the

greater the effort

8

required to accomplish a comprehension task.

4.4 Design

We used different kinds of designs in the experiments. As shown in Table 2, we used

crossover designs in DeMscExp1, AnMscExp1, AnMscExp2, AnMscExp3, and AnPra. In

the remaining experiments, we adopted the one-factor-with two treatments design [63]. This

kind of experimental does not suffer from the presence of a possible carry-over effect,

9

while

the crossover design may do so. It is worth noting that the design of some experiments was

randomized, while in others we used the participants’ ability as a blocking factor (see Ta-

ble 2 for details). When applicable, randomization allowed us to mitigate carry-over that we

had already analyzed in the primary studies. In all the experiments, the participants accom-

plished the task alone, that is, they did not work in a group to accomplish a comprehension

task.

8

The time was an approximation of comprehension effort. This complies with the ISO/IEC 9126 stan-

dard [35] (and subsequent versions), in which effort is the productive time associated with a specific project

task.

9

If a participant is tested first under the experimental condition A and then under the experimental condi-

tion B, she/he could potentially perform better or worse under condition B.

18 Scanniello et al.

4.5 Experimental Tasks and Operation

All the participants were asked to fill in a comprehension questionnaire and a post-experiment

survey questionnaire. The composition of both these questionnaires depended on the experi-

ment and the tasks. We formulated the questions in the comprehension questionnaires using

a similar form/schema. In addition, these questions were formulated to assess comprehen-

sion of the source code that we believed to be more relevant and concerned understanding

concepts in this source code, which (as suggested by Sillitto et al. [60]) involved multiple

relationships and software entities. Further details on the experimental tasks and the experi-

mental procedure can be found in [27,28,53–55].

4.6 Analysis Procedure

Th results of a meta-analysis are commonly displayed graphically as “forest plots” [51].

This kind of pictorial representation provides a quick and easy means to illustrate the relative

strength of treatment effects. Forest plots display point estimates and confidence intervals for

individual experiments, in addition to an estimate of the overall summary effect size. This

notation also shows the extent to which each experiment contributes to the overall result.

5 Results and Discussion

In Table 3, we show some sentences from the language defined by employing the regular

expression reported in Section 3.4. For example, ab covers the case of no heterogeneity in

which a meta-analysis is not executed, while abc and abd represent the case in which hetero-

geneity is ignored or incorporated and a meta-analysis is executed, respectively. Conversely,

in order to cover the case of exploring heterogeneity, we performed sub-group analyses for

the dependent variables Comprehension and Completion time, since the experiments were

heterogeneous. In particular, we grouped the experiments according to the kind of models

used, namely An (i.e., UML-based models produced in the requirements engineering pro-

cess) and De (UML-based models produced in the design phase). These cases are covered

by the sentences ab(gb)⇤c and ab(gb)⇤d.

Furthermore, ab(fb)⇤, ab(fb)⇤c, and ab(fb)⇤d cover the cases of the application of the

process shown in Figure 1 when we cleaned the experiment set by excluding those studies

that involved participants with little experience, namely AnBsc, DeBscExp1, and DeBsc-

Exp2. We also considered the cases of not exploring the heterogeneity and employing a fur-

ther dependent variable, namely Efficiency,

10

which are covered by the sentences ab(eab)⇤,

ab(eab)⇤c, and ab(eab)⇤d.

In the following subsections, we first report the results obtained and then discuss them

according to the cases shown in Table 3. We then present the implications of our study and

conclude with a discussion regarding the threats to validity.

10

Efficiency is a derived measure that is computed as the ratio between comprehension and completion

time. Task efficiency is a ratio measure and estimates a participant’s efficiency as regards the execution of

a comprehension task. The larger the efficiency value, the better it is. The perspective we adopted is that

of quality in use (e.g., [36,37]), since efficiency measures source code comprehension achieved during the

expenditure of available models.

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 19

Table 3: Instances of the process shown in Figure 1 considered

Sentence Dependent Variable

ab Comprehension, Completion Time

abc Comprehension, Completion Time

abd Comprehension, Completion Time

abgbc Comprehension, Completion Time

abgbd Completion Time

abfb Comprehension, Completion Time

abfbc Comprehension, Completion Time

abfbd Comprehension, Completion Time

abeab Efficiency

abeabc Efficiency

abeabd Efficiency

5.1 Meta-Analysis Results

We summarize the results of each experiment, by employing the descriptive statistics of

the measures of the dependent variables. The descriptive statistics for Comprehension (i.e.,

mean, standard deviation, and number of observations) grouped by method are shown in the

forest plot in Figure 2 (for each of the cases considered shown in Table 3). The same de-

scriptive statistics for Completion time and Efficiency are reported in Figure 3 and Figure 4,

respectively. It is worth mentioning that we do not show any results for the sentences ab,

abfb, abgb, and abeab (see Table 3), because the process in Figure 1 does not require the

execution of a meta-analysis. Some other sentences are also not reported (e.g., those that

excessively reduce the number of experiments in the analyses, see Section 3).

The results are synthesized by means of the Mean Differences (MDs) of the outcome

measures of the experiments. This is possible because the experiments have the same out-

come measures for each dependent variable studied.

Results concerning the testing of heterogeneity are also shown at the bottom of each

forest plot (see, for example, the left-hand side of Figure 2(a)). With regard to Compre-

hension, the results of the Cochran’s Q test (see Figure 2(a) — sentence abc) suggest that

the experiments were heterogeneous (p=0.0001) while the I-squared values indicates a sub-

stantial/considerable heterogeneity that is also confirmed by the Tau-squared value. We can,

therefore, incorporate heterogeneity and apply a random effects model (see Figure 2(b) —

sentence abd).

20 Scanniello et al.

St
ud
y

Fi
xe

d
ef

fe
ct

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=6

9.
8%

, t
au

-s
qu

ar
ed

=0
.0

05
5,

 p
=0

.0
00

1

A
nB
sc

D
eB
sc
E
xp
1

D
eM
sc
E
xp
1

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eB
sc
E
xp
2

D
eP
hd

To
ta
l

16
7 8 1
6

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 8 5

M
ea
n

0.
84

0.
79

0.
87

0.
73

0.
56

0.
33

0.
48

0.
49

0.
51

0.
43

0.
38

0.
51

SD 0.
13

0.
11

0.
10

0.
15

0.
23

0.
26

0.
23

0.
13

0.
10

0.
11

0.
07

0.
03

M
od
el
s
To
ta
l

16
6 8 1
6

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 7 5

M
ea
n

0.
84

0.
79

0.
78

0.
73

0.
63

0.
59

0.
61

0.
46

0.
40

0.
31

0.
38

0.
39

SD 0.
11

0.
08

0.
09

0.
13

0.
23

0.
20

0.
22

0.
09

0.
10

0.
12

0.
11

0.
12

S
ou

rc
e

co
de

-0
.2

0
0.
2

M
ea

n
di

ffe
re

nc
e

M
D

 0
.0

2

 0
.0

0
 0

.0
0

 0
.0

9
 0

.0
0

-0
.0
7

-0
.2
6

-0
.1
3

 0
.0

3
 0

.1
1

 0
.1

2
 0

.0
0

 0
.1

2

95
%
-C
I

[0
.0

0;
 0

.0
5]

[-0
.1

2;
 0

.1
2]

[-0
.0

7;
 0

.0
7]

[0
.0

2;
 0

.1
6]

[-0
.0

8;
 0

.0
8]

[-0
.2

1;
 0

.0
7]

[-0
.4

0;
 -0

.1
2]

[-0
.2

8;
 0

.0
2]

[-0
.0

6;
 0

.1
2]

[0
.0

1;
 0

.2
1]

[0
.0

1;
 0

.2
3]

[-0
.0

9;
 0

.0
9]

[0
.0

1;
 0

.2
3]

W
(f
ix
ed
)

10
0%

 5
.3

%
16
.8
%

17
.1
%

11
.8
%

 4
.0

%
 4

.0
%

 3
.4

%
 9

.3
%

 7
.8

%
 5

.9
%

 8
.3

%
 6

.3
%

(
a
)
a
bc

-
F

i
x
e
d

e
f
f
e
c
t

m
o

d
e
l

o
n

a
l
l

t
h

e
s
t
u

d
i
e
s

St
ud
y

R
an

do
m

 e
ff

ec
ts

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=6

9.
8%

, t
au

-s
qu

ar
ed

=0
.0

05
5,

 p
=0

.0
00

1

A
nB
sc

D
eB
sc
E
xp
1

D
eM
sc
E
xp
1

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eB
sc
E
xp
2

D
eP
hd

To
ta
l

16
7 8 1
6

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 8 5

M
ea
n

0.
84

0.
79

0.
87

0.
73

0.
56

0.
33

0.
48

0.
49

0.
51

0.
43

0.
38

0.
51

SD 0.
13

0.
11

0.
10

0.
15

0.
23

0.
26

0.
23

0.
13

0.
10

0.
11

0.
07

0.
03

M
od
el
s
To
ta
l

16
6 8 1
6

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 7 5

M
ea
n

0.
84

0.
79

0.
78

0.
73

0.
63

0.
59

0.
61

0.
46

0.
40

0.
31

0.
38

0.
39

SD 0.
11

0.
08

0.
09

0.
13

0.
23

0.
20

0.
22

0.
09

0.
10

0.
12

0.
11

0.
12

S
ou

rc
e

co
de

-0
.2

0
0.
2

M
ea

n
di

ffe
re

nc
e

M
D

 0
.0

1

 0
.0

0
 0

.0
0

 0
.0

9
 0

.0
0

-0
.0
7

-0
.2
6

-0
.1
3

 0
.0

3
 0

.1
1

 0
.1

2
 0

.0
0

 0
.1

2

95
%
-C
I

[-0
.0

4;
 0

.0
6]

