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Abstract In this paper, a new methodology is

proposed to address the problems of suppressing

structural vibrations and attenuating contact forces in

nonlinear mechanical systems. The computational

algorithms developed in this work are based on the

mathematical framework of the calculus of variation

and take advantage of the numerical implementation

of the adjoint method. To this end, the principal

aspects of the optimal control theory are reviewed and

employed to derive the adjoint equations which form a

nonlinear differential-algebraic two-point boundary

value problem that defines the mathematical solution

of the optimal control problem. The adjoint equations

are obtained and solved numerically for the optimal

design of control strategies considering a twofold

control structure: a feedforward (open-loop) control

architecture and a feedback (closed-loop) control

scheme. While the feedforward control strategy can

be implemented using only the active control para-

digm, the feedback control method can be realized

employing both the active and the passive control

approaches. For this purpose, two dual numerical

procedures are developed to numerically compute a

set of optimal control policies, namely the adjoint-

based control optimization method for feedforward

control actions and the adjoint-based parameter opti-

mization method for feedback control actions. The

computational methods developed in this work are

suitable for controlling nonlinear nonautonomous

dynamical systems and feature a broad scope of

application. In particular, it is shown in this paper that

by setting an appropriate mathematical form of the

cost functional, the proposed methods allow for

simultaneously solving the problems of suppressing

vibrations and attenuating interaction forces for a

general class of nonlinear mechanical systems. The

numerical example described in the paper illustrates

the key features of the adjoint method and demon-

strates the feasibility and the effectiveness of the

proposed adjoint-based computational procedures.

Keywords Structural vibration suppression �
Contact force attenuation � Adjoint method � Optimal

control � Feedforward control strategy � Feedback
control strategy

1 Introduction

The study of general problems concerning nonlinear

vibrations represents an important research area in

many fields of engineering and physics [1]. In general,

a mechanical system can exhibit a linear or a nonlinear

dynamical behavior according to its geometric topol-

ogy, because of its intrinsic constitutive nature, and
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depending on the range over which the external

excitations acting on it are specified [2]. Complicated

nonlinear behaviors can arise for simple discrete

mechanical elements as well as for more complex

elastic continuum bodies such as cables, beams, shells,

and plates, which represent fundamental components

extensively used in different structures and mechan-

ical systems [3]. As a consequence, the development

of accurate analytical and numerical techniques for

modeling nonlinear mechanical systems represents an

important issue that has gained great attention in

recent years [4].

Mechanical systems are generally influenced by

different energy sources which may potentially excite

structural vibrations [5]. The amplitudes of such

structural vibrations can span from nanometres, such

as in precision engineering machines andmechanisms,

to meters, as can occur in civil engineering applica-

tions [6]. In aerospace engineering facilities, on the

other hand, lightweight structures featuring lightly

damped flexible components are commonly employed

[7]. Such flexible multibody systems are prone to a

vibratory behavior which, in turn, is incompatible with

the stringent requirements that need to be satisfied for

the purpose of position and orientation control of

aircraft [8]. Furthermore, structural vibrations can

have significant detrimental effects on the perfor-

mance of the mechanical system that experiences them

and may represent a serious danger for the integrity of

the system itself [9]. Therefore, in many engineering

applications, the problem of vibration control is of

primary importance and a large amount of analytical

and numerical research has been devoted to this

relevant issue [10].

Many realistic models of mechanical systems are

characterized by a nonlinear dynamical behavior that

makes the control problem a challenging task [11].

Generally speaking, the control strategies adopted to

address this issue can be classified in two vast

categories, namely the active control approach and

the passive control approach [12]. Active control

systems are formed by a programmable control unit, a

set of sensors, and an array of actuators. The data

collected by the sensors constitute the input signals for

the control device. The control unit then analyzes and

processes the sensor signals in order to generate the

input signals for the control actuators. Finally, the

signals outputted from the control device reach the

actuators, which act on the mechanical systems,

thereby reducing potentially harmful vibrations [13].

Passive control systems, on the other hand, make use

of feedback information describing the system state

but do not rely on a reprogrammable control device

and, therefore, are based on a rigid control

scheme [14]. Active control systems for the reduction

of nonlinear vibrations feature typically superior

performance because they are flexible and repro-

grammable but passive control systems are generally

more reliable since they are devised to work without

any external power supply [15]. Thus, choosing

between the main features of the active and the

passive control strategies in the design phase of

optimal controllers for a nonlinear dynamical system

represents a non-trivial task.

Active control systems can be more advantageous

than their passive counterparts featuring comparable

performances. However, the design of an effective

control strategy for a nonlinear mechanical system

controlled using the active approach is generally more

complex, especially in the case of flexible multibody

systems [16]. By employing the active control method,

the mechanical vibrations are mitigated by the appli-

cation of a set of actively controlled forces aimed to

contrast the inertia and the elastic forces induced by

the external sources of excitation [17]. Adopting the

passive control strategy, on the other hand, reduces or

suppresses structural vibrations by employing two

different methods, namely the vibration isolation and

the vibration absorption [18]. The isolation of struc-

tural vibrations consists in a proper design of the

connection between a mechanical system and the

external environment, or the ground, such that the

unwanted external disturbances are eliminated or

reduced by the connection itself [19]. On the other

hand, the absorption of structural vibrations is realized

by designing a particular mechanical device capable of

absorbing or dissipating the unwanted kinetic energy

of the main structural system, as for instance in the

case of the dynamic vibration absorbers employed for

mechanical and civil engineering applications [20].

Moreover, the control problem for the contact forces is

also particularly important in many robotic applica-

tions where, for example, a compliant motion is

produced by the interaction of the end effector of a

robotic manipulator with the surface of a flexible body

[21].

The adjoint method is a versatile mathematical tool

for solving the optimal control problem in the general
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case of nonlinear mechanical systems [22]. The

adjoint-based sensitivity analysis encapsulates a large

number of mathematical theories, physical concepts

and computational methods in a unified framework

[23]. Indeed, the adjoint method finds several analyt-

ical and numerical applications that span much beyond

those originally imagined [24]. From a computational

point of view, the prominent feature of the adjoint

method is the fact that, in the case of a general

dynamical simulation that describes the time evolution

of the state of a mechanical system for a complex

nonlinear problem, the sensitivity of a predetermined

objective quantity with respect to the controlled input

data can be effectively computed by a linear adjoint

procedure featuring approximately the same compu-

tational cost of the original dynamical simulation [25].

On the other hand, in the classical linearization

method based on the superposition principle, a set of

separate linearized problems has to be independently

solved for each increment of the controlled input

variables [26, 27]. The main idea behind this approach

to the control problem leads also to the dynamic

programming method which, in turn, suffers from the

important drawback of the so-called curse of dimen-

sionality, namely the dimension and the complexity of

the problem grow exponentially with respect to the

number of the state variables [28]. Therefore, the

linearization method is considerably less general and

much slower compared to the adjoint method [29].

Because of its advantageous key properties, the adjoint

method has many relevant applications in fluid

mechanics, since in this field complex nonlinear

problems featuring a large number of degrees of

freedom are often the norm [30]. For instance, the

adjoint method can be utilized to design an optimal

aerodynamic shape that minimizes the drag coefficient

for a given lift coefficient [31], it can be used as a

numerical technique to extract the receptivity coeffi-

cient of a complex flow configuration [32], and it can

be employed to perform sensitivity and stability

analyses of a base flow subjected to small perturba-

tions [33]. Furthermore, the adjoint method can be

successfully employed to deal with linear as well as

nonlinear optimal control problems in general. In the

case of linear systems, or for linear dynamical models

resulting from the linearization process of nonlinear

mechanical systems around a given trajectory, several

effective algorithms based on the adjoint method were

developed for fluid mechanics applications in order to

solve large optimal control problems bypassing the

solution of the Riccati equations [34]. On the other

hand, only recently the adjoint method has been

employed in the field of robotics and for the design,

optimization, and control of mechanical systems

[35, 36]. Thus, the use of the adjoint analysis in the

general field of applied mechanics is still at an early

stage but, from a mathematical standpoint, it has

almost reached the maturity leading to a substantial

generalization of the concept of the linear-quadratic

regulator method (LQR) to the numerical solution of

complex nonlinear control problems, as shown in

some fluid mechanics applications [37]. This paper

represents an attempt to fill this gap and to pave the

way towards a further analytical and computational

development of the adjoint-based analysis for con-

trolling rigid and flexible multibody systems charac-

terized by nonlinear differential-algebraic equations

of motion.

