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Abstract

Background Several functional size measurement methods have been pro-

posed. A few ones –like IFPUG and COSMIC methods– are widely used, while

others –like Simple Function Points method– are interesting new proposals,

which promise to deliver functional size measures via a faster and cheaper mea-

surement process.

Objectives Since all functional size measurement methods address the mea-

surement of the same property of software (namely, the size of functional spec-

ifications), it is expected that measures provided in a given measurement unit
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can be converted into a different measurement unit. In this paper, convertibil-

ity of IFPUG Function Points, COSMIC Function Points, and Simple Function

Points is studied.

Method Convertibility is analyzed statistically via regression techniques. Seven

datasets, each one containing measures of a set of software applications ex-

pressed in IFPUG Function Points, COSMIC Function Points and Simple Func-

tion Points, were analyzed. The components of functional size measures (usually

known as Base Functional Components) were also involved in the analysis.

Results All the analyzed measures appear well correlated to each other. Sta-

tistically significant quantitative models were found for all the combinations of

measures, for all the analyzed datasets. Several models involving Base Func-

tional Components were found as well.

Conclusions From a practical point of view, the paper shows that converting

measures from a given functional size unit into another one is viable. The mag-

nitude of the conversion errors is reported, so that practitioners can evaluate if

the expected conversion error is acceptable for their specific purposes. From a

conceptual point of view, the paper shows that Base Functional Components of

a given method can be used to estimate measures expressed in a different mea-

surement unit: this seems to imply that different functional size measurement

methods are ‘structurally’ strongly correlated.

Keywords: Functional Size Measurement, IFPUG Function Points, COSMIC

Function Points, Simple Function Point, Convertibility, Base Functional

Components (BFC)

1. Introduction

Functional Size Measurement (FSM) aims at providing a measure of the size

of functional user requirements (FUR). Several FSM methods have been pro-

posed [1, 2, 3, 4, 5, 6]. A few of the proposed FSM methods, like the IFPUG

method [1, 7] and the COSMIC method [2, 8] are widely used, especially as a

basis for estimating software development effort. However, applying the IFPUG
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and COSMIC methods is relatively time- and effort-consuming. In particular,

the need to analyze in detail every elementary (in IFPUG terminology) or func-

tional (in COSMIC terminology) process can easily require a sizeable amount

of work. Consequently, approximate estimation methods (AEM’s) have been

proposed for both IFPUG [9] and COSMIC methods [10, 11, 12, 13].

AEM’s provide an estimate of the functional size of given FUR based on a

subset of the elements of the FUR that should be considered to carry out the

full-fledged measurement. In practice, AEM’s yield approximate estimates of

functional size (with some estimation error) at a fraction of the measurement

cost [14, 15, 16].

The Simple Function Points (SiFP) method [6] aims at providing functional

size measures at a much smaller cost than IFPUG or COSMIC methods. Un-

like AEM’s, the SiFP method provides real measures, rather than estimates.

Therefore, this method is potentially quite interesting for practitioners, given

the little measurement cost it involves.

The situation sketched above suggests two research activities:

• Since all FSM methods aim at measuring the same property of software

(i.e., functional size), it is expected that a measure expressed in a mea-

surement unit can be converted into a measure expressed in another mea-

surement unit. In fact, convertibility is explicitly mentioned in the ISO

standard that specifies the required features of functional size measure-

ment [17].

Convertibility is useful also for very practical reasons. For instance, an

organization that is willing to move from an FSM method to another one

needs to convert historical data into the new functional size measurement

unit. Similarly, to merge historical datasets that include measures per-

formed according to different FSM methods, some sort of conversion is

needed, to make the resulting dataset homogeneous.

• Most AEM’s use a subset of the data required to perform standard FSM

measurement. Accordingly, studying the relationship between standard
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measures and the data used by AEM’s is interesting to determine which

AEM’s are feasible and what level of accuracy can be expected by every

AEM. Moreover, studying the relationship between the Base Functional

Components (BFC’s) of a method and another method’s measure pro-

vides useful indications concerning the structural similarity among FSM

methods.

In this paper we analyze the convertibility of IFPUG Funtion Points, COS-

MIC Funtion Points and SiFP Funtion Points. Other FSM methods are ex-

cluded from the study for two reasons: 1) some methods are not very popular,

therefore there is little interest in their convertibility; 2) to carry out convert-

ibility analysis we need one or more datasets in which every software application

has been measured according to different FSM methods: we were able to find

datasets containing IFPUG, COSMIC and SiFP measures, but not other types

of measures.

In general, there are multiple procedures to convert a measure from a given

measurement unit into another measurement unit. However, the type of datasets

that were available for this study supported only statistical convertibility.