[-0
.1

2;
 0

.1
2]

[-0
.0

7;
 0

.0
7]

[0
.0

2;
 0

.1
6]

[-0
.0

8;
 0

.0
8]

[-0
.2

1;
 0

.0
7]

[-0
.4

0;
 -0

.1
2]

[-0
.2

8;
 0

.0
2]

[-0
.0

6;
 0

.1
2]

[0
.0

1;
 0

.2
1]

[0
.0

1;
 0

.2
3]

[-0
.0

9;
 0

.0
9]

[0
.0

1;
 0

.2
3]

W
(r
an
do
m
)

10
0%

 7
.6

%
10
.4
%

10
.4
%

 9
.7

%
 6

.7
%

 6
.6

%
 6

.2
%

 9
.1

%
 8

.6
%

 7
.8

%
 8

.8
%

 8
.1

%

(
b

)
a
bd

-
R

a
n

d
o

m
e
f
f
e
c
t
s

m
o

d
e
l

o
n

a
l
l

t
h

e
s
t
u

d
i
e
s

St
ud
y

Fi
xe

d
ef

fe
ct

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=7

7.
2%

, t
au

-s
qu

ar
ed

=0
.0

08
8,

 p
<0

.0
00

1

D
eM
sc
E
xp
1

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eP
hd

To
ta
l

13
5

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 5

M
ea
n

0.
87

0.
73

0.
56

0.
33

0.
48

0.
49

0.
51

0.
43

0.
51

SD 0.
10

0.
15

0.
23

0.
26

0.
23

0.
13

0.
10

0.
11

0.
03

M
od
el
s
To
ta
l

13
5

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 5

M
ea
n

0.
78

0.
73

0.
63

0.
59

0.
61

0.
46

0.
40

0.
31

0.
39

SD 0.
09

0.
13

0.
23

0.
20

0.
22

0.
09

0.
10

0.
12

0.
12

S
ou

rc
e

co
de

-0
.2

0
0.
2

M
ea

n
di

ffe
re

nc
e

M
D

 0
.0

3

 0
.0

9
 0

.0
0

-0
.0
7

-0
.2
6

-0
.1
3

 0
.0

3
 0

.1
1

 0
.1

2
 0

.1
2

95
%
-C
I

[0
.0

0;
 0

.0
7]

[0
.0

2;
 0

.1
6]

[-0
.0

8;
 0

.0
8]

[-0
.2

1;
 0

.0
7]

[-0
.4

0;
 -0

.1
2]

[-0
.2

8;
 0

.0
2]

[-0
.0

6;
 0

.1
2]

[0
.0

1;
 0

.2
1]

[0
.0

1;
 0

.2
3]

[0
.0

1;
 0

.2
3]

W
(f
ix
ed
)

10
0%

24
.6
%

17
.0
%

 5
.8

%
 5

.7
%

 4
.9

%
13
.4
%

11
.1
%

 8
.4

%
 9

.1
%

(
c
)
a
b(
f
b)

⇤
c

-
F

i
x
e
d

e
f
f
e
c
t

m
o

d
e
l

a
f
t
e
r

e
x

c
l
u

d
i
n

g
s
t
u

d
i
e
s

St
ud
y

R
an

do
m

 e
ff

ec
ts

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=7

7.
2%

, t
au

-s
qu

ar
ed

=0
.0

08
8,

 p
<0

.0
00

1

D
eM
sc
E
xp
1

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eP
hd

To
ta
l

13
5

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 5

M
ea
n

0.
87

0.
73

0.
56

0.
33

0.
48

0.
49

0.
51

0.
43

0.
51

SD 0.
10

0.
15

0.
23

0.
26

0.
23

0.
13

0.
10

0.
11

0.
03

M
od
el
s
To
ta
l

13
5

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 5

M
ea
n

0.
78

0.
73

0.
63

0.
59

0.
61

0.
46

0.
40

0.
31

0.
39

SD 0.
09

0.
13

0.
23

0.
20

0.
22

0.
09

0.
10

0.
12

0.
12

S
ou

rc
e

co
de

-0
.2

0
0.
2

M
ea

n
di

ffe
re

nc
e

M
D

 0
.0

1

 0
.0

9
 0

.0
0

-0
.0
7

-0
.2
6

-0
.1
3

 0
.0

3
 0

.1
1

 0
.1

2
 0

.1
2

95
%
-C
I

[-0
.0

6;
 0

.0
8]

[0
.0

2;
 0

.1
6]

[-0
.0

8;
 0

.0
8]

[-0
.2

1;
 0

.0
7]

[-0
.4

0;
 -0

.1
2]

[-0
.2

8;
 0

.0
2]

[-0
.0

6;
 0

.1
2]

[0
.0

1;
 0

.2
1]

[0
.0

1;
 0

.2
3]

[0
.0

1;
 0

.2
3]

W
(r
an
do
m
)

10
0%

13
.3
%

12
.6
%

 9
.7

%
 9

.6
%

 9
.1

%
12
.1
%

11
.7
%

10
.9
%

11
.1
%

(
d

)
a
b(
f
b)

⇤
d

-
R

a
n

d
o

m
e
f
f
e
c
t
s

m
o

d
e
l

a
f
t
e
r

e
x

c
l
u

d
i
n

g
s
t
u

d
i
e
s

St
ud
y

Fi
xe

d
ef

fe
ct

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=6

7.
4%

, t
au

-s
qu

ar
ed

=0
.0

07
6,

 p
=0

.0
15

6

A
nB
sc

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

To
ta
l

94 8 24 22 22 18

M
ea
n

0.
84

0.
73

0.
56

0.
33

0.
48

SD 0.
13

0.
15

0.
23

0.
26

0.
23

M
od
el
s
To
ta
l

94 8 24 22 22 18

M
ea
n

0.
84

0.
73

0.
63

0.
59

0.
61

SD 0.
11

0.
13

0.
23

0.
20

0.
22

S
ou

rc
e

co
de

-0
.2

0
0.
2

M
ea

n
di

ffe
re

nc
e

M
D

-0
.0
6

 0
.0

0
 0

.0
0

-0
.0
7

-0
.2
6

-0
.1
3

95
%
-C
I

[-0
.1

1;
 -0

.0
1]

[-0
.1

2;
 0

.1
2]

[-0
.0

8;
 0

.0
8]

[-0
.2

1;
 0

.0
7]

[-0
.4

0;
 -0

.1
2]

[-0
.2

8;
 0

.0
2]

W
(f
ix
ed
)

10
0%

18
.7
%

41
.3
%

14
.1
%

13
.9
%

12
.0
%

(
e
)
a
b(
g
b)

⇤
c

-
F

i
x
e
d

e
f
f
e
c
t

m
o

d
e
l

o
n

t
h

e
s
u

b
-
g

r
o

u
p

A
n

St
ud
y

Fi
xe

d
ef

fe
ct

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=3

4.
3%

, t
au

-s
qu

ar
ed

=0
.0

01
, p

=0
.1

66
6

D
eB
sc
E
xp
1

D
eM
sc
E
xp
1

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eB
sc
E
xp
2

D
eP
hd

To
ta
l

7316 16 12 8 8 8 5

M
ea
n

0.
79

0.
87

0.
49

0.
51

0.
43

0.
38

0.
51

SD 0.
11

0.
10

0.
13

0.
10

0.
11

0.
07

0.
03

M
od
el
s
To
ta
l

7216 16 12 8 8 7 5

M
ea
n

0.
79

0.
78

0.
46

0.
40

0.
31

0.
38

0.
39

SD 0.
08

0.
09

0.
09

0.
10

0.
12

0.
11

0.
12

S
ou

rc
e

co
de

-0
.2

-0
.1

0
0.
1

0.
2

M
ea

n
di

ffe
re

nc
e

M
D

0.
06

0.
00

0.
09

0.
03

0.
11

0.
12

0.
00

0.
12

95
%
-C
I

[0
.0

3;
 0

.0
9]

[-0
.0

7;
 0

.0
7]

[0
.0

2;
 0

.1
6]

[-0
.0

6;
 0

.1
2]

[0
.0

1;
 0

.2
1]

[0
.0

1;
 0

.2
3]

[-0
.0

9;
 0

.0
9]

[0
.0

1;
 0

.2
3]

W
(f
ix
ed
)

10
0%

23
.5
%

24
.0
%

13
.0
%

10
.9
%

 8
.2

%
11
.6
%

 8
.9

%

(
f
)
a
b(
g
b)

⇤
c

F
i
x
e
d

e
f
f
e
c
t

m
o

d
e
l

o
n

t
h

e
s
u

b
-
g

r
o

u
p

D
e

F
i
g

.
2

:
F

o
r
e
s
t

p
l
o

t
s

f
o

r
C

o
m

p
r
e
h

e
n

s
i
o

n

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 21

St
ud
y

Fi
xe

d
ef

fe
ct

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=9

2.
1%

, t
au

-s
qu

ar
ed

=9
4.

25
, p

<0
.0

00
1

A
nB
sc

D
eB
sc
E
xp
1

D
eM
sc
E
xp
1

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eB
sc
E
xp
2

D
eP
hd

To
ta
l

16
7 8 1
6

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 8 5

M
ea
n

 3
5.

88
 3

8.
69

 3
0.

06
 2

6.
24

 1
9.

51
 1

1.
02

 1
8.

89
15
7.
67

14
2.
25

 8
5.

29
11
2.
00

 9
4.