Over the past thirty years, considerable efforts have

been devoted to the design of control strategies for the

simultaneous suppression of structural vibrations and

attenuation of contact forces in nonlinear mechanical

systems [38]. In fact, a crucial aspect of the motion

control problem for nonlinear mechanical systems is

the capacity to handle the interaction between the

system and the external environment [39]. Indeed, the

contact forces are physical quantities which charac-

terize the state of interaction of the mechanical system

of interest with the external world [40]. One possible

approach to deal with this problem is to design specific

control strategies which consider a hybrid motion-

force control scheme that decouples the motion

control and the force control tasks into two subtasks

which can be independently accomplished [41]. The

adjoint-based optimization algorithm, on the other

hand, is a nonlinear control optimization strategy

which is extremely suitable to deal with a considerable

class of coupled nonlinear optimization problems

[42, 43]. Therefore, the main idea behind this inves-

tigation is to explore the possibility of addressing the

interaction control problem for nonlinear mechanical

systems by using an adjoint-based optimization

approach.

In this investigation, a novel method is proposed to

derive feedforward and feedback control actions for

solving the problem of suppressing structural vibra-

tions and attenuating contact forces for nonlinear

mechanical systems utilizing two dual general-
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purpose computational procedures: the adjoint-based

control optimization method and the adjoint-based

parameter optimization method. This paper is orga-

nized as follows. Section 2 illustrates the main

mathematical features of the adjoint method for

optimal control design. To this end, a concise review

of optimal control theory is reported for both the

feedforward and the feedback control strategies,

followed by a pointwise description of the nonlinear

control and parameter optimization approaches based

on the adjoint method. Section 3 examines the control

problem for structural vibrations and the simultaneous

isolation problem for externally induced interaction

forces in the case of an archetypical two degrees of

freedom nonlinear mechanical system. For this pur-

pose, the nonlinear equations of motion of the simple

dynamical system considered as a case study are

readily derived and an appropriate quadratic structure

of the cost functional is set in order to mathematically

formulate the simultaneous control problems for

suppressing structural vibrations and attenuating con-

tact forces in the context of the optimal control theory.

This derivation is meant to show how to explicitly

obtain the sensitivity vectors and matrices necessary

for the computer implementation of the adjoint-based

optimization procedures proposed in the paper. Sub-

sequently, in this section, the synthesis of two types of

control strategies, namely a feedforward controller

and a feedback controller, is provided together with

the corresponding evolution of the system state and of

the interaction force. Some quantitative metrics aris-

ing from the numerical results obtained in the paper

are also shown in this section to demonstrate the

effectiveness of the implementation of the control

methods developed in this investigation. Finally,

Sect. 4 includes a summary and the conclusions of

the paper.

2 Adjoint method for optimal control design

In this section, the basic elements of the optimal

control theory and the practical implementation of the

adjoint method are briefly reviewed. To this end, the

necessary conditions that arise from the analytical

solution of the optimal control problem for continu-

ous-time dynamical systems are derived considering

two general cases, namely an optimal feedforward

controller and an optimal feedback controller.

Subsequently, the computational algorithms for the

implementation of the adjoint-based control optimiza-

tion method and, respectively, of the adjoint-based

parameter optimization method are discussed.

2.1 Design of an optimal feedforward controller

In this subsection, the necessary conditions that

identify the analytical solution of the optimal control

problem are developed employing some mathematical

techniques borrowed from the calculus of variation

theory like, for instance, the fundamental theorem of

the calculus of variation. In particular, the differential-

algebraic equations that produce an optimal feedfor-

ward control action are derived exploiting the Pon-

tryagin minimum principle.

A feedforward or open-loop controller is a control

policy determined as an explicit function of time and

of the specific initial conditions of the dynamical

system under examination [44]. Consider a set of n

nonlinear differential equations which describes the

state evolution of a continuous-time dynamical

system:

_z ¼ N
zjt¼0 ¼ z0

�
ð1Þ

where t is time, z � zðtÞ denotes a n-dimensional

vector representing the system state, z0 is a n-

dimensional vector representing the system initial

conditions, N � Nðt; z; u; rÞ identifies a n-dimen-

sional vector function that regulates the time evolution

of the system state, u � uðtÞ is a mu-dimensional

vector of feedforward control actions and r � rðtÞ
denotes a mr-dimensional vector of external inputs.

The vector function N represents a set of n nonlinear

ordinary differential equations that mathematically

describes the dynamics of the continuous-time system

or plant to be controlled. On the other hand, assume a

scalar cost functional J � Jðz0Þ featuring the follow-

ing analytical form:

J ¼ hjt¼T þ
Z T

0

gdt ð2Þ

where T is a fixed time domain for the control

actuation, h � hðt; z; ~zÞ is a scalar function that

identifies the terminal cost function, g �
gðt; z; ~z; u; ~u; r; ~rÞ is a scalar function that denotes

the current cost function, ~z � ~zðtÞ is a n-dimensional
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vector representing a preassigned reference state

trajectory, ~u � ~uðtÞ is a mu-dimensional vector repre-

senting a precomputed reference control action and

~r � ~rðtÞ is an l-dimensional vector representing an

assumed reference interaction vector. Without loss of

generality, the reference functions ~z, ~u and ~r are

typically set equal to zero vectors in the case of

regulation problems whereas in tracking problems

these functions result from the numerical solution of a

previously solved motion planning problem [45]. It is

important to note that the performance index J is

selected by the analyst in order to make the plant

exhibit a desired type of dynamical behaviour. In fact,

the cost functional J is a mathematical entity which

reflects how well a specific control law u meets the

design goals and, therefore, it is employed as a metric

to quantitatively assess the performances of a dynam-

ical system subjected to a particular set of control

actions. Thus, in the case of a feedforward controller,

the optimal control problem consists of finding an

optimal feedforward control action u� � u�ðtÞ which
causes the dynamical system to follow an optimal

trajectory z� � z�ðtÞ that corresponds to a global

minimum of the cost functional J� � J�ðz0Þ [46]. In
other words, from a mathematical point of view, the

problem at hand for the feedforward optimal control is

to find the minimum of the cost functional (2)

subjected to a set of differential constraint equations

which represents analytically the system dynamical

model (1). Thus, the key idea to solve this challenging

mathematical problem is to consider the system

dynamical model as a set of differential constraint

equations for the minimization problem under con-

sideration and, therefore, the adjoint method can be

employed to define an augmented cost functional
�J � �Jðz0Þ. To this end, the system state-space equa-

tions of motion (1) can be adjoined to the cost

functional (2) in order to obtain an augmented cost

functional defined as follows:

�J ¼ hjt¼T þ
Z T

0

gþ kT N� _zð Þdt ð3Þ

where k � kðtÞ defines a costate or adjoint state vector
which identifies the Lagrange multipliers resulting

from the adjoining process of the system equations of

motion to the cost functional. An effective method to

address the problem under study is to resort to the

Pontryagin minimum principle. In order to simplify

the mathematical derivation of the necessary equa-

tions which lead to the minimum of the augmented

cost functional (3), a Hamiltonian function H �
Hðt; z; ~z; u; ~u; r; ~rÞ can be utilized. The Hamiltonian

function H is defined as:

H ¼ gþ kTN ð4Þ

According to the Pontryagin minimum principle, an

optimal control action u� � u�ðtÞ produces an optimal

state trajectory z� � z�ðtÞ that corresponds to an

unconstrained minimum of the Hamiltonian function

H� � H�ðt; z�; ~z; u�; ~u; r; ~rÞ [47]. Hence, using the

definition of the Hamiltonian function (4), the aug-

mented cost functional (3) can be rewritten as:

�J ¼ hjt¼T þ
Z T

0

H � kT _zdt ð5Þ

The augmented cost functional �J can be reformulated

by using the integration by parts rule in order to

explicitly obtain the time derivative of the adjoint state

k as follows:

�J ¼ hjt¼T � kTz
��
t¼T

þ kTz
��
t¼0

þ
Z T

0

H þ _k
T
zdt

ð6Þ

By virtue of the fundamental theorem of the calculus

of variation, the variation of the augmented cost

functional �J vanishes on an extremal state trajectory z�

caused by an extremal control policy u� [48]. Indeed,

the first variation of the augmented cost functional �J
with respect to the system state z and with respect to

the control action u yields:

d�J ¼ oh

oz

� �T

� k

 !T

dz

�����
t¼T

þ kTdz
��
t¼0

þ
Z T

0

oH

oz

� �T

þ _k

 !T

dzþ oH

ou
dudt

ð7Þ

The mathematical form of the variation of the

augmented cost functional (7) can be considerably

simplified introducing the following definitions:

A ¼ oN

oz
; B ¼ oN

ou

m ¼ oh

oz
; u ¼ og

oz
; w ¼ og

ou

8>>><
>>>:

ð8Þ
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where A � Aðt; z; u; rÞ is a n� n matrix that repre-

sents the sensitivity of the system state functionNwith

respect to the system state z, B � Bðt; z; u; rÞ denotes
a n� mu matrix representing the sensitivity of the

system state function N with respect to the control

action u, m � mðt; z; ~zÞ identify a n-dimensional vector

that describes the sensitivity of the terminal cost

function h with respect to the state vector z, u �
uðt; z; ~z; u; ~u; r; ~rÞ is a n-dimensional vector describ-

ing the sensitivity of the current cost function g with

respect to the system state z and w �
wðt; z; ~z; u; ~u; r; ~rÞ is a mu-dimensional vector that

denotes the sensitivity of the current cost function g

with respect to the control vector u. By using the

definitions of the system sensitivity matrices and

vectors provided by the Eq. (8), the variation of the

augmented cost functional (7) can be rewritten as:

d�J ¼ mT �k
� �T

dz
���
t¼T

þkTdz
��
t¼0

þ
Z T

0

uT þATkþ _k
� 	T

dzþ wT þBTk
� �T

dudt

¼ mT �k
� �T

dz
���
t¼T

þkTdz
��
t¼0

þ
Z T

0

uT þATkþ _k
� 	T

dzdtþ
Z T

0

wT þBTk
� �T

dudt¼ 0

ð9Þ

Finally, assuming that the system initial state z0 is

given and considering a fixed time horizon T, the

necessary conditions which identify an optimal feed-

forward controller can be derived setting equal to zero

the coefficients of the first variation of the augmented

cost functional �J with respect to the system state z and

with respect to the control action u as follows:

_z ¼ N; zjt¼0 ¼ z0

� _k ¼ uT þ ATk; kjt¼T ¼ mT jt¼T

wT þ BTk ¼ 0

8>>>>>><
>>>>>>:

ð10Þ

The resulting differential-algebraic equations given by

(10) constitute a nonlinear two-point boundary value

problem and represent the necessary conditions which

define the minimum of the augmented cost functional �J
[49]. In particular, the first vector equation of the set

(10) mathematically describes the direct problem,

namely the dynamical evolution of the system state z

based on the system initial conditions, whereas the

second vector equation of the set (10) mathematically

represents the adjoint problem, namely the dynamical

evolution of the adjoint state k based on the corre-

sponding set of boundary or terminal conditions. On

the other hand, the third vector equation of the set (10)

is called the stationarity equation and defines the

minimum of the Hamiltonian function H. It is

important to note that the nonlinear ordinary differ-

ential equations representing the direct problem, the

linear ordinary differential equations that characterize

the adjoint problem, and the linear algebraic equations

which identify the stationarity conditions are highly

coupled and form a nonlinear differential-algebraic

two-point boundary value problem. In general, these

problems are challenging to solve analytically. How-

ever, there are some numerical procedures that can be

effectively used to solve this type of mathematical

problems. For instance, among the gradient-based

optimization techniques, the iterative adjoint-based

control optimization algorithm is an efficient and

effective computational method capable of designing

feedforward control actions for nonlinear mechanical

systems [50]. On the other hand, since the adjoint

analysis represents a general framework rather than a

specific implementation procedure, the adjoint-based

control optimization algorithm is the first numerical

method developed in this paper.

2.2 Design of an optimal feedback controller

The analytical results derived above are mirrored

hereinafter in order to develop an optimal feedback

controller. In fact, in this subsection, the necessary

conditions that yield an optimal feedback control

action are derived exploiting again the Pontryagin

minimum principle.

A feedback or closed-loop controller is a control

policy determined as an explicit function of the state of

the dynamical system examined [51]. Consider a mu-

dimensional vector of feedback control actions

denoted with u � uðt; z; cÞ whose structure depends

on the constant mc-dimensional parameter vector c.
The parameter vector c contains a set of coefficients

that define a pre-established structure of the feedback

control action u, such as a constant feedback structure

that depends linearly on the system state z. Hence, in

the case of a feedback controller, the optimal control

problem consists of finding an optimal set of
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parameters c� that defines the structure of an optimal

feedback control action u� � u�ðt; z�; c�Þ which

causes the dynamical system to follow an optimal

trajectory z� � z�ðtÞ that corresponds to a global

minimum of the cost functional J� � J�ðz0Þ [52].

According to the Pontryagin minimum principle, an

optimal set of parameters c� defines an optimal control

action u� � u�ðt; z�; c�Þ that yields an optimal state

trajectory z� � z�ðtÞwhich identifies an unconstrained
minimum of the Hamiltonian function H� �
H�ðt; z�; ~z; u�; ~u; r; ~r; c�Þ [53]. To this end, define:

A ¼ oN

oz
; B ¼ oN

oc

m ¼ oh

oz
; u ¼ og

oz
; w ¼ og

oc

8>>><
>>>:

ð11Þ

where A � Aðt; z; u; r; cÞ is a n� n matrix that

represents the sensitivity of the system state function

Nwith respect to the system state z,B � Bðt; z; u; r; cÞ
denotes a n� mc matrix representing the sensitivity of

the system state function N with respect to the vector

of control parameters c, m � mðt; z; ~z; cÞ identify a n-

dimensional vector that describes the sensitivity of the

terminal cost function hwith respect to the state vector

z, u � uðt; z; ~z; u; ~u; r; ~r; cÞ is a n-dimensional vector

describing the sensitivity of the current cost function g

with respect to the system state z, and w �
wðt; z; ~z; u; ~u; r; ~r; cÞ is a mc-dimensional vector that

denotes the sensitivity of the current cost function g

with respect to the vector of control parameters c.
Considering a given set of initial conditions z0 and

assuming that the time horizon T is fixed, the

necessary conditions that define an optimal feedback

controller can be obtained by setting the coefficients of

the first variation of the augmented cost functional �J
equal to zero with respect to the system state z and

with respect to the parameter vector c following the

same mathematical procedure employed in the previ-

ous subsection to give:

_z ¼ N; zj0 ¼ z0

� _k ¼ uT þ ATk; kjT ¼ mjT

R T
0
wT þ BTkdt ¼ 0

8>>>>>><
>>>>>>:

ð12Þ

The resulting integro-differential equations given by

(12) form a nonlinear two-point boundary value

problem [54]. Specifically, the first vector equation

of the set (12) mathematically describes the direct

problem, while the second vector equation of the set

(12) mathematically represents the adjoint problem.

On the other hand, the third vector equation of the set

(12) is called the stationarity equation. It is important

to note that, in the case of the formulation of the

optimal control problem for a feedback control

architecture, the stationarity equations form a set of

integral equations. In general, the nonlinear integro-

differential two-point boundary value problems are

difficult to solve analytically. Nevertheless, some

computational procedures can be effectively

employed to solve this type of problem numerically.

For instance, the iterative adjoint-based parameter

optimization algorithm is an efficient and effective

computational method that belongs to the class of

gradient-based optimization techniques and is able to

derive feedback control actions for a vast class of

nonlinear mechanical systems [55]. Inspired by the

adjoint analysis framework, the adjoint-based param-

eter optimization algorithm is the second numerical

method developed in this paper.

2.3 Computer implementation of the adjoint-

based control optimization procedure

In this subsection, the numerical implementation of

the adjoint-based control optimization method is

discussed in detail and the complete procedure for

the computer implementation of the proposed iterative

technique is described step by step. In fact, the

variational approach presented in the corresponding

previous subsection leads to a nonlinear differential-

algebraic two-point boundary value problem that, in

general, cannot be solved analytically to obtain an

optimal feedforward control law. Therefore, one must

resort to numerical methods in order to solve such

challenging nonlinear problems. To this end, there are

three general classes of computational methods that

can be employed to solve the problem at hand

numerically, namely the neighboring extremal meth-

ods, the quasilinearization methods, and the gradient

methods [56]. In particular, the numerical technique

presented here belongs to the class of the gradient-

based optimization methods and is able to determine
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an optimal feedforward control action together with

the corresponding state trajectory.