The statistical convertibility between functional size measures has been widely

studied, as discussed in Section 10. This paper contributes to improving the

knowledge concerning convertibility among functional size measures in multiple

respects:

• In addition to IFPUG Function Points and COSMIC Function Points,

SiFP Function Points are studied; this involves that conversion between

COSMIC Function Points and SiFP Function Points (which was never

addressed before) is also studied; similarly, the relationship between SiFP

Function Points and IFPUG elements like File Type Referenced (FTR)

had never been studied before.

• A systematic and comprehensive study of the relationships between mea-

sures and their components is performed. This can be very beneficial to

understand the strengths and weaknesses of AEM’s. In the paper, we
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study some relationships (like the one between COSMIC Function Points

and data movements, presented in Section 7.3) that had never been pub-

lished before.

• The correlation of a measure with the elements of other measures is stud-

ied, to get insights into possible alternative AEM’s methods. Also in this

case, some relationships studied in the paper had never been explored

before (see for instance the relationships based on FTR’s in Section 7.6).

• The study is based on seven datasets. This allows to spot commonalities

and variations in the convertibility models. Even more important is that

analyzing seven independent datasets and finding that in all cases a sta-

tistically significant model can be found increases the confidence that a

correlation between the considered measures actually holds.

The paper also improves our capacity to address practical problems, as shown

in Section 4.2, where two usage scenarios are described.

The paper is structured as follows: Section 2 briefly describes the three

FSM methods considered in this paper. In Section 3 the datasets used for

the analysis are described. The research reported in the paper is described in

Section 4: Section 4.1 describes the focus of the research, Section 4.2 illustrates

usage scenarios, and Section 4.3 illustrates the research method used. Section 5

reports about the correlations we found between SiFP Function Points and

IFPUG Function Points on one side and COSMIC Function Points on the other

side. Section 6 reports about the correlations found between SiFP Function

Points and IFPUG Function Points. Section 7 reports about the correlations

that we found among the BFC’s of the considered measures. The results of

the analyses are discussed in Section 8. Section 9 discusses the threats to the

validity of the study. Related work is accounted for in Section 10. Section 11

draws the conclusion and outlines future work.
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2. Functional Size Measurement Methods

In this section a brief introduction to the FSM methods considered in this

paper is given. Readers are referred to the official documentation for further

details [1, 2, 8, 7, 6].

2.1. A Case Study

Throughout this section, we use a slightly modified version of the Warehouse

management software (WMS) by Fetcke, as an example. The detailed specifi-

cations can be found in the paper by Fetcke, which is available on-line [18].

The WMS is used by a company that operates several warehouses, where

customers’ goods are stored. Customers can deposit items into storage locations

in the warehouse. After the items have been kept in the warehouse for some

period of time, they can be retrieved by their owners. The customers get billed

for the storage service.

The Entity/Relationship diagram representing the entities involved in the

WMS is given in Figure 1. The entities and their attributes are described in

Figure 2. Both figures are from [18]. Attributes Owner and Storage place are

references to entities Customer and Place, respectively.

Figure 1: Entity/Relationship diagram of the WMS [18].

The WMS allows the user to perform several operations, such as adding a

new customer, deposit an item, receive payment, print the customer item list,

and many others. Here we report the specifications of the Add customer, Delete

customer and Change customer data operations, which will be used to illustrate

the functional measurement methods. The complete functional requirements of

the WMS can be found in [18].

The Add customer operation adds an instance of Customer data to the

system’s repository. The attributes Name and Address have to be given. The
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Figure 2: Entities of the WMS [18].

Amount Due is initialized to zero. If an instance of Customer with the Name

entered already exists, no new instance of Customer is created, the repository

is not changed, and an error message is displayed.

The Delete customer operation removes an instance of Customer data from

the system’s repository, given the attribute Name of the customer. Customer

data are removed if the Amount Due attribute is zero and the customer does

not own any stored Items. An error message is displayed, if the record cannot

be removed or if there is no instance of Customer with the given name.

The Query customer’s items operation is used to visualize the stored items

that a given customer owns. The user enters the name of the customer. If

that customer exists, an output screen lists the description, pallets, value and

storage date of all the items the customer owns. Otherwise, an error message is

displayed.

To ease functional measurement, the main actions involved in the operations

described above can be summarized as done in Table 1. Many notations can be

used to describe functional specifications and ease measurement; for instance, a

representation of the Add Customer operation via UML sequence diagrams can

be found in [19].

In our case study, we assume that the list of available storage places is created

and managed by another application: the WMS just reads the list of available

places, but cannot modify it.
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Table 1: Characteristics of WMS operations that are relevant for functional measurement.