60

SD

 4
.2

6
 8

.1
5

13
.1
3

 7
.0

5
 7

.8
9

 3
.0

5
 8

.3
2

26
.1
1

31
.1
7

26
.0
1

30
.8
4

13
.6
9

M
od
el
s
To
ta
l

16
6 8 1
6

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 7 5

M
ea
n

 2
0.

13
 2

1.
19

 2
3.

00
 2

5.
55

 1
9.

34
 1

5.
88

 1
7.

25
18
7.
58

14
7.
38

 8
3.

50
14
8.
86

10
8.
40

SD

 3
.2

3
 4

.7
1

 7
.6

1
 6

.9
5

 7
.4

0
 5

.8
4

 7
.0

0
16
.9
9

42
.8
1

33
.9
8

40
.2
7

28
.5
0

S
ou

rc
e

co
de

-6
0
-4
0
-2
0
0

20
40

60

M
ea

n
di

ffe
re

nc
e

M
D

 3
.3

3

 1
5.

75
 1

7.
50

 7
.0

6
 0

.6
9

 0
.1

7
 -4

.8
6

 1
.6

4
-2
9.
91

 -5
.1

3
 1

.7
9

-3
6.
86

-1
3.
80

95
%
-C
I

[
1.

81
;

 4
.8

6]

[1
2.

05
;

19
.4

5]
[1

2.
89

;
22

.1
1]

[-
0.

38
;

14
.5

0]
[-

3.
27

;
 4

.6
5]

[-
4.

35
;

 4
.6

9]
[-

7.
61

;
-2

.1
1]

[-
3.

38
;

 6
.6

6]
[-4

7.
54

; -
12

.2
8]

[-4
1.

83
;

31
.5

7]
[-2

7.
86

;
31

.4
4]

[-7
3.

56
;

-0
.1

6]
[-4

1.
51

;
13

.9
1]

W
(f
ix
ed
)

10
0%

17
.0
%

10
.9
%

 4
.2

%
14
.8
%

11
.4
%

30
.7
%

 9
.2

%
 0

.7
%

 0
.2

%
 0

.3
%

 0
.2

%
 0

.3
%

(
a
)
a
bc

-
F

i
x
e
d

e
f
f
e
c
t

m
o

d
e
l

o
n

a
l
l

t
h

e
s
t
u

d
i
e
s

St
ud
y

R
an

do
m

 e
ff

ec
ts

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=9

2.
1%

, t
au

-s
qu

ar
ed

=9
4.

25
, p

<0
.0

00
1

A
nB
sc

D
eB
sc
E
xp
1

D
eM
sc
E
xp
1

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eB
sc
E
xp
2

D
eP
hd

To
ta
l

16
7 8 1
6

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 8 5

M
ea
n

 3
5.

88
 3

8.
69

 3
0.

06
 2

6.
24

 1
9.

51
 1

1.
02

 1
8.

89
15
7.
67

14
2.
25

 8
5.

29
11
2.
00

 9
4.

60

SD

 4
.2

6
 8

.1
5

13
.1
3

 7
.0

5
 7

.8
9

 3
.0

5
 8

.3
2

26
.1
1

31
.1
7

26
.0
1

30
.8
4

13
.6
9

M
od
el
s
To
ta
l

16
6 8 1
6

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 7 5

M
ea
n

 2
0.

13
 2

1.
19

 2
3.

00
 2

5.
55

 1
9.

34
 1

5.
88

 1
7.

25
18
7.
58

14
7.
38

 8
3.

50
14
8.
86

10
8.
40

SD

 3
.2

3
 4

.7
1

 7
.6

1
 6

.9
5

 7
.4

0
 5

.8
4

 7
.0

0
16
.9
9

42
.8
1

33
.9
8

40
.2
7

28
.5
0

S
ou

rc
e

co
de

-6
0
-4
0
-2
0
0

20
40

60

M
ea

n
di

ffe
re

nc
e

M
D

 0
.8

0

 1
5.

75
 1

7.
50

 7
.0

6
 0

.6
9

 0
.1

7
 -4

.8
6

 1
.6

4
-2
9.
91

 -5
.1

3
 1

.7
9

-3
6.
86

-1
3.
80

95
%
-C
I

[-
5.

86
;

 7
.4

6]

[1
2.

05
;

19
.4

5]
[1

2.
89

;
22

.1
1]

[-
0.

38
;

14
.5

0]
[-

3.
27

;
 4

.6
5]

[-
4.

35
;

 4
.6

9]
[-

7.
61

;
-2

.1
1]

[-
3.

38
;

 6
.6

6]
[-4

7.
54

; -
12

.2
8]

[-4
1.

83
;

31
.5

7]
[-2

7.
86

;
31

.4
4]

[-7
3.

56
;

-0
.1

6]
[-4

1.
51

;
13

.9
1]

W
(r
an
do
m
)

10
0%

11
.8
%

11
.6
%

10
.6
%

11
.7
%

11
.6
%

12
.0
%

11
.4
%

 6
.6

%
 2

.6
%

 3
.6

%
 2

.6
%

 3
.9

%

(
b

)
a
bd

-
R

a
n

d
o

m
e
f
f
e
c
t
s

m
o

d
e
l

o
n

a
l
l

t
h

e
s
t
u

d
i
e
s

St
ud
y

Fi
xe

d
ef

fe
ct

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=6

7.
7%

, t
au

-s
qu

ar
ed

=1
9.

42
, p

=0
.0

01
7

D
eM
sc
E
xp
1

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eP
hd

To
ta
l

13
5

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 5

M
ea
n

 3
0.

06
 2

6.
24

 1
9.

51
 1

1.
02

 1
8.

89
15
7.
67

14
2.
25

 8
5.

29
 9

4.
60

SD

13
.1
3

 7
.0

5
 7

.8
9

 3
.0

5
 8

.3
2

26
.1
1

31
.1
7

26
.0
1

13
.6
9

M
od
el
s
To
ta
l

13
5

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 5

M
ea
n

 2
3.

00
 2

5.
55

 1
9.

34
 1

5.
88

 1
7.

25
18
7.
58

14
7.
38

 8
3.

50
10
8.
40

SD

 7
.6

1
 6

.9
5

 7
.4

0
 5

.8
4

 7
.0

0
16
.9
9

42
.8
1

33
.9
8

28
.5
0

S
ou

rc
e

co
de

-4
0

-2
0

0
20

40

M
ea

n
di

ffe
re

nc
e

M
D

 -1
.6

6

 7
.0

6
 0

.6
9

 0
.1

7
 -4

.8
6

 1
.6

4
-2
9.
91

 -5
.1

3
 1

.7
9

-1
3.
80

95
%
-C
I

[-
3.

46
;

 0
.1

4]

[-
0.

38
;

14
.5

0]
[-

3.
27

;
 4

.6
5]

[-
4.

35
;

 4
.6

9]
[-

7.
61

;
-2

.1
1]

[-
3.

38
;

 6
.6

6]
[-4

7.
54

; -
12

.2
8]

[-4
1.

83
;

31
.5

7]
[-2

7.
86

;
31

.4
4]

[-4
1.

51
;

13
.9

1]

W
(f
ix
ed
)

10
0%

 5
.9

%
20
.6
%

15
.9
%

42
.7
%

12
.8
%

 1
.0

%
 0

.2
%

 0
.4

%
 0

.4
%

(
c
)
a
b(
f
b)

⇤
c

-
F

i
x
e
d

e
f
f
e
c
t

m
o

d
e
l

a
f
t
e
r

e
x

c
l
u

d
i
n

g
s
t
u

d
i
e
s

St
ud
y

R
an

do
m

 e
ff

ec
ts

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=6

7.
7%

, t
au

-s
qu

ar
ed

=1
9.

42
, p

=0
.0

01
7

D
eM
sc
E
xp
1

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eP
hd

To
ta
l

13
5

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 5

M
ea
n

 3
0.

06
 2

6.
24

 1
9.

51
 1

1.
02

 1
8.

89
15
7.
67

14
2.
25

 8
5.

29
 9

4.
60

SD

13
.1
3

 7
.0

5
 7

.8
9

 3
.0

5
 8

.3
2

26
.1
1

31
.1
7

26
.0
1

13
.6
9

M
od
el
s
To
ta
l

13
5

 1
6

 2
4

 2
2

 2
2

 1
8

 1
2 8 8 5

M
ea
n

 2
3.

00
 2

5.
55

 1
9.

34
 1

5.
88

 1
7.

25
18
7.
58

14
7.
38

 8
3.

50
10
8.
40

SD

 7
.6

1
 6

.9
5

 7
.4

0
 5

.8
4

 7
.0

0
16
.9
9

42
.8
1

33
.9
8

28
.5
0

S
ou

rc
e

co
de

-4
0

-2
0

0
20

40

M
ea

n
di

ffe
re

nc
e

M
D

 -1
.3

1

 7
.0

6
 0

.6
9

 0
.1

7
 -4

.8
6

 1
.6

4
-2
9.
91

 -5
.1

3
 1

.7
9

-1
3.
80

95
%
-C
I

[-
5.

50
;

 2
.8

8]

[-
0.

38
;

14
.5

0]
[-

3.
27

;
 4

.6
5]

[-
4.

35
;

 4
.6

9]
[-

7.
61

;
-2

.1
1]

[-
3.

38
;

 6
.6

6]
[-4

7.
54

; -
12

.2
8]

[-4
1.

83
;

31
.5

7]

(
d

)
a
b(
f
b)

⇤
d

-
R

a
n

d
o

m
e
f
f
e
c
t
s

m
o

d
e
l

a
f
t
e
r

e
x

c
l
u

d
i
n

g
s
t
u

d
i
e
s

St
ud
y

Fi
xe

d
ef

fe
ct

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=9

4.
9%

, t
au

-s
qu

ar
ed

=7
0.