The adjoint-based control optimization method

represents an iterative numerical algorithm that can

be effectively used to find an approximate solution to

the nonlinear differential-algebraic two-point bound-

ary value problem defined by equations (10) which

identifies an optimal feedforward controller and the

corresponding evolution of the system state. This

numerical method originates from the field of com-

putational fluid dynamics and is particularly suitable to

compute in an efficient and effective way a set of

feedforward control actions for mechanical systems

featuring a large number of degrees of freedom. The

fundamental idea of this gradient-based method is to

cleverly exploit the information of the cost functional

gradient, which is known analytically, in order to solve

the minimization problem at hand via nonlinear

optimization techniques [57]. The stationarity equa-

tions are rewritten as follows for the sake of simplicity:

wT þ BTk ¼ 0 ð13Þ

Indeed, for a general state trajectory corresponding to

a non-optimal feedforward control action, the non-

zero cost functional gradient can be computed using

the stationarity conditions (13) as follows:

G ¼ wT þ BTk ð14Þ

where G � Gðt; z; ~z; u; ~u; r; ~rÞ is a n-dimensional

vector that represents the cost functional gradient

with respect to the feedforward control action for a

given instant of time. For the sake of clarity, the

adjoint state equations are rewritten here:

� _k ¼ uT þ ATk

kjt¼T ¼ mT jt¼T

8><
>: ð15Þ

Note that in correspondence to a non-optimal feed-

forward control action u that yields a non-extremal

state trajectory z, the cost functional gradientG is not a

zero vector. Thus, considering a trial time history of

the control action uk, where the superscript k refers to

the index of the iterative algorithm, first the system

state equations (1) must be solved numerically by

using the trial time history of the feedforward control

action uk and then the system adjoint equations (15)

must be solved numerically in order to obtain,

respectively, a trial time history of the system state

zk and a trial time history of the adjoint state kk. The

numerical solutions zk and kk obtained following this

procedure will satisfy, respectively, the initial condi-

tions and the terminal conditions. Subsequently,

considering a general step of the iterative adjoint-

based control optimization method, the time histories

zk and kk arising from the numerical procedure will not

identify the minimum of the cost functional and,

therefore, the norm of the corresponding time history

of the cost functional gradient Gk will be different

from zero. The time history of the cost functional

gradient Gk can be computed explicitly from the

stationary equations (14) once the time history of the

system state zk and the time history of the adjoint state

kk are known as follows:

Gk ¼ wk
� �T þ Bk

� �T
kk ð16Þ

where wk and Bk denote respectively the time history

of the cost-to-go sensitivity vector with respect to the

control action and the time history of the state function

sensitivity matrix with respect to the control action,

both corresponding to the trial solution uk. The time

history of the cost functional gradient Gk can be used

in an iterative gradient-based optimization algorithm

in order to gradually improve the time history of the

control action uk towards the minimum of the cost

functional. Typically, to accomplish this task a line

search algorithm is used. In general, the line search

strategy leads to three general families of minimiza-

tion methods, namely the steepest descent method, the

conjugate gradient method, and the quasi-Newton

method [58]. For this purpose, all the algorithms based

on the line search strategy utilise the information of

the cost functional gradient Gk to determine a time

history of the descent direction ek and search the

minimum of the cost functional along this direction.

This process starts from the current time history of the

control action uk and leads to the next time history of

the control action ukþ1 that corresponds to a lower

value of the cost functional. Thus, using a line search

method the time history of the control input can be

iteratively updated as follows:

ukþ1 ¼ uk þ akek ð17Þ

where ak is a scalar line parameter which represents

the step length corresponding to the current iteration.

The minimization algorithms based on a line search
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strategy differ from each other on the computational

method employed to determine the time history of the

descent direction ek using the time history of the cost

functional gradient Gk. Once the time history of the

descent direction ek is set, the solution for the step

length ak can be found by employing a minimum

search algorithm. That is:

ak ¼ argmin
a

Jð Þ ð18Þ

The complete procedure necessary for the implemen-

tation of the adjoint-based control optimization

method can be summarized as follows:

• Step 1: Direct Problem Solution use the current

time history of the feedforward control action uk

(or a trial feedforward control time history u0 for

the first iteration) to integrate the system state-

space Eq. (10) numerically forward in time start-

ing from the set of initial conditions zj0 ¼ z0 in

order to obtain the current state trajectory zk. For

instance, the explicit or implicit Runge-Kutta

methods can be used to accomplish this task.

• Step 2: Adjoint Problem Solution use the current

state trajectory zk to integrate the system adjoint

state Eq. (10) numerically backward in time

starting from the set of terminal conditions kjT ¼
mjT in order to obtain the current adjoint state

trajectory kk. The explicit or implicit Runge-Kutta

methods can be used to accomplish this task as

well.

• Step 3:Gradient Computation use the current state

trajectory zk and the current adjoint state trajectory

kk to compute the current time history of the cost

functional gradient Gk by using its explicit

expression which stems from the stationary

equations.

• Step 4: Search Direction Computation use the

current time history of the cost functional gradient

Gk to compute the current time history of the

search direction ek. For instance, the steepest

descent method, the conjugate gradient methods

(such as the Fletcher–Reeves algorithm, the

Polak–Ribiere algorithm, or the Hestenes–Stiefel

algorithm), or the quasi-Newton methods (such as

the Davidon–Fletcher–Powell algorithm or the

Broyden–Fletcher–Goldfarb–Shanno algorithm)

can be used to accomplish this task.

• Step 5: Initial Guess Computation determine an

initial guess for the step length a0 in order to

initialize the minimum search algorithm. For

instance, the Taylor series method can be used to

accomplish this task.

• Step 6: Bracketing use the initial guess for the step

length a0 to bracket the minimum of the cost

functional J in an interval a0, b0, and c0 along the

time history of the search direction ek. For

instance, the Fibonacci method or the golden

section method can be used to accomplish this

task.

• Step 7:Minimization use the bracketed interval a0,

b0, and c0 to minimize the cost functional J along

the time history of the search direction ek in order

to find the corresponding step length ak and to

update the time history of the control action ukþ1

using the line search strategy (17). For instance,

the Fibonacci search method, the golden section

search method, or the Brent search method can be

used to accomplish this task. If the selected

convergence criteria are not satisfied, restart from

step 1. For instance, a tolerance on the absolute

value of the difference between the current cost

functional value Jk and the past cost functional

value Jk�1 or a tolerance on the norm of current

time history of the cost functional gradient Gk can

be used to accomplish this task.

The iterative adjoint-based control optimization

method leads to a numerical solution of the nonlinear

differential-algebraic two-point boundary-value prob-

lem defined by the Eq. (10) which provides the time

history of the feedforward control action u�, the time

history of the system state trajectory z�, and the time

history of the adjoint state trajectory k� corresponding
to a minimum of the cost functional J�.

2.4 Computer implementation of the adjoint-

based parameter optimization procedure

The iterative numerical procedure developed above is

mirrored here in order to derive the computer imple-

mentation of the adjoint-based parameter optimization

method, which is described thoroughly in this subsec-

tion. In this case, the proposed numerical strategy

employs a particular gradient-based optimization
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method capable of computing an optimal feedback

control action and the corresponding state trajectory.

The adjoint-based parameter optimization method

is an iterative numerical procedure which can be

effectively used to find an approximate solution to the

nonlinear integro-differential two-point boundary

value problem defined by Eq. (12) that identify an

optimal feedback controller and the corresponding

evolution of the system state. Similarly to its counter-

part for the feedforward controller, the key idea of this

computational method is to employ the information of

the cost functional gradient in order to improve

gradually the numerical solution for the feedback

control action in an iterative fashion taking advantage

of an appropriate nonlinear optimization technique

[59, 60]. In this case, the minimization process starts

from the current value of the control parameter vector

ck and leads to the next value of the control parameter

vector ckþ1 following a line search strategy as:

ckþ1 ¼ ck þ akek ð19Þ

where in this case ak is a scalar line parameter which

represents the step length corresponding to the current

iteration. Once the vector representing the descent

direction ek is set, the solution for the step length ak

can be found using a minimum search algorithm. That

is:

ak ¼ argmin
a

Jð Þ ð20Þ

The complete procedure to implement the adjoint-

based parameter optimization method can be summa-

rized as follows:

• Step 1: Direct Problem Solution use the current

parameter vector for the control action ck (or a trial
parameter vector for the control action c0 for the

first iteration) to integrate the system state-space

Eq. (12) numerically forward in time starting from

the set of initial conditions zj0 ¼ z0 in order to

obtain the current state trajectory zk. For instance,

the explicit or implicit Runge–Kutta methods can

be used to accomplish this task.