Operation Action Entity Attribute

Input Customer Name, Address

Add Read Customer Name

Customer Create Customer Name, Address, Amount due

Output Message (message content)

Input Customer Name

Delete Read Customer Name, Amount due

Customer Read Item Owner

Delete Customer (object)

Output Message (message content)

Input Customer Name

Query Read Customer Name

Customer’s Read Item Description, Pallets, Value, Storage date, Owner

Items Output Item Description, Pallets, Value, Storage date

Output Message (message content)

2.2. The IFPUG method

Function Point Analysis (FPA) was originally introduced by Albrecht to

measure the size of data-processing systems from the end-user’s point of view,

with the goal of estimating the development effort [20].

The initial interest sparked by FPA along with the recognition of the need for

improvement in its counting practices led to founding the IFPUG (International

Function Points User Group).

The IFPUG provides guidelines for measuring [1], makes measurement rules

evolve along with the evolution in software technologies, and oversees the stan-

dardization of the measurement method (http://www.ifpug.org/).

The IFPUG method is now an ISO standard [7] in its “unadjusted” version.

So, throughout the paper we refer exclusively to Unadjusted Function Point

(UFP) version, even when we talk generically about IFPUG Function Points or

IFPUG FP’s. The conversion of adjusted Function Points is not considered at

all, because adjusted measures account for factors –dealing with the software
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product or process– that are not considered by COSMIC and SiFP methods.

Albrecht’s basic idea –which is still at the basis of the IFPUG method– is

that the “amount of functionality” released to the user can be evaluated by

taking into account the data used by the application to provide the required

functions, and the transactions (i.e., operations that involve data crossing the

boundaries of the application) through which the functionality is delivered to the

user. Both data and transactions are evaluated at the conceptual level, i.e., they

represent data and operations that are relevant to the user. Therefore, IFPUG

Function Points are counted on the basis of the user requirements specification.

The boundary indicates the border between the application being measured and

the external applications and user domain.

FUR’s are modeled as a set of BFC’s, which are considered the elementary

units of FUR’s. Each of the identified BFC’s is then measured; finally, the size

of the whole application is obtained as the sum of the sizes of BFC’s.

IFPUG BFC’s are data functions, which are classified into internal logical

files (ILF) and external interface files (EIF), and elementary processes (EP), also

known as transactional functions, which are classified into external inputs (EI),

external outputs (EO), and external inquiries (EQ) according to the activities

carried out within the process and its main intent. Each function, whether a

data or transactional one, contributes a number of Function Points that depends

on its “complexity.” Each function is weighted on the basis of its complexity

according to given tables.

Weights for ILF’s are defined as wILF (f) = tabILF (f.RET, f.DET ). That

is, the weight of f is given by a table, and the entries to be used are the RET’s

(Record Element Types), which indicate how many types of information (e.g.,

sub-classes, in object-oriented terms) can be contained in the given ILF, and

DET’s (Data Element Types), which indicate how many types of elementary

information (e.g., attributes, in object-oriented terms) can be contained in the

given ILF. Weights for EIF’s are defined in the same way, but via a different

table tabEIF .

Weights for EI’s are defined as wEI(f) = tabEI(f.FTR, f.DETI/O). That
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is, the weight of f is given by a table, and the entries to be used are the

number of FTR’s of f –i.e., the number of types of logical data files used while

performing the required operation– and the number of DET’s, i.e., the number

of types of elementary data that f sends and receives across the boundaries

of the application. The weights for external outputs and queries are similarly

defined, via tables tabEO and tabEQ.

Finally, the size expressed in Unadjusted Function Points (UFP’s) is ob-

tained by summing the contribution of data and transaction functions, as shown

in formula (1).

SizeUFP =
∑

f∈ILFs

wILF (f) +
∑

f∈EIFs

wEIF (f) + (1)

∑
f∈EIs

wEI(f) +
∑

f∈EOs

wEO(f) +
∑

f∈EQs

wEQ(f)

In formula (1), ILFs denotes the set of all ILF’s, EIFs denotes the set of

all EIF’s, etc. wFT (f) indicates the weight assigned to a data or transaction

function f according to the function type FT (i.e., EI, EO, EQ, ILF or EIF).

To clarify how the IFPUG method works, we apply it to the fragment of the

WMS described in Section 2.1. However, we warn the reader that the descrip-

tion provided here is not sufficient to learn all the details of the measurement.

Further details about the IFPUG method can be found in the manual [1, 7].

The logical data files that are maintained or used by the application are the

three entities described in Figures 1 and 2.

To measure the size of each data file we need to consider its characteristics,

as follows.

The Customer is an internal logical file, because it is created, modified, read

and possibly deleted by the WMS application. It contains just one type of data,

that is, all customers are characterized by the same set of data elements; thus,

the Customer ILF has one RET. The elementary data types that characterize

the RET are the attributes shown in Figure 2, i.e., Name, Address and Amount

Due; thus, the the Customer ILF has three DET’s. According to IFPUG ta-
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bles, an ILF having one RET and three DET’s is a low complexity one, and

contributes 7 UFP to the application’s size measure.