84
, p

<0
.0

00
1

A
nB
sc

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

To
ta
l

94 8 24 22 22 18

M
ea
n

35
.8
8

26
.2
4

19
.5
1

11
.0
2

18
.8
9

SD 4.
26

7.
05

7.
89

3.
05

8.
32

M
od
el
s
To
ta
l

94 8 24 22 22 18

M
ea
n

20
.1
3

25
.5
5

19
.3
4

15
.8
8

17
.2
5

SD 3.
23

6.
95

7.
40

5.
84

7.
00

S
ou

rc
e

co
de

-1
0

0
10

M
ea

n
di

ffe
re

nc
e

M
D

 1
.7

5

15
.7
5

 0
.6

9
 0

.1
7

-4
.8
6

 1
.6

4

95
%
-C
I

[0
.0

7;
 3

.4
2]

[1
2.

05
; 1

9.
45

]
[-3

.2
7;

 4
.6

5]
[-4

.3
5;

 4
.6

9]
[-7

.6
1;

 -2
.1

1]
[-3

.3
8;

 6
.6

6]

W
(f
ix
ed
)

10
0%

20
.4
%

17
.9
%

13
.7
%

36
.9
%

11
.1
%

(
e
)
a
b(
g
b)

⇤
c

-
F

i
x
e
d

e
f
f
e
c
t

m
o

d
e
l

o
n

t
h

e
s
u

b
-
g

r
o

u
p

A
n

St
ud
y

Fi
xe

d
ef

fe
ct

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=8

5%
, t

au
-s

qu
ar

ed
=2

40
.6

, p
<0

.0
00

1

D
eB
sc
E
xp
1

D
eM
sc
E
xp
1

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eB
sc
E
xp
2

D
eP
hd

To
ta
l

7316 16 12 8 8 8 5

M
ea
n

 3
8.

69
 3

0.
06

15
7.
67

14
2.
25

 8
5.

29
11
2.
00

 9
4.

60

SD

 8
.1

5
13
.1
3

26
.1
1

31
.1
7

26
.0
1

30
.8
4

13
.6
9

M
od
el
s
To
ta
l

7216 16 12 8 8 7 5

M
ea
n

 2
1.

19
 2

3.
00

18
7.
58

14
7.
38

 8
3.

50
14
8.
86

10
8.
40

SD

 4
.7

1
 7

.6
1

16
.9
9

42
.8
1

33
.9
8

40
.2
7

28
.5
0

S
ou

rc
e

co
de

-6
0
-4
0
-2
0
0

20
40

60

M
ea

n
di

ffe
re

nc
e

M
D

 1
1.

17

 1
7.

50
 7

.0
6

-2
9.
91

 -5
.1

3
 1

.7
9

-3
6.
86

-1
3.
80

95
%
-C
I

[
7.

45
;

14
.8

9]

[1
2.

89
;

22
.1

1]
[-

0.
38

;
14

.5
0]

[-4
7.

54
; -

12
.2

8]
[-4

1.
83

;
31

.5
7]

[-2
7.

86
;

31
.4

4]
[-7

3.
56

;
-0

.1
6]

[-4
1.

51
;

13
.9

1]

W
(f
ix
ed
)

10
0%

65
.1
%

25
.0
%

 4
.5

%
 1

.0
%

 1
.6

%
 1

.0
%

 1
.8

%

(
f
)
a
b(
g
b)

⇤
c

-
F

i
x
e
d

e
f
f
e
c
t

m
o

d
e
l

o
n

t
h

e
s
u

b
-
g

r
o

u
p

D
e

St
ud
y

R
an

do
m

 e
ff

ec
ts

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=9

4.
9%

, t
au

-s
qu

ar
ed

=7
0.

84
, p

<0
.0

00
1

A
nB
sc

A
nM
sc
E
xp
1

A
nM
sc
E
xp
2

A
nM
sc
E
xp
3

A
nP
ra

To
ta
l

94 8 24 22 22 18

M
ea
n

35
.8
8

26
.2
4

19
.5
1

11
.0
2

18
.8
9

SD 4.
26

7.
05

7.
89

3.
05

8.
32

M
od
el
s
To
ta
l

94 8 24 22 22 18

M
ea
n

20
.1
3

25
.5
5

19
.3
4

15
.8
8

17
.2
5

SD 3.
23

6.
95

7.
40

5.
84

7.
00

S
ou

rc
e

co
de

-1
0

0
10

M
ea

n
di

ffe
re

nc
e

M
D

 2
.6

7

15
.7
5

 0
.6

9
 0

.1
7

-4
.8
6

 1
.6

4

95
%
-C
I

[-4
.9

3;
 1

0.
26

]

[1
2.

05
; 1

9.
45

]
[-3

.2
7;

 4
.6

5]
[-4

.3
5;

 4
.6

9]
[-7

.6
1;

 -2
.1

1]
[-3

.3
8;

 6
.6

6]

W
(r
an
do
m
)

10
0%

20
.2
%

20
.0
%

19
.7
%

20
.6
%

19
.4
%

(
g

)
a
b(
g
b)

⇤
d

-
R

a
n

d
o

m
e
f
f
e
c
t
s

m
o

d
e
l

o
n

t
h

e
s
u

b
-
g

r
o

u
p

A
n

St
ud
y

R
an

do
m

 e
ff

ec
ts

 m
od

el
H

et
er

og
en

ei
ty

: I
-s

qu
ar

ed
=8

5%
, t

au
-s

qu
ar

ed
=2

40
.6

, p
<0

.0
00

1

D
eB
sc
E
xp
1

D
eM
sc
E
xp
1

D
eM
sc
E
xp
2

D
eP
ra

D
eM
sc
E
xp
3

D
eB
sc
E
xp
2

D
eP
hd

To
ta
l

7316 16 12 8 8 8 5

M
ea
n

 3
8.

69
 3

0.
06

15
7.
67

14
2.
25

 8
5.

29
11
2.
00

 9
4.

60

SD

 8
.1

5
13
.1
3

26
.1
1

31
.1
7

26
.0
1

30
.8
4

13
.6
9

M
od
el
s
To
ta
l

7216 16 12 8 8 7 5

M
ea
n

 2
1.

19
 2

3.
00

18
7.
58

14
7.
38

 8
3.

50
14
8.
86

10
8.
40

SD

 4
.7

1
 7

.6
1

16
.9
9

42
.8
1

33
.9
8

40
.2
7

28
.5
0

S
ou

rc
e

co
de

-6
0
-4
0
-2
0
0

20
40

60

M
ea

n
di

ffe
re

nc
e

M
D

 -4
.9

2

 1
7.

50
 7

.0
6

-2
9.
91

 -5
.1

3
 1

.7
9

-3
6.
86

-1
3.
80

95
%
-C
I

[-1
9.

18
;

 9
.3

5]

[1
2.

89
;

22
.1

1]
[-

0.
38

;
14

.5
0]

[-4
7.

54
; -

12
.2

8]
[-4

1.
83

;
31

.5
7]

[-2
7.

86
;

31
.4

4]
[-7

3.
56

;
-0

.1
6]

[-4
1.

51
;

13
.9

1]

W
(r
an
do
m
)

10
0%

21
.5
%

20
.8
%

16
.5
%

 9
.0

%
11
.3
%

 9
.0

%
12
.0
%

(
h

)
a
b(
g
b)

⇤
d

-
R

a
n

d
o

m
e
f
f
e
c
t
s

m
o

d
e
l

o
n

t
h

e
s
u

b
-
g

r
o

u
p

D
e

F
i
g

.
3

:
F

o
r
e
s
t

p
l
o

t
s

f
o

r
C

o
m

p
l
e
t
i
o

n
T

i
m

e

22 Scanniello et al.

As the squares in the figure suggest, the experiments contributed equally to the overall

result, that is, the use of models slightly improved source-code comprehensibility (MD =

0.01). Indeed, source-code comprehensibility was not significantly different

11

when using

or not using models in the execution of comprehension tasks. This result is also confirmed

by the overall 95% confidence interval

12

(IC) whose value is [�0.04; 0.06]. If we decide

to ignore heterogeneity and apply a fixed effects model, we obtain the MD values shown

in Figure 2(a). As we can see, the result is quite similar when taking into account the MD

values. However, the IC value is [0.00; 0.05].

With regard to Completion time, in Figure 3(a) (sentence abc) it will be noted that,

according to the Cochran’s Q test, the experiments are heterogenous (p < 0.0001). By

incorporating heterogeneity and applying a random effects model we obtain an MD value

equals to 0.8 and the IC value is [�5.86; 7.46]. Unlike Comprehension, the squares are not

proportional in size when studying Completion time (see Figure 3(b) — sentence abd). This

signifies that some experiments contributed to the overall result more than others. The forest

plot suggests that the difference in the completion time is not significant when using or not

using models to accomplish comprehension tasks. However, when ignoring heterogeneity

and applying a fixed effects model (see Figure 3(a) — sentence abc), the completion time

is statistically different when using or not using models in comprehension tasks. The MD

value is 3.33 while the IC value is [1.81; 4.86]. The choice of how to manage heterogeneity,

therefore, proves that the results are crucial in this case, and influences the overall results

regarding the impact of UML models on source code comprehensibility.

Since our experiments were heterogeneous with regard to the two dependent variables,

we also decided to explore heterogeneity and perform sub-group analyses. In our study, for

both the dependent variables introduced in the design of the study (see Section 4.3), we can

group experiments according to the kind of models: An and De. We postulated (on the basis

of the results of the primary studies) that models produced in the design phase are closer to

source code than those produced in the analysis phase. In other words, we could expect that

De would aid source code comprehensibility, while An would not. The forest plot for An

and comprehension is shown in Figure 2(e). We used a fixed effects model, for the sentence

abgbc, because of the results of the heterogeneously analysis. That is, it can be considered

that the studies are not heterogeneous since the Cochran’s Q test returned 0.0156 as the value

for p (this is why the the sentence of the regular expression aforementioned is underlined).