• Step 2: Adjoint Problem Solution use the current

state trajectory zk to integrate the system adjoint

state Eq. (12) numerically backward in time

starting from the set of terminal conditions kjT ¼
mjT in order to obtain the current adjoint state

trajectory kk. The explicit or implicit Runge–Kutta

methods can be used to accomplish this task as

well.

• Step 3:Gradient Computation use the current state

trajectory zk and the current adjoint state trajectory

kk to compute the current cost functional gradient

Gk by using its explicit expression which stems

from the stationarity equations. For instance, the

Newton–Cotes methods or the Gauss–Legendre

quadrature methods can be used to accomplish this

task.

• Step 4: Search Direction Computation use the

current cost functional gradient Gk to compute the

current search direction ek. For instance, the

steepest descent method, the conjugate gradient

methods (such as the Fletcher–Reeves algorithm,

the Polak–Ribiere algorithm, or the Hestenes–

Stiefel algorithm), or the quasi-Newton methods

(such as the Davidon–Fletcher–Powell algorithm

or the Broyden–Fletcher–Goldfarb–Shanno algo-

rithm) can be used to accomplish this task.

• Step 5: Initial Guess Computation determine an

initial guess for the step length a0 in order to

initialize the minimum search algorithm. For

instance, the Taylor series method can be used to

accomplish this task.

• Step 6: Bracketing use the initial guess for the step

length a0 to bracket the minimum of the cost

functional J in an interval a0, b0, and c0 along the

search direction ek. For instance, the Fibonacci

method or the golden section method can be used

to accomplish this task.

• Step 7:Minimization use the bracketed interval a0,

b0, and c0 to minimize the cost functional J along

the search direction ek in order to find the

corresponding step length ak and to update the

parameter vector for the control action ckþ1 using

the line search strategy (19). For instance, the

Fibonacci search method, the golden section

search method or the Brent search method can be

used to accomplish this task. If the selected

convergence criteria are not satisfied, restart from

step 1. For instance, a tolerance on the absolute

value of the difference between the current cost

functional value Jk and the past cost functional

value Jk�1 or a tolerance on the norm of the current
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cost functional gradient Gk can be used to

accomplish this task.

The iterative adjoint-based parameter optimization

method leads to a numerical solution of the nonlinear

integro-differential two-point boundary-value prob-

lem defined by the Eq. (12) which provides the

parameter vector for the feedback control action c�,
the time history of the system state trajectory z�, and

the time history of the adjoint state trajectory k�

corresponding to a minimum of the cost functional J�.

3 Numerical results and discussion

In this section, a simple numerical example is

provided in order to illustrate the computer imple-

mentation of both the adjoint-based control optimiza-

tion method and the adjoint-based parameter

optimization method. The numerical example ana-

lyzed here features a twofold structure so that both the

proposed nonlinear optimization techniques can be

equally applied to exemplify the implementation of

the adjoint method for optimal control design.

3.1 Description of the case study

In this subsection, the mechanical system that serves

as an illustrative example for the proposed adjoint-

based computational methods is described qualita-

tively and quantitatively.

The dynamical system considered as case-study is a

lumped-parameter nonlinear mechanical system fea-

turing two degrees of freedom and is shown in Fig. 1.

In Fig. 1, the first mass is denoted with m1 and the

second mass is denoted with m2. The displacement of

the first mass is represented by the coordinate x1 �
x1ðtÞ while the displacement of the second mass is

represented by the coordinate x2 � x2ðtÞ. The whole

system is subjected to a constant gravitational field

whose gravitational acceleration is ag. The mechanical

system under consideration features three elastic

components which exert three different force fields.

The first elastic component provides a nonlinear

stiffness denoted with k1 and its force field features a

degree of nonlinearity represented by g. The cubic

nonlinear characteristic of the first elastic component

is meant to model in a simple manner the stiffening

phenomenon of the first spring. Therefore, the

nonlinear force field produced by the first elastic

component is denoted with Fk1 � Fk1ðt; x1Þ and its

structure is assumed as follows:

Fk1 ¼ �k1x1 1þ gx21
� �

ð21Þ

On the other hand, the second and the third elastic

components provide linear elastic force fields whose

stiffnesses are denoted respectively with k2 and k3.

Furthermore, the first, the second, and the third

dissipative components shown in Fig. 1 produce three

linear dissipative force fields whose damping are

represented respectively by the coefficients r1, r2, and

r3. The system is hinged on a moving support located

at a height L. The displacement of the floating support

is identified by the time-dependent variable s � sðtÞ.
For the sake of simplicity, its mathematical structure is

assumed to be a superposition of two harmonic

functions as follows:

s ¼ S1 sinð2pf1tÞ þ S2 sinð2pf2tÞ ð22Þ

Fig. 1 Mechanical system
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where S1 and S2 denote the amplitudes of the two

external displacements while f1 and f2 identify

respectively the corresponding frequencies of the

two harmonic signals. Hence, a control actuator is

interposed between the two masses in order to reduce

the amplitude of the system vibrations induced by the

floating support. To this end, two types of control

actions are considered, namely a feedforward con-

troller and a feedback controller. In the case of the

feedforward controller, the time-dependent action of

the control actuator is denoted with u � uðtÞ. In the

case of the feedback controller, the state-dependent

action of the control actuator is represented by u �
uðz; t; cÞ and a linear structure is assumed as:

u ¼ �c1 x2 � x1ð Þ � c2 _x2 � _x1ð Þ ð23Þ

where the vector of control parameters c is defined as

follows:

c ¼
c1

c2

2
64

3
75 ð24Þ

The linear structure utilized for the feedback

controller corresponds to the well-known propor-

tional-derivative feedback control scheme (PD).

Indeed, c1 denotes the coefficient for the proportional
term while c2 represents the coefficient of the deriva-
tive term for the proportional-derivative feedback

controller. Finally, a comprehensive list of all the

system data is reported in Table 1.

3.2 State-space model of the system equations

of motion

In this subsection, the equations of motion of the

mechanical system under study are derived and the

dynamical model is subsequently represented in the

space of the states.

The mechanical system represented in Fig. 1 fea-

tures n2 ¼ 2 degrees of freedom. Therefore, the

system configuration can be easily identified consid-

ering a set of two generalized coordinates grouped in a

vector q � qðtÞ and defined as:

q ¼
x1

x2

2
64

3
75 ð25Þ

where x1 and x2 denote the displacements of the two

masses as shown in Fig. 1. Employing the analytical

techniques of the Lagrangian mechanics [61, 62], the

system equations of motion can be formally written as:

M€q ¼ Q ð26Þ

where M � Mðt; qÞ is a n2 � n2 matrix representing

the systemmass matrix andQ � Qðt; q; _q; s; _sÞ is a n2-
dimensional vector denoting the vector of the external

generalized forces acting on the system. For the

problem at hand, the system mass matrix and the

vector of the generalised external forces can be readily

derived by using the D’Alemebert-Lagrange principle

of virtual work [63, 64]. This well-established method

leads to the following mathematical expressions:

M ¼
m1 0

0 m2

2
64

3
75 ð27Þ

Table 1 Mechanical system data

Description Symbols Data (Units)

First mass m1 1 (kg)

Second mass m2 2 (kg)

First stiffness k1 100 (kg s�2)

Second stiffness k2 200 (kg s�2)

Third stiffness k3 300 (kg s�2)

First stiffness degree of nonlinearity g 10 (m�2)

First damping r1 0.1 (kg s�1)

Second damping r2 0.2 (kg s�1)

Third damping r3 0.3 (kg s�1)

Gravity acceleration ag 9.81 (m s�2)

Support height L 1 (m)

Support displacement—amplitude 1 S1 0.2 (m)

Support displacement—amplitude 2 S2 0.04 (m)

Support displacement—frequency 1 f1 1 (s�1)

Support displacement—frequency 2 f2 10 (s�1)

Initial displacement of first mass x1;0 0.01 (m)