The Item is an internal logical file, because it is created, modified, read and

possibly deleted by the WMS application. It contains just one type of data,

that is, all items are characterized by the same set of data elements; thus, the

Item ILF has one RET. The elementary data types that characterize the RET

are the attributes shown in Figure 2, i.e., Description, Pallets, Value, Storage

date, Owner and Storage place; thus, the Item ILF has six DET’s. According

to IFPUG tables, an ILF having one RET and six DET’s is a low complexity

one, and contributes 7 UFP to the application’s size measure.

The Place is an external interface file, because it is created and modified by

an external application. It contains just one type of data, that is, all places are

characterized by the same set of data elements; thus, the Place EIF has one

RET. The elementary data types that characterize the RET are the attributes

shown in Figure 2, i.e., Location and Space; thus, the Place EIF has two DET’s.

According to IFPUG tables, an EIF having one RET and two DET’s is a low

complexity one, and contributes 5 UFP to the application’s size measure.

Using the terminology of formula (1) we count: wILF (Customer) = 7 UFP,

wILF (Item) = 7 UFP and wEIF (Place) = 5 UFP.

The main intent of the Add customer operation is to update the set of

customers, therefore it is an EI. According to the specifications, Add customer

reads and creates instances of Customer. Therefore, it involves only one FTR. To

perform the Add customer operation, the user supplies the Name and Address

of the new customer. The system replies with a confirmation or diagnostic

message. Hence, we have three DET’s (name, address and message) that cross

the application’s boundaries, plus the invocation of the function. According to

IFPUG tables, an EI having one FTR and four DET’s is a low complexity one,

and contributes 3 UFP to the application’s size measure.

The main intent of the Delete customer operation is to update the set of

customers, therefore it is an EI. According to the specifications, the Delete cus-

tomer reads and deletes instance of Customer, but before removing a customer
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it has to check that no item of that customer is still stored in the warehouse,

so it also need to read Item data. Therefore, we have two FTR’s (Customer

and Item). The user supplies the name of the customer to be removed, and the

system issues the usual confirmation or diagnostic message; hence, we have 2

DET’s crossing the applications’ boundaries (the name and the message), plus

the invocation of the function. According to IFPUG tables, an EI having two

FTR’s and three DET’s is a low complexity one, and contributes 3 UFP to the

application’s size measure.

The main intent of the Query customer’s items operation is to display infor-

mation that is stored in the system, without any specific processing; accordingly,

it is an EQ. According to the specifications, the Query customer’s items reads

Customer data to check that the given name actually identifies an existing cus-

tomer, then reads the Item data to be displayed. Therefore, we have two FTR’s

(Customer and Item). The user supplies the name of the customer whose items’

data have to be shown, and the system either displays the required information

(Description, Pallets, Value and Storage date) or issues a diagnostic message;

hence, we have 6 DET’s crossing the applications’ boundaries (the Name De-

scription, Pallets, Value and Storage date attributes and the message), plus

the invocation of the function. According to IFPUG tables, an EQ having two

FTR’s and seven DET’s is an average complexity one, and contributes 4 UFP

to the application’s size measure.

So, we have: wEI(Add Customer) = 3, wEI(Delete Customer) = 3 UFP

and wEQ(Query Customer′s Items) = 4 UFP.

The results of the counting are given in Table 2. So, if the WMS would

involve only the operations examined here, its size would be 29 UFP.

2.3. COSMIC

The COSMIC method assumes a model of software in which FUR’s are

mapped into unique functional processes, initiated by functional users. The

concept of functional process in COSMIC is practically coincident with the

concept of elementary process (or transaction) in the IFPUG method. Each
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Table 2: Summary of WMS size measurement in UFP.

Function Type Complexity Size [UFP]

Customer ILF Low 7

Item ILF Low 7

Place EIF Low 5

Add Customer EI Low 3

Delete Customer EI Low 3

Display Customer’s Items EIQ Average 4

Total – – 29

functional process consists of sub-processes that involve data movements. A

data movement concerns a single persistent data group (DG) type. A data

group is defined as “a distinct, nonempty, non-ordered, and non-redundant set

of data attributes where each included data attribute describes a complementary

aspect of the same object of interest.” A data group is considered persistent if

its value is stable between two consecutive functional process executions. Data

movements are classified into Entry and Exit (i.e., I/O movements) and Read

and Write (to persistent storage), that are defined as follows:

• An Entry (E) moves a data group from a functional user across the bound-

ary into the functional process where it is required.

• An Exit (X) moves a data group from a functional process across the

boundary to the functional user that requires it.

• A Read (R) moves a data group from persistent storage within each of the

functional process that requires it.

• A Write (W) moves a data group lying inside a functional process to

persistent storage.