The MD value obtained is low (-0.06) and the IC value is [�0.11;�0.01]. It would appear

that the presence of UML analysis models does not aid source-code comprehensibility. The

assumption made in order to explore heterogeneity and stated above was, therefore in some

respects confirmed. The observed results thus allow us to state that UML analysis models

focus on the problem domain of the software (the environment in which the software will

work) and do not provide any support as regards performing comprehension tasks on source

code. Indeed, this kind of models could have confused the participants while comprehending

the source code. For example, it could be possible that the participants trusted the models

and did not pay adequate attention to the source code. These results are, perhaps, not overly

surprising, but they are acceptable, as evidence/postulations need to be empirically verified

and/or reaffirmed through the use of empirical studies [6,43,59].

Figure 2(f) shows the forest plot of abgbc for the variable Comprehension in the exper-

iments in which the participants were provided with design models (De). The experiments

11

Effect size is statistically different from the overall effect if the diamond (at the bottom of the forest plot)

does not intersect the vertical line.

12

This is a range of values that we are 95% certain that it contains the true mean value.

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 23

are not heterogeneous since the Cochran’s Q test returned a value greater than 0.1 (i.e., p =
0.1666). We applied a fixed effects model, since the experiments can be considered homo-

geneous and it is for this reason that the sentence of the regular expression is underlined.

Some experiments contributed to the overall result more than others. The most remarkable

outcome is that the difference between using or not using models is significant. Those partic-

ipants provided with design models understood the source code better because the diamond

is on the right-hand side of the vertical line. The MD value is sufficiently large (i.e., 0.06).

It is worth mentioning that only for the sentence abgbc for the variable Comprehension and

the groups An and De, we observed an homogeneity of the experiments and applied a fixed

effects model (i.e., abgbc).

With regard to Completion time, the meta-analysis results for the An and De sub-

groups (sentences abgbc and abgbd) are summarized in Figure 3(e) and Figure 3(f) and

Figure 3(g) and Figure 3(h), respectively. Note that the experiments were heterogenous (see

the Cochran’s Q test, which returned values less than 0.1 in all the cases). It was for this

reason that we applied both the fixed- and random- effects models, i.e., we ignored and

incorporated heterogeneity, respectively. The plots shown in Figure 3(g) and Figure 3(h)

suggest that the time taken to complete a task was not significantly different when using or

not using An and De models and exploiting a random-effects model. More specifically, and

on the basis of the descriptive statistics, we can deduce that the participants provided with

analysis models needed slightly more time to accomplish a comprehension task. Those in the

other experiments spent less time when accomplishing the task with design models. In other

words, it would appear that the use of design models paid back the time needed to read them

because the effort required to comprehend source code decreased when compared with the

effort of the participants provided with only source code. It is also worth mentioning that the

exploration of the heterogeneity indicated that the groups of experiments in An and De are

not heterogeneous for Comprehension, while they are heterogeneous for Completion time.

This confirms that we have presented in Section 3.3, i.e., heterogeneity is not only linked to

the kind and type of primary studies but also to the effect measure.

When exploring heterogeneity, one alternative to sub-group analysis is that of carrying

out experiment cleaning. We considered the participants’ experience in order to exclude

experiments. We excluded AnBsc, DeBscExp1, and DeBscExp2 because the participants

in these experiments were Bachelor’s degree students. The forest plots for Comprehension

shown in Figure 2(c) and Figure 2(d) show that the Cochran’s Q test suggests that the ex-

periments were heterogeneous since the value of p is less than 0.0001 (the Tau-squared

and I-squared values indicated a good extent of such heterogeneity). That is, the experi-

ments were still heterogeneous after this cleaning. It would appear that the participants’

experience was not a cause of heterogeneity. We, therefore, incorporated heterogeneity and

applied a random effects model (i.e., that shown in Figure 2(d)). It is easy to observe that the

model is quite similar to that shown in Figure 2(b), thus confirming the analysis performed

when deciding to incorporate heterogeneity. Indeed, source-code comprehensibility was not

significantly different when using or not using models, and the MD value obtained is 0.01

while the IC value is [�0.06; 0.08].
Similar to that which occurred with Comprehension, the forest plots for Completion

time (see Figure 3(c) and Figure 3(d)) suggest that we can consider the experiments to be

heterogeneous. Indeed, the Cochran’s Q test suggests that the experiments were heteroge-

neous (p <0.1) and the Tau-squared and I-squared values indicated a good extent of this

heterogeneity. We, then, incorporated heterogeneity and applied a random effects model.

Figure 3(d) shows that the squares are not proportional in size, i.e., some experiments con-

tributed to the overall result more than others. Moreover, the forest plot suggests that the

24 Scanniello et al.

difference in the completion time is not significant when using or not using models, and the

MD value obtained is -1.31 while the IC value is [�5.50; 2.88].

The process shown in Figure 1 was also use to analyze the case of: (i) not exploring

heterogeneity and (ii) changing the effect measure by exploiting Efficiency (see Table 3).

The results of the Cochran’s Q test (p=0.0001) shown in Figure 4(a) and Figure 4(b) suggest

that the experiments were heterogeneous. The results of the I-squared indicated a consid-

erable heterogeneity (86.4%). This contrasts with the results of the Tau-squared measure,

which suggests that the groups of experiments are not heterogeneous. We considered that

experiments were heterogeneous owing to the results of the Cochran’s Q test. We, there-

fore, incorporated heterogeneity and applied a random-effects model. The results obtained

are summarized in Figure 4(b). Note that the squares are not proportional in size, i.e., some

experiments contributed to the overall result more than others. Moreover, the forest plot

suggests that efficiency is not statistically different when using or not using models, and the

MD value obtained is -0.14 while the IC value is [�0.31; 0.02]. Conversely, upon ignoring

heterogeneity and applying a fixed effects model there is a statistically significant difference

when using or not using models (see Figure 4(a)). The MD value obtained is 0.06 and the IC

value is [0.03; 0.10]. As in the case of abc and abd in Figure 3, the choice of how to manage

heterogeneity proves to be crucial and can influence the analysis of the impact of models.

Study

Fixed effect model
Heterogeneity: I-squared=86.4%, tau-squared=0.0425, p<0.0001

AnBsc
DeBscExp1
DeMscExp1
AnMscExp1
AnMscExp2
AnMscExp3
AnPra
DeMscExp2
DePra
DeMscExp3
DeBscExp2
DePhd

Total

167

 8
 16
 16
 24
 22
 22
 18
 12
 8
 8
 8
 5

Mean

2.36
2.13
3.48
2.98
3.32
3.31
2.80
0.31
0.37
0.53
0.36
0.55

SD

0.33
0.55
1.64
1.00
1.86
2.83
1.44
0.07
0.11
0.17
0.11
0.09

Models
Total

166

 8
 16
 16
 24
 22
 22
 18
 12
 8
 8
 7
 5

Mean

4.32
3.94
3.84
3.12
3.73
4.13
4.32
0.25
0.30
0.41
0.28
0.36

SD

1.01
1.06
1.45
1.15
2.12
2.06
3.14
0.04
0.14
0.15
0.11
0.09

Source code

-3 -2 -1 0 1 2 3

Mean difference
MD

 0.06

-1.96
-1.81
-0.36
-0.14
-0.41
-0.82
-1.52
 0.06
 0.07
 0.12
 0.08
 0.19

95%-CI

[0.03; 0.10]

[-2.70; -1.22]
[-2.40; -1.22]
[-1.43; 0.71]
[-0.75; 0.47]
[-1.59; 0.77]
[-2.28; 0.64]
[-3.12; 0.08]
[0.01; 0.11]
[-0.05; 0.19]
[-0.04; 0.28]
[-0.03; 0.19]
[0.08; 0.30]

W(fixed)

100%

 0.2%
 0.4%
 0.1%
 0.4%
 0.1%
 0.1%
 0.1%
63.5%
 8.7%
 5.3%
10.6%
10.6%

(a) abeabc - Fixed effect model obtained when changing the effect measure and

considering all the studies

Study

Random effects model
Heterogeneity: I-squared=86.4%, tau-squared=0.0425, p<0.0001

AnBsc
DeBscExp1
DeMscExp1
AnMscExp1
AnMscExp2
AnMscExp3
AnPra
DeMscExp2
DePra
DeMscExp3
DeBscExp2
DePhd

Total

167

 8
 16
 16
 24
 22
 22
 18
 12
 8
 8
 8
 5

Mean

2.36
2.13
3.48
2.98
3.32
3.31
2.80
0.31
0.37
0.53
0.36
0.55

SD

0.33
0.55
1.64
1.00
1.86
2.83
1.44
0.07
0.11
0.17
0.11
0.09

Models
Total

166

 8
 16
 16
 24
 22
 22
 18
 12
 8
 8
 7
 5

Mean

4.32
3.94
3.84
3.12
3.73
4.13
4.32
0.25
0.30
0.41
0.28
0.36

SD

1.01
1.06
1.45
1.15
2.12
2.06
3.14
0.04
0.14
0.15
0.11
0.09

Source code

-3 -2 -1 0 1 2 3

Mean difference
MD

-0.14

-1.96
-1.81
-0.36
-0.14
-0.41
-0.82
-1.52
 0.06
 0.07
 0.12
 0.08
 0.19

95%-CI

[-0.31; 0.02]