Initial displacement of second mass x2;0 0.02 (m)

Initial velocity of first mass v1;0 0.1 (m s�1)

Initial velocity of second mass v2;0 0.2 (m s�1)
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The system equations of motion (26) form a set of

n2 ¼ 2 nonlinear second-order ordinary differential

equations which requires a set of 2n2 ¼ 4 initial

conditions q0 and _q0. When a control action is applied

on the system, the system equations of motion changes

accordingly as follows:

M€q ¼ QþQc ð29Þ

where Qc � Qcðt; q; _q; uÞ is a n2-dimensional vector

representing the vector of generalized forces arising

from the control action. For the system under study,

the control action is exerted by a force generated by an

actuator acting between the two masses. Thus, in the

case of a feedforward controller, the Lagrangian

component of the control action Qc can be expressed

as follows:

Qc ¼
�u

u

2
64

3
75 ð30Þ

On the other hand, in the case of a feedback controller,

the Lagrangian component of the control action Qc

can be written as:

Qc ¼
c1 x2 � x1ð Þ þ c2 _x2 � _x1ð Þ
�c1 x2 � x1ð Þ � c2 _x2 � _x1ð Þ


 �
ð31Þ

For the two types of control strategy considered,

namely the feedforward control and the feedback

control, the controlled system results in an underac-

tuated mechanical system because it features two

degrees of freedom but there is only one control input.

Underactuated systems represent a general class of

dynamical systems particularly challenging to control

and, therefore, this kind of mechanical systems is often

used to demonstrate the use of novel control method-

ologies [65, 66]. In order to convert the system

equations of motion (26) from the configuration space

to the state-space, the system state vector z can be

readily defined as:

z ¼
q

_q

2
64
3
75 ¼

x1

x2

_x1

_x2

2
666666666664

3
777777777775

ð32Þ

Also, the vector of uncontrollable external actions r �
rðtÞ can be written as follows:

r ¼
s

_s

2
64
3
75 ð33Þ

where s and _s denote respectively the displacement of

the moving support and its time derivative. Once the

state vector has been defined, the state-space repre-

sentation of the system dynamical model can be

obtained by adding an identity relating the derivative

of the configuration vector to the state vector so that

the state-space model can be formally written to give:

_z ¼ N ð34Þ

where N represents the system state function. The

system state-space model (34) constitutes a set of n ¼
2n2 ¼ 4 nonlinear first-order ordinary differential

equations and requires the identification of the initial

state z0 which arises from the set of n ¼ 2n2 ¼ 4 initial

conditions q0 and _q0.

3.3 Feedforward control design and development

In this subsection, the adjoint-based control optimiza-

tion method is employed to design an optimal

feedforward controller and the numerical results

arising from the implementation of this type of control

strategy are shown.

The feedforward controller described here is an

open-loop controller designed using the adjoint-based

Q ¼
�m1ag � k1x1 1þ gx21

� �
� k2 x1 � x2ð Þ � r1 _x1 � r2 _x1 � _x2ð Þ

�m2ag � k2 x2 � x1ð Þ � k3 x2 � L� sð Þ � r2 _x2 � _x1ð Þ � r3 _x2 � _sð Þ

" #
ð28Þ
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control optimization method. The control

scheme which describes how the feedforward con-

troller acts on the mechanical system under study is

represented in Fig. 2. The purpose of this feedforward

controller is to reduce the amplitudes of the vibrations

induced by the moving support and, at the same time,

to reduce more drastically the amplitude of the contact

force between the second mass and the moving

support representing the interaction of the mechanical

systemwith the external environment. For the problem

at hand, the contact force r can be expressed as

follows:

r ¼ �k3 Lþ s� x2ð Þ � r3 _s� _x2ð Þ ð35Þ

The terminal cost function h is designed assuming the

following quadratic form:

h ¼ 1

2
zTQTz ð36Þ

where QT is a diagonal weight matrix which charac-

terises the mathematical structure of the terminal cost

function h. On the other hand, the cost-to-go function g

is assumed quadratic as well and it is designed.

g ¼ 1

2
zTQzzþ

1

2
uTQuuþ 1

2
rTQrr ð37Þ

where Qz, Qu, and Qr are diagonal weight matrices

which characterise the structure of the cost-to-go

function g. The terminal cost sensitivity vector with

respect to the system state m can be readily derived by

calculating the Jacobian matrix of the terminal cost

function h with respect to the system state z. On the

other hand, the cost-to-go sensitivity vector with

respect to the system state u can be obtained by

computing the Jacobian matrix of the cost-to-go

function g with respect to the system state z. The

cost-to-go sensitivity vector with respect to the control

action w can be obtained by deriving the Jacobian

matrix of the cost-to-go function g with respect to the

control action u. Using the terminal cost sensitivity

vector m and the cost-to-go sensitivity vectors / and w,

the synthesis of a feedforward controller can be

performed in order to numerically compute an optimal

control action and the corresponding evolution of the

system state. The weight matrices which characterise

the cost function are set as follows:

QT ¼ diag 102; 102; 102; 102
� �

Qz ¼ diag 102; 102; 102; 102
� �

Qu ¼ 1

Qr ¼ 103

8>>><
>>>:

ð38Þ

Once the necessary system sensitivity matrices and

vectors are identified, the adjoint-based control opti-

mization method is implemented in order to derive an

optimal feedforward controller following the compu-

tational steps described in the paper. To this end, the

numerical solutions of the direct problem and of the

adjoint problem, which represent steps 1 and 2 of the

adjoint-based procedure, are obtained by means of the

explicit fourth-order Runge–Kutta method featuring

the 3/8-rule. The gradient-based optimization, which

represents steps 3 and 4 of the adjoint-based opti-

mization method, is performed using a quasi-Newton

method based on the Broyden–Fletcher–Goldfarb–

Shanno iterative algorithm. The computation of the

initial guess for the minimization procedure, that

represents step 5 of the complete algorithm, is realized

employing a Taylor series expansion. The bracketing

and the minimization for the research of the cost

functional minimum, which represent steps 6 and 7 of

the proposed computational procedure, are both

carried out through the implementation of the

Fibonacci search technique featuring a tolerance of

10�9 on the relative difference of the cost functional

and a tolerance of 10�3 for the norm of the cost

functional gradient. The numerical integration neces-

sary to evaluate the cost functional corresponding to a

given set of control actions is performed using the

Simpson method featuring the 3 / 8-rule. The result-

ing iterative convergence of the cost functional

towards the minimum is shown in Fig. 3. This

FEEDFORWARD
CONTROLLER SYSTEM

u
σ

zreference
ureference
σreference

z

Fig. 2 Control scheme for the feedforward controller
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figure shows that in this numerical example related to

the design of a feedforward control action, the adjoint-

based control optimization method features a rapid

convergence. The optimal feedforward control action

resulting from the adjoint-based control optimization

method is depicted in Fig. 4. In Fig. 5 the dashed line

depicts the displacement of the first mass when the

system is uncontrolled whereas the solid line repre-

sents the displacement of the first mass when the

feedforward controller acts on the system. In Fig. 6 the

dashed line represents the displacement of the second

mass when the system is uncontrolled while the solid

line depicts the displacement of the second mass when

the feedforward controller acts on the system. Qual-

itatively, these figures show that the effect of the

feedforward control action is a considerable amplitude

reduction of the system vibrations. The amplitude

reductions of the system displacements can be

assessed quantitatively by comparing the standard

deviation values of the system displacements with and

without the feedforward controller as follows:

kx1 ¼
kx1;u � kx1;c

kx1;u
¼ 50:392%

kx2 ¼
kx2;u � kx2;c

kx2;u
¼ 50:638%

8>><
>>:

ð39Þ

where kx1;u, kx2;u denote the standard deviation values

of the system displacements when there is no control

action whereas kx1;c, kx2;c denote the standard devia-

tion values of the system displacements when the

feedforward controller acts on the system. On the other
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Fig. 3 Cost functional convergence for the feedforward

controller—J

0 2 4 6 8 10
−150

−100

−50

0

50

100

150

Time (s)

C
on

tro
l a

ct
io

n 
(N

)

Fig. 4 Feedforward controller—u

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

fir
st

 m
as

s 
di

sp
la

ce
m

en
t (

m
)

Time (s)

Fig. 5 Uncontrolled and controlled displacement (feedforward

controller)—x1

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

se
co

nd
 m

as
s 

di
sp

la
ce

m
en

t (
m

)