Each data movement (i.e., Entry, Exit, Read, or Write) is counted as 1

COSMIC Function Point (CFP).

The size of a software application in CFP is the sum of the sizes of its func-

tional processes. The size of each functional process is the number of involved
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data movements.

SizeCFP =
∑

f∈FPr

(entries(f) + exits(f) + reads(f) + writes(f)) (2)

where FPr is the set of all functional processes.

To clarify how the COSMIC measurement process works, we apply it to the

fragment of the WMS described in Section 2.1. However, we warn the reader

that the description of the COSMIC method provided here is not sufficient to

learn all the details of the COSMIC method. Further details on the COSMIC

method can be found in the manuals [2, 8].

The data group types involved in the application are the Customer, Item and

Place, as evident from Figure 1. In the COSMIC method, data groups do not

contribute directly to the size measure, but they need to be clearly identified,

since they are the object of data movements.

The Add customer operation is a functional process that involves the fol-

lowing movements: a Customer Entry (the name of customer to be added); the

Customer Read (to check if the customer is already registered in the system);

the Customer Write (when it is created), the message Exit. The functional

process involves 4 data movements, hence it contributes 4 CFP to the size of

the application.

The Delete customer operation is a functional process that involves the fol-

lowing movements: a Customer Entry (the name of the customer to be deleted),

the Customer Read (to check if the customer is registered), the Item Read (to

check that no items of the customer are still stored in the warehouse), the

Customer Write (when it is deleted), the message Exit. The functional pro-

cess involves 5 data movements, hence it contributes 5 CFP to the size of the

application.

The Query customer’s items operation is a functional process that involves

the following movements: a Customer Entry (the name of the customer), the

Customer Read (to check if the customer is registered), the Item Read (to

retrieve the data to be displayed), the Item Exit (to display the required data),

the message Exit. The functional process involves 5 data movements, hence it
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contributes 5 CFP to the size of the application.

The results of the counting are given in Table 3. So, if the WMS would

involve only the operations examined here, its size would be 14 CFP.

Table 3: Summary of WMS size measurement in terms of CFP.

Functional process Movements Size [CFP]

Add Customer Customer Entry, Customer Read, 4

Customer Write, message Exit

Delete Customer Customer Entry, Customer Read, 5

Customer Write, Item Read, message Exit

Display Customer’s Items Customer Entry, Customer Read, 5

Item Read, Item Exit, message Exit

Total 14

2.4. The Simple Function Point (SiFP) method

The idea that effective functional size measures can be based on the analysis

of just a subset of the elements of the IFPUG software model is at the base of

the definition of the SiFP method.

The SiFP method was defined by Meli [21] and subsequently published by

the Simple Function Point Association in an official Reference Manual, which is

available in the public domain [6]. The SiFP method was defined based on the

observation –derived from the experience with IFPUG method– that to get a

measure of the functional size of an application

1) it is not necessary to identify several types of transactions (classified ac-

cording to the primary intent and involved activites) and files (classified as

internal or external);

2) a notion of complexity –based on the details of data and transactions (see

Section 2.2)– is not relevant to the goal of representing functional size and

of estimating effort or costs.

So, the SiFP method adopts a model of the software to be measured that is

greatly simplified with respect to the model used by IFPUG. In fact, the SiFP
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method defines only two BFC’s, known as:

1. Unspecified Generic Elementary Process (UGEP). This element corre-

sponds to the IFPUG concept of elementary process and to the COSMIC

concept of functional process. It is named “unspecified” since it is not

classified as input, output or query. It is named “generic” since it is not

differentiated in terms of internal complexity.

2. Unspecified Generic Data Group (UGDG). This element corresponds to

the IFPUG concept of logical data file and to the COSMIC concept of

data group. It is named “unspecified” since it is not classified as internal

or external. It is named “generic” since it is not differentiated in terms of

internal complexity.

Therefore, the SiFP model of software is a proper subset of the IFPUG

model of software: all the elements of the SiFP model appear in the IFPUG

model as well, while the opposite is clearly not true: for instance, there is no

notion of FTR in the SiFP model.

The IFPUG method requires analyzing the details of logical data functions

and transaction functions, to determine their complexity, hence their size. The

SiFP method does not require this activity, therefore applying the SiFP method

is substantially cheaper than applying the IFPUG method: a survey of experts’

opinions showed that savings around 30% can be expected [16].

The size of a software application –expressed in SiFP– is

SizeSiFP = 4.6 × #UGEP + 7 × #UGDG (3)

where #UGEP is the number of UGEP’s and #UGDG’s is the number of

UGDG’s. In practice, all UGDG’s (logical data) are assumed to be of weight

(i.e., size) 7 SiFP, while all UGEP’s (elementary processes) are assumed to be

of weight (i.e., size) 4.6 SiFP.