[-2.70; -1.22]
[-2.40; -1.22]
[-1.43; 0.71]
[-0.75; 0.47]
[-1.59; 0.77]
[-2.28; 0.64]
[-3.12; 0.08]
[0.01; 0.11]
[-0.05; 0.19]
[-0.04; 0.28]
[-0.03; 0.19]
[0.08; 0.30]

W(random)

100%

 4.0%
 5.5%
 2.1%
 5.2%
 1.8%
 1.2%
 1.0%
16.9%
15.6%
14.9%
15.9%
15.9%

(b) abeabd - Random effects model obtained when changing the effect measure and

considering all the studies

Fig. 4: Forest plots for Efficiency

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 25

Table 4: Summary of results. Values for MD and CI are reported only in the case of a

significant effect of the method

Sentence Dependent Variable Effect of the method MD 95%-CI

abc Comprehension No - -

abd Comprehension No - -

abgbc Comprehension Yes for both An and De -0.06; 0.06 [-0.11; -0.01]; [0.03; 0.09]

abfbd Comprehension No - -

abc Completion time Yes 3.33 [1.81; 4.86]

abd Completion time No - -

abgbc Completion time No - -

abgbd Completion time No - -

abfbd Completion time No - -

abeabc Efficiency Yes 0.06 [0.03; 0.1]

abeabd Efficiency No - -

5.2 Discussion

Table 4 summarizes the results of our meta-analysis. For each dependent variable, we show

the effect of the method according to each case considered in our analysis (i.e., some of the

paths of the process shown in Figure 1, illustrating the sentences of the regular expression

defined in Section 3.4) and the corresponding MD and CI values obtained from the meta-

analysis. The results suggest that the participants obtained slightly better scores for compre-

hension when using analysis and design models (the effect of the method is not significant).

We can, therefore, conclude that models do not help a lot participants to comprehend source

code, although these models do provide additional information on the subject application.

In addition, the participants spent more time comprehending source code. This could be

related to the effort needed to infer the additional information provided by the models that

was definitively not useful as regards attaining an improved comprehension of source code.

We further investigated this aspect by performing sub-group analyses, excluding cases, and

changing the dependent variable. That is, we looked at the possible reasons why the experi-

ments were heterogeneous. The most plausible justification was: analysis models refer to ob-

jects (or entities) in the problem domain, while design models refer to objects in the solution

domain and should, therefore, better support source-code comprehension tasks. The results

obtained from meta-analyses of the two sub-groups chosen gave credit to our assumption.

In particular, the results indicate that the use of models affects source-code comprehensibil-

ity, but in two slight different directions. The use of analysis models reduces source-code

comprehensibility (see CI in Table 4) and increases the time taken to complete comprehen-

sion tasks, while the use of design models improves source-code comprehensibility (see CI

in Table 4) and reduces task completion time. The MD values for source-code comprehen-

sibility for the analysis and design models are -0.06 and 0.06, respectively. This outcome

should not be at all surprising because analysis and design models are created for different

purposes, although companies seem to ignore this difference [56] as also we discussed in the

introductive part of Section 4. Analysis models are created to capture a domain, to represent

a set of requirements, to understand a poorly focused problem boundary, and so on, while

design models can be used to structure source code and capture design artifacts that do not

directly emerge from requirements [10]. As such, analysis models say little or nothing about

source code and the use of this kind of models will not, therefore, benefit comprehension.

For example, in Figure 5 we show some models of the Music Shop experimental object (i.e.,

26 Scanniello et al.

that used in the experiments carried out by An group). It is easy to see that these models do

not provide implementation details, even if some of these details and some design decisions

could be inferred. For example, some of the classes to be understood in Figure 5(b) are in the

source code (not reported here owing to their scant relevance, but available on the web for

download) and also in the class diagram (available on the web for the download) in the ex-

periments of the De group. That is, some classes in the problem domain are present in both

the solution domain and the source code, thus possibly allowing the participant to also obtain

a little information on the implementation from the analysis models. This scenario is cus-

tomary for more traditional development approaches (e.g., Unified Software Development

Process) [10]. With regard to an example of design decision, the architectural pattern used

could be used in an inferred manner. In particular, we could postulate that the architectural

pattern implemented in Music Shop is the Model-View-Controller, given the division of the

classes in: boundary, control, and entity. In both the cases mentioned above, it is the devel-

opers’ ability (and possibly his/her knowledge of the subject software and its domain) that

could make the difference in terms of source-code comprehension, rather than the actual

information the analysis models provide. In summary, we can assume that design models

help more than analysis models in the comprehension of source code, since they are focused

on the implementation aspects. On the basis of our considerations, we can summarize our

research results as follows:

– Software models produced in the design phase aid in source-code comprehensibility.

Despite the fact that our results improved the findings obtained for the individual ex-

periments conducted in our long-term research, we cannot provide conclusive findings con-

cerning whether analysis models helped in the understanding of source code in the context

of graduate, undergraduate, PhD students, and novice practitioners.

5.3 Implications

We judged the implications of our study by adopting a perspective-based approach [7] and

discuss these implications on the basis of the perspectives of practitioner/consultant (from

here on simply practitioner) and researcher [41]. When applicable, we also discuss future

research directions related to these implications.

– UML-based modeling is important as it allows an improved comprehension of source

code. These models should focus on aspects related to the solution domain (i.e., imple-

mentation aspects) of a subject software. Models produced in the analysis phase could,

therefore, be considered of less importance if they are only intended to support the com-

prehension of source code. Furthermore, these models are of primary importance when

they contain the subsequent development phases. We can speculate on this point because

we used the same software in some of the experiments, but the models were produced

in either the analysis or the design phases (e.g., AnBsc and DeMscExp1). From the

practitioner’s perspective, this result is relevant because it could be useful to adopt a

development process based on the use of the UML. It might, however, be useless to give

UML-based analysis models to the software engineer when he/she has to perform small

maintenance operations on source code. This is aligned with the findings of [5,15] (see

Section 2) whose authors stated that the UML only seemed to be really useful as regards

understanding complex systems. That is, this kind of models should be only used to

support the subsequent phases of the development or to improve the comprehension of

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 27

Use Case Name: Search Album by Singer
ID: 3
Brief description of the use case:
The user selects an album by specifying the singer’s name. Details of the selected
album will be shown by the system (e.g., original release date)
Main Actors:
User
Flow of events:
1. The User inserts the singer name.
2. The system presents the album list of the specified singer.
3. The user selects the album of interest.
4. The system shows details on the chosen album and the number of available

copies in the stock. As result, the presented information is: original release
date, label, copyright, genres, length, price, and number of available copies.

Pre-condition:
The user has selected the functionality search singer by name.
Post-condition:
1. The system shows details about a given album for the chosen singer.

	
(a) The Search Album by Singer Use Case

+submit()

SingerByName

+submitSingerName()

SearchAlbums

+showAlbums()

PublishedAlbums

+showDetails()

ShowAlbumDetails

+getAlbums(in singerName)

-label
-lenght
-price
-releaseDate
-copyRight
-genres

Album

* 1

*1

*

1

<<boundary>>

<<boundary>>

<<boundary>>

<<entity>> <<control>>

+itemAvalialble(in album) : int

Stock

1

1

<<entity>>
1

*

(b) Class diagram

<<control>>

<<entity>>

<<boundary>>

<<boundary>>

User
:SingerByName

submit()

<<boundary>>

:PublishedAlbums

:ShowAlbumDetails

:SearchAlbumscreate()

:Album

getAlbums(name)

albums

create(albums)

submitSingerName()

selectAlbum()

create()

showDetails(selectedAlbum, items)

<<entity>>

:Stock

itemAvailable(selectedAlbum)

items

submit()

(c) Sequence diagram for the functionality Search Album by Singer

Fig. 5: Some of the analysis models for the Music Shop application

functional requirements [1]. From the researcher’s perspective, it would be interesting

28 Scanniello et al.

to investigate whether variations in the context (e.g., larger systems and more or less

experienced software engineers) might lead to different results.

– UML analysis models appear to uselessly overload participants when performing com-

prehension tasks. Once again, the results obtained in our study coincide with those from

some of the related work (e.g., [20,22]) in which only design models appeared to help

achieving a better understanding of the systems. This result is relevant for the researcher

because it would be interesting to carry out further research into this aspect and discover

in which context it holds.

– Although we are not sure whether our findings scale up to real projects, the results

obtained could be true in all those cases in which the models are concerned with a

part of the entire software and maintenance operations are performed on a chunk of the

source code of the entire system.

– We observed that the models produced in the design phase aid the comprehension of

source code and postulated that this is because they are closer to source code than those

produced in the analysis phase. It might, therefore, be expected that reverse-engineered

diagrams could also be at least as effective as the forward designed diagrams as regards

aiding source code comprehension since they are obtained directly from the source code.

Our results and those of Fern´andez-S´aez et. al. presented in [22] provide the basis for

future work in this direction. This point is clearly relevant for any researchers who might

be interested in studying the delineated research direction. If future work confirms that

reverse-engineered diagrams are as effective as forward ones, the practitioner could be

further motivated to use reverse engineering tools in his/her company.

– We focused on desktop applications. The models of these systems were sufficiently real-

istic for small-sized in-house software and subcontracting development projects. From

the researcher’s perspective, the effect of analysis and design models on different types

of systems (e.g., smartphone and web apps) represents a possible future direction for

our research. This point is clearly relevant for the researcher.

– The UML is widely used in the software industry. The results achieved are, therefore,

useful for all the companies that exploit the UML as a support when software engineers

are executing comprehension tasks (e.g., performing maintenance/evolution operations).

Studies on this notation are currently required to understand the cases in which its use

improves the comprehensibility and maintainability of source code. There are currently

only a few evaluations, as we have discussed in the related work section.