Time (s)

Fig. 6 Uncontrolled and controlled displacement (feedforward

controller)—x2

Meccanica (2017) 52:2503–2526 2517

123



hand, in Fig. 7 the dashed line depicts the velocity of

the first mass when the system is uncontrolled while

the solid line represents the velocity of the first mass

when the feedforward controller acts on the system. In

Fig. 8 the dashed line represents the velocity of the

second mass when the system is uncontrolled whereas

the solid line depicts the velocity of the second mass

when the feedforward controller acts on the system. In

this case, qualitatively these figures show that the

action of the feedforward controller produces an

appreciable amplitude reduction of the system vibra-

tions. The amplitude reductions of both velocities can

be evaluated quantitatively by comparing the standard

deviation values of the system velocities with and

without the feedforward controller as follows:

k _x1 ¼
k _x1;u � k _x1;c

k _x1;u
¼ 43:555%

k _x2 ¼
k _x2;u � k _x2;c

k _x2;u
¼ 65:987%

8>><
>>:

ð40Þ

where k _x1;u, k _x2;u denote the standard deviation values

of the system velocities when there is no control action

while k _x1;c, k _x2;c denote the standard deviation values

of the system velocities when the feedforward con-

troller acts on the system. Finally, in Fig. 9 the dashed

line represents the interaction force when the system is

uncontrolled whereas the solid line represents the

interaction force when the feedforward controller acts

on the system. Thus, the action of the feedforward

controller yields a sensible amplitude reduction of the

system interaction force, as shown in these figures.

The amplitude reduction of the system interaction

force can be estimated quantitatively by comparing the

standard deviation values of the system interaction

force with and without the feedforward controller as

follows:

kr ¼ kr;u � kr;c
kr;u

¼ 70:510% ð41Þ

where kr;u denotes standard deviation value of the

system interaction force when there is no control

action while kr;c denotes the standard deviation value

of the system interaction force when the feedforward

controller is applied on the mechanical system.
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3.4 Feedback control design and development

In this subsection, the adjoint-based parameter opti-

mization method is used to derive an optimal feedback

controller and the numerical results obtained by means

of the implementation of this type of control policy are

shown.

The feedback controller described here is a closed-

loop controller derived using the adjoint-based param-

eter optimization method. The control scheme which

describes how the feedback controller acts on the

mechanical system under consideration is represented

in Fig. 10. Similarly to the feedforward controller, the

goal of this feedback controller is to attenuate the

amplitudes of the vibrations caused by the floating

support and, at the same time, to attenuate more

significantly the amplitude of the contact force

between the second mass and the floating support

which represents the interaction of the mechanical

system with the external environment. Once the

necessary system sensitivity matrices and vectors are

identified following the same procedure described in

the previous subsection, the adjoint-based parameter

optimization method is implemented in order to derive

an optimal feedback controller following the compu-

tational steps described in the paper. The resulting

iterative convergence of the cost functional towards

the minimum is represented in Fig. 11. This fig-

ure shows that in the case of the design of the feedback

control action, the adjoint-based parameter optimiza-

tion method converges very quickly to a minimum of

the cost functional. The optimal feedback control

action resulting from the adjoint-based parameter

optimization method is represented in Fig. 12. The

resulting optimal parameter vector for the propor-

tional-derivative feedback controller is the following:

c ¼
�65:822

17:064


 �
ð42Þ

From a mathematical standpoint, these parameters

identify respectively the coefficients of the propor-

tional and derivative terms for the feedback controller.

From a physical point of view, the first control

parameter can be interpreted as a negative stiffness
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CONTROLLER SYSTEM

u
σ

zreference
ureference
σreference

z

Fig. 10 Control scheme for feedback controller
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coefficient while the second control parameter is

analogous to a positive damping coefficient. In Fig. 13

the dashed line represents the displacement of the first

mass when the system is uncontrolled whereas the

solid line depicts the displacement of the first mass

when the feedback controller acts on the system. In

Fig. 14 the dashed line depicts the displacement of the

second mass when the system is uncontrolled while

the solid line represents the displacement of the second

mass when the feedback controller acts on the system.

From a qualitative point of view, these figures show

that the outcome of the feedback control action is a

considerable amplitude attenuation of the system

vibrations. The amplitude attenuations of the system

displacements can be evaluated quantitatively by

comparing the standard deviation values of the system

displacements with and without the feedback con-

troller as follows:

kx1 ¼
kx1;u � kx1;c

kx1;u
¼ 45:261%

kx2 ¼
kx2;u � kx2;c

kx2;u
¼ 44:705%

8>><
>>:

ð43Þ

where kx1;u, kx2;u denote the standard deviation values

of the system displacements when there is no control

action whereas kx1;c, kx2;c denote the standard devia-

tion values of the system displacements when the

feedback controller acts on the system. On the other

hand, in Fig. 15 the dashed line depicts the velocity of

the first mass when the system is uncontrolled while

the solid line represents the velocity of the first mass

when the feedback controller acts on the system. In

Fig. 16 the dashed line represents the velocity of the

second mass when the system is uncontrolled whereas

the solid line depicts the velocity of the second mass

when the feedback controller acts on the system. In

this case, qualitatively these figures show that the

feedback controller yields a considerable attenuation

of the system vibrations. The attenuations of both

velocities can be assessed quantitatively by comparing

the standard deviation values of the system velocities

with and without the feedback controller as follows:

k _x1 ¼
k _x1;u � k _x1;c

k _x1;u
¼ 60:466%

k _x2 ¼
k _x2;u � k _x2;c

k _x2;u
¼ 57:429%

8>><
>>:

ð44Þ
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where k _x1;u, k _x2;u denote the standard deviation values

of the system velocities when there is no control action

while k _x1;c, k _x2;c denote the standard deviation values

of the system velocities when the feedback controller

acts on the system. Finally, in Fig. 17 the dashed line

represents the interaction force when the system is

uncontrolled whereas the solid line represents the

interaction force when the feedback controller acts on

the system. Therefore, the effect of the feedback

controller is a remarkable attenuation of the system

interaction force, as shown in these figures. The

amplitude attenuation of system interaction force can

be estimated quantitatively by comparing the standard

deviation values of the system interaction force with

and without the feedback controller as follows:

kr ¼ kr;u � kr;c
kr;u

¼ 58:458% ð45Þ

where kr;u denotes standard deviation value of the

system interaction force when there is no control

action while kr;c denotes the standard deviation value

of the system interaction force when the feedback

controller is applied on the mechanical system.

4 Summary, conclusions, and recommendations

for future research

The primary research objective of the authors is to

develop new, effective and efficient methods to

perform accurate analytic modeling [67–72] experi-

mental parameter identification [73–76], and numer-

ical control optimization [77–80] of rigid as well as

flexible mechanical systems exploiting the deep

connections between multibody dynamics, system

identification, and control theory. In particular, this

paper is an analytical as well as a numerical investi-

gation on the use of adjoint method for the optimal

design of control policies for reducing the nonlinear

vibrations of mechanical systems.

In this paper, the optimal control problem was

addressed and solved by developing two novel control

algorithms, namely the iterative adjoint-based control

optimization method and the iterative adjoint-based

parameter optimization method. These dual numerical

procedures proposed in the paper were designed in

order to implement the active and passive control

paradigms for the suppression of the structural vibra-

tions of nonlinear dynamical systems and, simultane-

ously, for the attenuation of the contact forces which

result from the interaction of a mechanical systemwith

the external environment. Indeed, this investigation

represents an attempt to put in a unified framework a

new set of computational methods that can be

employed to design effectively hybrid motion-force

control strategies for nonlinear mechanical systems.