Note that, by definition, #UGEP = #EI + #EO + #EQ and #UGDG =

#ILF + #EIF . Therefore, to convert FP measures into SiFP measures, one

can simply compute SiFP = 4.6 (#EI + #EO+ #EQ) + 7 (#ILF + #EIF ),
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if the list of transacton and data functions was recorded. The statistical models

described in this paper are useful for legacy data, when no measurement docu-

mentation is available, so that you just know the size in UFP (i.e., in IFPUG

Function Points) of a set of applications.

It is important to highlight that the SiFP method defines a new autonomous

measurement unit, which can be adopted and used independently from the

IFPUG method. SiFP measures are not intended to be used where IFPUG

measures are expected, e.g., in IFPUG Function Point-based models of develop-

ment effort. Instead, SiFP-based models (i.e., models that adopt SiFP Function

Points as independent variables) can be built so that SiFP Function Points can

be used directly for effort estimation (like in [22, 23]). Similarly, SiFP Func-

tion Points can be used instead of IFPUG Function Points for various purposes,

besides effort estimation: for instance, one could measure defect density as the

number of bugs per SiFP.

If the SiFP method were simply an estimation method for IFPUG Function

Points, it would be implicitly assumed that one SiFP equals one UFP. Instead,

since SiFP is a new measurement unit, a study of convertibility between SiFP

and other functional size measurement units is needed.

To clarify how the SiFP method works, we apply it to the fragment of the

WMS described in Section 2.1. Actually, the counting is very simple: we just

have to note that we have three UGDG’s (the Customer, Item and Place) and

three UGEP’s (Add Customer, Delete Customer and Display Customer’s Items).

So, if the WMS would involve only the operations examined here, its size would

be 3× 7 + 3× 4.6 = 34.8 SiFP. The details of the counting are given in Table 4.

3. The datasets used in this study

Seven datasets were analyzed. The list of datasets is given in Table 5, while

the descriptive statistics of those datasets are given in Table 6.
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Table 4: Summary of WMS size measurement in SiFP.

BFC Type Size [SiFP]

Customer UGDG 7

Item UGDG 7

Place UGDG 7

Add Customer UGEP 4.6

Delete Customer UGEP 4.6

Display Customer’s Items UGEP 4.6

Total – 34.8

Table 5: The datasets used in this study.

ID dataset name reference

1 Desharnais [24, 25]

2 Abualkishik [26]

3 Robiolo [27]

4 Liu [19]

5 van Heeringen [28]

6 Cuadrado Gallego [29]

7 Ferrucci [30]

3.1. The dataset by Desharnais

This dataset was originally published by Desharnais et al. [24] and then

further studied in [25]. The dataset consists of 14 industrial Management Infor-

mation Systems (MIS) that belong to a data processing group of a governmental

agency in Canada. All the applications are lying within a single layer. The main

activity of the agency involves developing and maintaining various types of busi-

ness application and MIS. The applications were developed using COBOL, C

and Java between 2003 and 2008. The Fetcke case [18] study was added to this

dataset to form a dataset of 14 applications.

3.2. The dataset by Abualkishik

The dataset consists of 13 Real-Time applications that have been collected

from different resources [26]. Three applications are from an experimental ap-

plication of COSMIC method by Khelifi [31]. Another application is the traffic
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Table 6: Descriptive statistics

SiFP IFPUG FP CFP
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1 14 304 156 323 (95,659) 310 164 330 (77,646) 308 169 296 (81,579)

2 12 110 52 109 (32,208) 95 39 97 (37,161) 103.5 60 83 (36,222)

3 22 191 151 125 (46,698) 170 133 115 (40,623) 95 58 81 (46,295)

4 15 134 33 127 (86,185) 114 29 107 (73,163) 93 28 86 (50,154)

5 25 528 357 403 (67,1569) 499 354 412 (61,1622) 545 441 445 (66,1864)

6 33 326 114 346 (95,538) 291 99 315 (78,462) 209 75 215 (65,313)

7 25 490 265 394 (148,1188) 400 216 336 (110,973) 602 268 611 (163, 1090)

control system case study that has been published by IFPUG. The remain-

ing 9 applications are from the software measurement course for postgraduate

students in University Putra Malaysia; these are avionics, robotics and control

systems in which the Software Requirements Specifications have been written

according to the IEEE STD 830 template [32].

The applications represented in the dataset are all small real-time systems,

modeled as a single layer, so that the comparison of their size expressed in

different FSM methods is possible. Finally, the quality of requirement specifica-

tions was evaluated via the procedure proposed by Desharnais and Abran [33]

to guarantee a reasonable level of granularity for the functional processes. The

application of this procedure yielded that 83.2% of the functional processes of

all the dataset applications were of good quality, so that the corresponding

measures are deemed reliable.