– Dealing with heterogeneity could be crucial, since it may influence the results of the

meta-analysis. This point is clearly of interest for any researchers who might be inter-

ested in studying how to deal with heterogeneity when integrating results from several

studies by using a meta-analysis.

5.4 Threats to Validity

Despite our efforts to mitigate as many threats to validity as possible, some are unavoidable.

In order to comprehend the strengths and limitations of our empirical study, the threats that

could have affected the results are presented and discussed as follows.

5.4.1 Internal Validity.

This kind of validity is of concern when causal relations are examined. In our study, the

design of the experiments could have affected the results. Different kinds of design were

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 29

considered in each experiment. Each group of participants either worked on two different

tasks with and without models (maturation or diffusion or imitation of treatments) or worked

on a single task either with models or without models. The artifacts used to carry out the

experiments (e.g., comprehension questionnaire and documentation) could also have nega-

tively affected the experiments and thus the outcomes of the meta-analysis. We mitigated

these threats by accurately designing all the material used in each experiment. In many

cases, pilot studies were conducted to assess this experimental material. Threats to Internal

validity could also depend on how the participants are selected from a larger group. How

the experiments were selected could also have affected the results. With regard to multiple

group experiments the results could have been biased because of the different behavior of

participants in different groups (i.e., interactions with selection). Social threats to internal

validity could also have been present in the experiments.

5.4.2 External Validity.

Performing experiments with students could lead to doubts concerning their representative-

ness when compared to software professionals (interaction of selection and treatment). In

addition to experiments with students, we also carried out experiments with professionals

and PhD students. It is worth mentioning that the tasks used did not require a high level of

industrial experience. This led us to believe that the use of students was not a major issue

here [13]. However, if tasks are too simple they may be not representative. This could imply

threats to the validity of the results. Another threat to external validity concerns the exper-

imental objects (interaction of setting and treatment). For example, we removed comments

from source code and did not provide any explicit information on the traceability links be-

tween models and source code. We took these decisions to avoid the effect of source code

comments and traceability links being confused with the main factor studied. With regard to

source code comments, some further considerations are required: (i) comments and source

code may not be coherent (i.e., the comment does not describe the intent of the method

and its actual implementation) with one another [14] and (ii) it is possible that experienced

developers (e.g., professionals) do not use comments (because they are often not updated

when source code changes [23,39]) while performing comprehension tasks [52]. The first

point could be dealt with by modifying the comments to make them coherent with the source

code. However, this choice could affect external validity. As for the second point, we can

do little or nothing. In fact, it could be that professional developers (and possibly PhD stu-

dents) do not take much care with the comments, while those with little experience do. We,

however, advise the use source code comments and traceability links in future studies. Our

research provides the basis for future work on this matter. We also indented the source code

when preparing the experimental objects. This design choice could affect external validity.

However, many of the available IDEs provide a feature to remove this kind of smell from

source code. Therefore, it could happen that some of the participants indent the code, while

other no. If this happened a series of threats to the conclusion validity could be risen. That

is, if any effect of this kind of smell could be present it could affect results in an undesirable

and uncontrollable way.

5.4.3 Construct Validity.

This kind of validity may have been influenced by the measures used to obtain a quanti-

tative evaluation of source-code comprehensibility (inadequate preoperational explanation

of constructs). Construct validity might also have been affected by the comprehension used

30 Scanniello et al.

and the post-experiment survey questionnaires, in addition to social threats. We employed

post-experiment survey questionnaires designed using standard approaches and scales [47].

The responses to this kind of questionnaire were used to explain the quantitative results.

Another threat to external validity is mono-operation bias. All the experiments in our study

included a single independent variable (or treatment). This may have under-represented the

construct and thus not provided the full picture of the theory. The threat concerning the in-

teraction of different treatments is not present in our research because the participants were

involved in only one experiment. In order to mitigate construct validity, we conducted exter-

nal replications and their results were subsequently aggregated with the other experiments

and replications.

5.4.4 Conclusion Validity.

This kind of validity concerns the ability to draw correct conclusions. In order to deal with

conclusion validity, we performed a statistical analysis of the data gathered. Despite our ef-

fort, threats to low statistical power could still have been present. The number of experiments

considered in our study might also have affected the results. With regard to the selection

of the populations, we drew fair samples and conducted our experiments with participants

belonging to these samples. Another threat to conclusion validity could be related to the

number of participants. This kind of threat was mitigated because our study was based on

333 observations (the largest on the UML). The reliability of measures might affect results.

In each individual experiment, the experimenters attempted to mitigate this kind of threat as

much as possible. The threat related to the random heterogeneity of subjects could have been

present in our meta-analysis study and in each experiment. We took this aspect into account

in the meta-analysis. Finally, we did not deal with clinical heterogeneity or methodological

heterogeneity. As mentioned in Section 3.2, statistical heterogeneity can be considered as a

consequence of either, or both, clinical heterogeneity or methodological heterogeneity.

6 Conclusion

In this paper, we have presented the results of long-term research into the effect of using

UML-based modeling in software maintenance, and in source-code comprehensibility in

particular. This research began in 2009 with an industrial survey [56], and the results of this

survey were then used as a basis to conduct a number of controlled experiments (internal

and external replications) with students and practitioners from Italy and Spain. The results

of individual experiments were synthesized by means of a meta-analyses and presented in

this paper. The most important outcome is: the use of UML models is important as regards

allowing software engineers to better understand source code, given that these models focus

on aspects related to objects (or entities) in the solution domain of a subject software. Models

produced in the analysis phase are of less importance if their purpose is solely to enable the

comprehension of source code.

Possible future directions for our research are: (i) performing further experimentation

considering different and larger software systems related to unknown domains in order to

verify whether the findings obtained are still valid; (ii) studying the effect of providing the

participants with information in an incremental manner; (iii) analyzing the effect of different

UML diagrams; and (iv) investigating the effect of the same UML diagrams on non-source

code comprehension tasks.

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 31

Acknowledgements The authors would like to thank the participants in the experiments and all the people

who supported the research presented in this paper. This work has been partially supported by the SEQUOIA

Project, (TIN2015-63502-C3-1-R) (MINECO/FEDER) funded by Fondo Europeo de Desarrollo Regional

and Ministerio de Economa y Competitividad

References

1. Abrah˜ao, S.M., Gravino, C., Pelozo, E.I., Scanniello, G., Tortora, G.: Assessing the effectiveness of

sequence diagrams in the comprehension of functional requirements: Results from a family of five ex-

periments. IEEE Transactions on Software Engineering 39(3) (2013)

2. Agarwal, R., Sinha, A.P.: Object-oriented modeling with UML: a study of developers’ perceptions. Com-

mun. ACM 46(9), 248–256 (2003)

3. Anda, B., Hansen, K., Gullesen, I., Thorsen, H.K.: Experiences from introducing UML-based develop-

ment in a large safety-critical project. Empirical Software Engineering 11(4), 555–581 (2006)

4. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links between

code and documentation. IEEE Transactions on Software Engineering 28(10), 970–983 (2002)

5. Arisholm, E., Briand, L.C., Hove, S.E., Labiche, Y.: The impact of UML documentation on software

maintenance: An experimental evaluation. IEEE Transactions on Software Engineering 32(6), 365–381

(2006)

6. Basili, V., Shull, F., Lanubile, F.: Building knowledge through families of experiments. IEEE Transac-

tions on Software Engineering 25(4), 456–473 (1999)

7. Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumg˚ard, L.S., Zelkowitz, M.V.: The

empirical investigation of perspective-based reading. Empirical Software Engineering 1(2), 133–164

(1996)

8. Basili, V.R., Rombach, H.D.: The TAME project: Towards improvement-oriented software environ-

ments. IEEE Transactions on Software Engineering 14(6), 758–773 (1988)

9. Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., Panichella, S.: An empirical investigation on docu-

mentation usage patterns in maintenance tasks. In: Proceedings of International Conference on Software

Maintenance, pp. 210–219. IEEE Computer Society (2013)

10. Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering: Using UML, Patterns and Java, 2nd

edition. Prentice-Hall (2003)

11. Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., Pretorius, R.: Empirical evidence about the

UML: a systematic literature review. Software: Practice and Experience 41(4), 363–392 (2011)

12. Cariou, E., Beugnard, A., Jezequel, J.M.: An architecture and a process for implementing distributed

collaborations. In: Proceedings of International Enterprise Distributed Object Computing, pp. 132–143

(2002)

13. Carver, J., Jaccheri, L., Morasca, S., Shull, F.: Issues in using students in empirical studies in software

engineering education. In: Proceedings of International Symposium on Software Metrics, pp. 239–250.

IEEE Computer Society (2003)

14. Corazza, A., Maggio, V., Scanniello, G.: Coherence of comments and method implementations: a dataset

and an empirical investigation. Software Quality Journal pp. 1–27 (2016)

15. Dzidek, W.J., Arisholm, E., Briand, L.C.: A realistic empirical evaluation of the costs and benefits of

UML in software maintenance. IEEE Transactions on Software Engineering 34(3), 407–432 (2008)

16. Eclipse Modeling Framework (EMF): http://www.eclipse.org/modeling/emf/

17. Erickson, J., Siau, K.: Theoretical and practical complexity of modeling methods. Commun. ACM 50(8),

46–51 (2007)

18. Fern´andez-S´aez, A.M., Caivano, D., Genero, M., Chaudron, M.R.V.: On the use of UML documentation

in software maintenance: Results from a survey in industry. In: Proceedings of ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems, pp. 292–301 (2015)

19. Fern´andez-S´aez, A.M., Chaudron, M.R.V., Genero, M.: Exploring costs and benefits of using UML on

maintenance: Preliminary findings of a case study in a large IT department. In: Proceedings of the

International Workshop on Experiences and Empirical Studies in Software Modeling co-located with the

International Conference on Model Driven Engineering Languages and Systems, pp. 33–42 (2013)

20. Fern´andez-S´aez, A.M., Genero, M., Caivano, D., Chaudron, M.R.V.: Does the level of detail of UML

diagrams affect the maintainability of source code?: a family of experiments. Empirical Software Engi-

neering 21(1), 212–259 (2016)

21. Fern´andez-S´aez, A.M., Genero, M., Chaudron, M.R.V.: Empirical studies concerning the maintenance

of UML diagrams and their use in the maintenance of code: A systematic mapping study. Information

& Software Technology 55(7), 1119–1142 (2013)

32 Scanniello et al.

22. Fern´andez-S´aez, A.M., Genero, M., Chaudron, M.R.V., Caivano, D., Ramos, I.: Are forward designed

or reverse-engineered UML diagrams more helpful for code maintenance?: A family of experiments.