The crucial aspects of the adjoint-based optimization

methods were reviewed in this work, paying particular

attention to the optimal design of feedforward and

feedback control laws for nonlinear mechanical sys-

tems. To this end, a concise review of the optimal

control theory based on the calculus of variation and

on the adjoint equations was given in the paper. Then,

detailed descriptions of the adjoint-based control
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optimization method and of the adjoint-based param-

eter optimization method were reported. The proposed

numerical procedures were applied to design a feed-

forward controller and a feedback controller aimed at

realizing the suppression of the structural vibrations

and, at the same time, the attenuation of the contact

forces for a simple but illustrative nonlinear underac-

tuated mechanical system. For the sake of a clear

description of the proposed computational methods,

the dynamical system analyzed in the paper is a simple

two degrees of freedom lumped-parameter mechani-

cal system featuring a nonlinear elastic force field. The

system equations of motion were explicitly derived

together with the state function sensitivity matrices in

order to show the necessary steps to implement the

proposed adjoint-based optimization procedures. The

nonlinear mechanical system considered in the paper

as a case study interacts with the external environment

and it is excited by a moving support. Thus, the force

between the system and the floating support is

considered as a smooth contact force. A control device

is collocated between the two vibrating masses in

order to attenuate the magnitude of the contact force

and, simultaneously, mitigate the amplitude of the

nonlinear mechanical vibrations. To this end, a

quadratic structure was adopted for the mathematical

form of the cost functional and the cost functional

sensitivity vectors necessary to implement the two

proposed adjoint-based optimization procedures were

explicitly calculated. By means of numerical simula-

tions, the syntheses of an optimal feedforward con-

troller and of an optimal feedback controller were

obtained together with the corresponding time histo-

ries of the system state. The set of numerical results

obtained in this work shows a considerable attenuation

of the amplitude of the mechanical vibrations and of

the magnitude of the interaction forces, thereby

demonstrating the effectiveness of the proposed

computational procedures.

Although the numerical results presented in this

paper are obtained employing a lumped-parameter

model of an illustrative nonlinear mechanical system,

the adjoint-based optimization method developed in

this investigation is also applicable for controlling the

structural vibration of distributed-parameter systems.

To this end, a finite set of nonlinear ordinary

differential equations can be obtained for modeling

the dynamic equations of a continuous mechanical

system using approximation methods. Approximation

methods for the discretization of the spatial dimen-

sions are, for instance, the classical Rayleigh-Ritz

technique, the Galerkin method, or the finite element

method [81]. In all the approximation methods cited

before, the position field of a continuum body is

expressed from the outset in a manner consistent with

the body boundary conditions using a linear combi-

nation of a given set of base functions and a

corresponding number of time-dependent coordinates.

Subsequently, the system equations of motions are

obtained from the assumed kinematic description

employing the fundamental principles of continuum

mechanics [82]. However, the traditional Rayleigh–

Ritz technique and the classical Galerkin method have

two undesirable properties. First, the assumed dis-

placement fields must be selected accurately and

eventually adjusted to match the boundary conditions

of the continuum body. This task is challenging for

complex three-dimensional geometry and it is left to

the analyst. Second, in the classical discretization

techniques, the generalized coordinates lack an obvi-

ous physical meaning. In the kinematic formulation of

the finite element method, on the other hand, these

difficulties are overcome by using a set of generalized

coordinates that describe displacements, slopes, and

curvatures at given nodal locations and form the basic

unknown of the problem. The finite element method

can be considered as a special case of the Galerkin

technique in which the continuum body is separated

into a certain number of finite elements interconnected

at the nodal points located on the element boundaries

[83]. Furthermore, simple interpolating polynomials

are used in the finite element method to adequately

describe the position field within the element [84].

Therefore, the finite element method is more advan-

tageous for practical engineering applications and

leads to a discrete set of dynamic equations which can

be formulated and solved in a systematic manner.

Since the adjoint-based procedure developed in this

work assumes a general nonlinear form of the system

equations of motion featuring the structure of a set of

ordinary differential equations, this methodology is

applicable to discrete lumped-parameter models of

mechanical systems as well as to discrete models of

distributed-parameter mechanical systems obtained

using the finite element method. More specifically, the

among all the finite element formulation available, the

absolute nodal coordinate formulation (ANCF) is

particularly attractive for the application of the
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proposed adjoint-based numerical procedures [85]. In

the absolute nodal coordinate formulation, a unique

kinematic representation is used to represent the

displacement field as well as the rotation field of a

general continuum body performing a separation of

space-dependent variables and time-dependent coor-

dinates. In particular, one of the distinguishing

features of this finite element formulation is the use

of global positions and position vector gradients as

nodal coordinates. Consequently, finite elements

based on the absolute nodal formulation have a

constant mass matrix, leads to zero centrifugal and

Coriolis generalized inertia forces, and can correctly

describe rigid body motion [86]. Furthermore, the use

of slope vectors as generalized coordinates in the

absolute nodal coordinate formulation facilitates the

development of complex curved geometry and allows

for the implementation of a non-incremental solution

procedure for the numerical solution of the equations

of motion [87]. All the desirable properties of the

absolute nodal coordinate formulation mentioned

before will pave the way towards the application of

the adjoint-based control and parameter optimization

procedures developed in this paper to complex

distributed-parameter systems.

An important issue that needs further investigation

is the performance of the adjoint-based control and

parameter optimization procedures for nonlinear

mechanical systems working in a noisy environment.

Additional complexity is added to this realistic

scenario when only incomplete information is avail-

able for the system state. For instance, in vehicle

engineering applications, mechanical components

perform large translations, undergo finite rotations,

can deform in a nonlinear fashion, vibrate under the

effect of cyclic loading, and are affected by stochastic

disturbances originated by the interaction with the

external environment [88–91]. Furthermore, the actual

control devices implemented on a mechanical system

have a limited actuation power and need to deal with a

finite set of signals affected by process noise and

measurement uncertainties [92, 93]. Further examples

in which taking into account the stochastic nature of

the operational space is particularly important are

mechanical system subjected to nanometric oscilla-

tions. Indeed, nanometer oscillations are characterized

by length scales where the random behavior play a

crucial role. The optimal design of control strategies

for nanoscopic systems with complex nonlinearities

and noise effects, such as polymers under the appli-

cations of force fields, can represent an area of

pioneering research [94, 95]. In all these challenging

scenarios, however, a simple and effective strategy

can be employed to design robust control actions

based on the adjoint procedure developed in this

investigation exploiting, for instance, the well-known

linear-quadratic-Gaussian control and estimation

method (LQG) [96]. To this end, a nominal model of

the mechanical system under study is first developed

assuming an unlimited amount of resources for the

control action and a full sensing of the system state.

The resulting evolution of the mechanical system is

then assumed as a reference trajectory for the dynamic

evolution of the system state and the corresponding

control action is considered as a feedforward control

signal. Subsequently, a feedback controller based on a

linear model of the mechanical system obtained

linearizing around the precomputed trajectory is

designed to compensate the difference in the dynam-

ical behavior of the nominal system and the actual

system. For this purpose, a nonlinear observer is

designed to estimate the state of the actual system

using the available measurements employing a Kal-

man filter approach [97]. In the authors’ viewpoint, the

combination of the adjoint-based optimization proce-

dures with the linear-quadratic-Gaussian control and

estimation techniques represents a promising method

for the control of nonlinear underactuated mechanical

systems characterized by process disturbances, mea-

surement uncertainty, and incomplete state

information.

To conclude, the authors are of the opinion that the

adjoint-based control optimization method and the

adjoint-based parameter optimization method repre-

sent efficient and effective strategies to control

nonlinear underactuated mechanical systems that

successfully achieve a hybrid motion-force control

paradigm. Future research efforts will be dedicated to

the analytical development and to the numerical

implementation of the adjoint method for the active

and passive optimal control design in the case of more

complex mechanical systems, such as the rigid and

flexible multibody systems that are mathematically

modelled by a set of differential-algebraic equations of

motion [98–101]. Furthermore, future work will be

dedicated to performing a systematic comparison

between the nonlinear control method developed in

this investigation and other modern control strategies
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that can be generally applied to lumped-parameter

systems as well as to distributed-parameter systems.

To this end, particular attention will be devoted to the

use of the fundamental equations of constrained

motion recently developed by Udwadia and Kalaba

in the field of analytical dynamics [102–104]. Simi-

larly to the adjoint-based control optimization proce-

dure analyzed in this investigation, the Udwadia–

Kalaba equations can be employed to derive closed-

form expressions of nonlinear control forces for

nonlinear mechanical systems without imposing an a

priori structure on the nonlinear controller [105–107].

Using the Udwadia–Kalaba approach, optimal control

policies for nonlinear mechanical systems are

designed formulating a set of holonomic or nonholo-

nomic constraint equations and the corresponding

generalized constraint forces are interpreted as control

actions [108–110]. Since in numerous investigations

was demonstrated that the Udwadia–Kalaba method is

general and effective, a comparison with the adjoint-

based approach for optimal control developed by the

authors will be investigated in future publications.
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