In the analysis reported here, the smallest application was excluded from

the dataset, because it is so small (16 UFP) that it is hardly representative of

any real-life applications. In the other datasets no such small applications are

present.

3.3. The dataset by Robiolo

The dataset is a set of small business projects, most of which were Web ap-

plications. They were all new developments, whose requirements specifications
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were documented in a homogeneous way, namely, via Use Cases.

The involved human resources shared a similar profile: advanced undergrad-

uate students –who had been similarly trained– worked in the academic setting,

at the S&T Department of an University and at a CMM level 4 company.

3.4. The dataset by Liu

This dataset collects data from 15 projects, including academic examples

used in teaching (8 projects); academic examples used in research (3 projects);

project management tools (3 project); and measurement tools (1 project). All

the software applications were measured by Liu during his PhD study, following

the methodology described in [34]. The quality of the model and the datasets

was then checked by two professors who are quite expert in the FSM field.

3.5. The dataset by van Heeringen

This dataset includes data from 26 projects, which were measured during

the Sogeti bidding process. In the COSMIC measurements, only the end user

measurement viewpoint has been used, to make the outcomes of the analysis

comparable. The measurements have been carried out and reviewed by IFPUG

certified analysts. The analysts have a considerable amount of experience with

the COSMIC method as well. Most of the COSMIC analyses are reviewed by

COSMIC entry level certified analysts, so the expected quality of the measure-

ments is high. The projects involved are all situated in the business application

domain. The major part of the organizations involved operate in the banking,

insurance and government domains.

3.6. The dataset by Cuadrado Gallego

This dataset includes data from 33 software applications. Out of these 33

software applications, one is a case study documented by IFPUG, another appli-

cation is a case study provided by IBM Rational [35]; the remaining applications

were final projects of students attending the Software Engineering course at the

University of Alcalá, Madrid, Spain. These applications were measured by a
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team of three junior measurers; later the measures were verified by another

senior measurer and finally by the authors of [29].

3.7. The dataset by Ferrucci

Data were provided by an Italian software company, whose core business is

the development of enterprise information systems, mainly for local and central

government. The company develops and manages solutions for Web portals, en-

terprise intranet/extranet applications (such as Content Management Systems,

e-commerce, work-flow management systems, etc.), and Geographical Informa-

tion Systems. The dataset includes data from 25 applications.

4. Description of the research

4.1. Research focus

The core of the measurement process according to the IFPUG method is

described in Table 7, where for each phase, the delivered results are specified,

and the measures that can be derived from such results are listed. The measures

written in bold are those considered in this paper.

Table 7: IFPUG process and products.

Phase Activity Results delivered Avaliable measures

1 Identify EP and LDF list of EP and LDF #EP, #LDF

2 Classify EP and LDF list of ILF, EIF, EI, EO, EQ #ILF, #EIF, #EI, #EO, #EQ

3 Analyze EP and LDF for each EP and LDF: #FTR, #RET, #DET

DET, RET, FTR

4 Evaluate complexity ILF, EIF, EI, EO, EQ size of ILF, EIF, EI, EO, EQ

and weigh EP and LDF

5 Sum up – UFP
‘LDF’ stands for Logical data file.

The core of the measurement process according to the SiFP method is de-

scribed in Table 8.

The core of the measurement process according to the COSMIC method is

described in Table 9.
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Table 8: SiFP process and products.

Phase Activity Results delivered Avaliable measures

1 Identify EP and LDF list of EP and LDF #UGEP, #UGDG

2 Compute 4.6 #UGEP + 7 #UGDG – SiFP

Table 9: COSMIC process and products.

Phase Activity Results delivered Avaliable measures

1 Identify Functional processes list of Func. processes #FPr

2 Identify data groups list of DG —

3 Analyze Func. processes for each Func. process: E, X, W, R

list of data movements

4 Sum up – CFP

The relationships that were studied are summarized in Figure 3, where

double-headed arrows indicate convertibility relationships; solid single-headed

arrows indicate relationships between a measure and its own elements (e.g., be-

tween UFP and FTR); dashed single-headed arrows indicate relationships be-

tween a measure and other measures’ elements (e.g., between CFP and #ILF,

#EIF, #EI, #EO, #EQ). The rightmost column gives the number of the paper

section where the analysis is illustrated. We introduced this figure to provide a

graphical guidance to the reader to better comprehend the relationship among

measures and the BFC’s. With convertibility relationships we are interested in

analyzing how a measure expressed in a measurement unit can be converted into

a measure expressed in another measurement unit [36]. With the relationships

between a measure and its BFC’s we are interested in investigating whether the

measurement process can be simplified by focusing only on some steps of the

measurement process. Indeed, if we establish a statistical relationships between

a measure and subset of its BFC’s, we could approximate the functional size

by exploiting only the sizes of the selected BFC’s. As an example, using the

non-weighted IFPUG BFC’s we could estimate the size of an application early

and quickly, without performing the whole measurement process as prescribed

by the IFPUG manual [9]. With a similar goal, we investigate relationships be-

tween a measure and the BFC’s of another measure. As an example, we could
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exploit the non-weighted IFPUG BFC’s to quickly estimate the functional size

in terms of COSMIC Function Points of an application without employing the

COSMIC manual.