Information & Software Technology 57, 644–663 (2015)

23. Fluri, B., Wursch, M., Gall, H.: Do code and comments co-evolve? on the relation between source code

and comment changes. In: Proceedings of the Working Conference on Reverse Engineering, pp. 70–79.

IEEE Computer Society (2007)

24. Fu, R., Gartlehner, G., Grant, M., Shamliyan, T., Sedrakyan, A., Wilt, T.J., Griffith, L., Oremus, M.,

Raina, P., Ismaila, A., Santaguida, P., Lau, J., Trikalinos, T.A.: Conducting quantitative synthesis when

comparing medical interventions: AHRQ and the effective health care program. Journal of Clinical

Epidemiology 64(11), 1187 – 1197 (2011)

25. Gamma, E., Helm, R., R.Johnson, Vlissides, J.: Design Patterns: Elements of Reusable Object Oriented

Software. Addison-Wesley (1995)

26. Garousi, G., Garousi, V., Moussavi, M., Ruhe, G., Smith, B.: Evaluating usage and quality of technical

software documentation: an empirical study. In: Proceedings of International Conference on Evaluation

and Assessment in Software Engineering, pp. 24–35 (2013)

27. Gravino, C., Scanniello, G., Tortora, G.: Source-code comprehension tasks supported by UML design

models: Results from a controlled experiment and a differentiated replication. J. Vis. Lang. Comput. 28,

23–38 (2015)

28. Gravino, C., Tortora, G., Scanniello, G.: An empirical investigation on the relation between analysis

models and source code comprehension. In: Proceedings of the International Symposium on Applied

Computing, pp. 2365–2366. ACM (2010)

29. Grossman, M., Aronson, J.E., McCarthy, R.V.: Does UML make the grade? Insights from the software

development community. Information & Software Technology 47(6), 383–397 (2005)

30. Gu´eh´eneuc, Y.G.: P-mart: Pattern-like micro architecture repository. In: Proceedings of EuroPLoP Focus

Group on Pattern Repositories (2007)

31. Hammad, M., Collard, M.L., Maletic, J.I.: Automatically identifying changes that impact code-to-design

traceability during evolution. Software Quality Journal 19(1), 35–64 (2011)

32. Higgins, J.P.T., Green, S.: Cochrane Handbook for Systematic Reviews of Interventions, 5 edn. The

Cochrane Collaboration (2008)

33. Huedo-Medina, T.B., S´anchez-Meca, J., Mar´ın-Mart´ınez, F., Botella, J.: Assessing heterogeneity in

meta-analysis: Q statistic or i2 index? Psychol Methods 11(2), 193–206 (2006)

34. Hutchinson, J.E., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment of MDE in indus-

try. In: Proceedings of the International Conference on Software Engineering, pp. 471–480 (2011)

35. ISO: Information Technology–Software Product Evaluation: Quality Characteristics and Guidelines for

their Use, ISO/IEC IS 9126. ISO, Geneva (1991)

36. ISO: ISO 9241-11: Ergonomic requirements for office work with visual display terminals (VDTs) – Part

9: Requirements for non-keyboard input devices. ISO, Geneva, Switzerland (2000)

37. ISO: ISO/IEC 25010 Systems and software engineering – Systems and software Quality Requirements

and Evaluation (SQuaRE) – System and software quality models. ISO, Geneva, Switzerland (2011)

38. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engineering. In: Guide

to Advanced Empirical Software Engineering (Eds) F. Shull and J. Singer and D. Sjoberg, pp. 201–228.

Springer (2008)

39. Jiang, Z.M., Hassan, A.E.: Examining the evolution of code comments in postgresql. In: Proceedings of

Mining Software Repositories, pp. 179–180. ACM (2006)

40. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer Academic Publishers

(2001)

41. Kitchenham, B., Al-Khilidar, H., Babar, M., Berry, M., Cox, K., Keung, J., Kurniawati, F., Staples, M.,

Zhang, H., Zhu, L.: Evaluating guidelines for reporting empirical software engineering studies. Empirical

Software Engineering 13, 97–121 (2008)

42. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engi-

neering (2007)

43. Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., Rosenberg, J.: Preliminary

guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering

28(8), 721–734 (2002)

44. Lehnert, S., Farooq, Q.u.a., Riebisch, M.: Rule-based impact analysis for heterogeneous software arti-

facts. In: Proceedings of the European Conference on Software Maintenance and Reengineering, pp.

209–218 (2013)

45. Leotta, M., Ricca, F., Antoniol, G., Garousi, V., Zhi, J., Ruhe, G.: A pilot experiment to quantify the

effect of documentation accuracy on maintenance tasks. In: Proceedings of International Conference on

Software Maintenance, pp. 428–431 (2013)

Do Software Models Based on the UML Aid in Source-Code Comprehensibility? 33

46. OMG: Unified modeling language (UML) specification, version 2.0. Tech. rep., Object Management

Group (2005)

47. Oppenheim, A.N.: Questionnaire Design, Interviewing and Attitude Measurement. Pinter, London

(1992)

48. Pavalkis, S., Nemuraite, L.: Process for Applying Derived Property Based Traceability Framework in

Software and Systems Development Life Cycle, pp. 122–133. Springer Berlin Heidelberg (2013)

49. Pavalkis, S., Nemuraite, L., Butkiene, R.: Derived properties: A user friendly approach to improving

model traceability. Information Technology and Control 42(1), 48–60 (2013)

50. Pickard, L., Kitchenham, B.A., Jones, P.: Combining empirical results in software engineering. Infor-

mation & Software Technology 40(14), 811–821 (1998)

51. Ried, K.: Interpreting and understanding meta-analysis graphs - A practical guide, vol. 35. Australian

College of General Practitioners (2008)

52. Salviulo, F., Scanniello, G.: Dealing with identifiers and comments in source code comprehension and

maintenance: Results from an ethnographically-informed study with students and professionals. In:

Proceedings of International Conference on Evaluation and Assessment in Software Engineering. ACM

(2014)

53. Scanniello, G., Gravino, C., Genero, M., Cruz-Lemus, J.A., Tortora, G.: On the impact of UML analysis

models on source code comprehensibility and modifiability. ACM Transactions on Software Engineering

and Methodology 23(2) (2014)

54. Scanniello, G., Gravino, C., Risi, M., Tortora, G.: A controlled experiment for assessing the contribu-

tion of design pattern documentation on software maintenance. In: Proceedings of the Symposium on

Empirical Software Engineering and Measurement. ACM (2010)

55. Scanniello, G., Gravino, C., Risi, M., Tortora, G., Dodero, G.: Documenting design-pattern instances: A

family of experiments on source-code comprehensibility. ACM Transactions on Software Engineering

and Methodology 24(3), 14 (2015)

56. Scanniello, G., Gravino, C., Tortora, G.: Investigating the role of UML in the software modeling and

maintenance - a preliminary industrial survey. In: Proceedings of International Conference on Enterprise

Information Systems, pp. 141–148 (2010)

57. Scanniello, G., Gravino, C., Tortora, G., Genero, M., Risi, M., Cruz-Lemus, J.A., Dodero, G.: Studying

the effect of uml-based models on source-code comprehensibility: Results from a long-term investiga-

tion. In: Springer (ed.) Proceedings of International Conference on Product-Focused Software Process

Improvement, vol. 9459, pp. 311–327. Lecture Notes in Computer Science (2015)

58. Settimi, R., Cleland-Huang, J., Khadra, O.B., Mody, J., Lukasik, W., DePalma, C.: Supporting software

evolution through dynamically retrieving traces to uml artifacts. In: Proceedings of International Work-

shop on Principles of Software Evolution, pp. 49–54 (2004)

59. Shull, F., Carver, J.C., Vegas, S., Juzgado, N.J.: The role of replications in empirical software engineer-

ing. Empirical Software Engineering 13(2), 211–218 (2008)

60. Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during a programming change

task. IEEE Transactions on Software Engineering 34(4), 434–451 (2008)

61. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design traceability and reasoning.

Journal of Systems and Software 80(6), 918–934 (2007)

62. Tang, A., Nicholson, A., Jin, Y., Han, J.: Using bayesian belief networks for change impact analysis in

architecture design. J. Syst. Softw. 80(1), 127–148 (2007)

63. Wohlin, C., Runeson, P., H¨ost, M., Ohlsson, M., Regnell, B., Wessl´en, A.: Experimentation in Software

Engineering. Springer (2012)

64. Zhi, J., Garousi-Yusifoglu, V., Sun, B., Garousi, G., Shahnewaz, S.M., Ruhe, G.: Cost, benefits and qual-

ity of software development documentation: A systematic mapping. Journal of Systems and Software

99, 175–198 (2015)