Figure 3: Summary of relationships studied.

4.2. Usage scenarios

Here we illustrate two of the many possible scenarios in which the relation-

ships between measures presented in the paper can be effectively used.

4.2.1. Conversion of historical data

Suppose that an organization has been using FSM method X for some years:

a wealth of historical data –expressed in the X measurement unit– has been

collected. Now, this organization has decided to switch to FSM method Y (for

some reason, e.g., because Y is believed to allow for faster measurement). Since

the historical dataset is a valuable asset, the organization wants to convert
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the data in the dataset from X to Y. There are several ways to perform the

conversion:

1. Repeating the measurement using Y instead of X. In this way you get

the most accurate measures, but you have to perform the full-fledged Y

measurement process, which could be quite expensive.

2. Using the available documentation of X measures to get Y measures. For

instance, if X is IFPUG Function Points and Y is COSMIC Function

Points, data groups can be identified by looking at logical data files, func-

tional processes are identified by considering transactions, FTR indicate

possible reads and writes, etc. This procedure is cheaper than the previous

one and almost equally accurate.

3. Performing a conversion based on a statistical model. This can be done

either by using models at the measure level, i.e., Y = c X, as in Table 11,

or models at the BFC level, i.e., Y = c1 X1 + c2 X2 + ...+ cn Xn (where

Xi is a BFC of the X method), as in Table 17.

The conversion described at point 3 above can itself be carried out in two ways:

• Using external conversion constants; that is, Y measures are computed as

Y = c X, with c taken from the literature.

• Using locally computed constants. This implies that a) a subset of the

historical projects are measured in terms of Y, e.g., using the procedures 1

or 2 above, b) a model Y = d X is derived, and c) the model is used

to convert the subset of historical data not re-measured at step a) into

measure Y.

The information provided in this paper can help practitioners with some de-

cisions. For instance, practitioners could decide whether to use procedure 3

instead of 1 or 2, based on the level of accuracy they aim to achieve, according

to the data given in Sections 5–7. The same data could help practitioners decide

whether to use models from the literature or build their own models.
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4.2.2. Early size estimation

Suppose that a project is in a very early stage of development, when the new

application to be developed is described very roughly. Suppose also that a man-

ager has to take decisions that require an approximate knowledge of the size of

the application to be developed. If the organization in question uses the IFPUG

method, our manager could look into Table 19 and see that the size in IFPUG

Function Points can be estimated via model UFP = c #UGEP , with c in the

range [4.58, 6.63]. If the available description of the new application supports

identifying the elementary process (usually a mock-up of the user interface is

sufficient for this purpose), our manager can get a very early and fast estimation

of the size of the application in UFP. In fact, it is between 4.58 #UGEP and

6.63 #UGEP . The estimation range is large, but it can be obtained in ten

minutes by looking at the mock-up, and this kind of estimates is often sufficient

to support critical decisions in the earliest stages of development.

4.3. Research methodology

For all the pairs of measures that we analyzed, correlation analysis was first

studied. To this end, we used Pearson test when possible, and non parametric

Spearman and Kendall tests when the conditions for applying Pearson’s test did

not hold.

Then, linear regression was applied. In general we applied Ordinary Least

Squares (OLS) linear regression. However, the characteristics of some datasets

–namely the non normality of data distributions and the presence of outliers–

suggested that more robust regression techniques be used. In fact, OLS has a

null breakdown point (according to the definition by Hampel [37], the break-

down point is the smallest percentage of contaminated data that can cause the

estimator to take on arbitrarily large aberrant values). The Least Median of

Squares (LMS) was introduced by Rousseeuw as a robust regression, i.e., a re-

gression featuring a high breakdown point [38]. LMS works like OLS, except

that the median –rather than the mean– of squared residuals is minimized. In

this way, a breakdown point = 50% is achieved.
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We are interested to achieve distributional robustness, that is, to minimize

the impact of skewed distributions and/or outliers on regression estimates. Al-

though conceptually distinct, distributional robustness and outlier resistance

are, for practical purposes, synonymous.

In this paper, whenever OLS regression does not appear to guarantee dis-

tributional robustness, due to the characteristics of the dataset being analyzed,

we use LMS regression.

With both OLS and LMS regressions, we used regression through the origin,

in order to obtain models of type y = a×x instead of models of type y = a×x+b.

Models of type y = a × x were used because when the size is zero with one

measurement unit, it should be zero with other measurement units as well.

Moreover, conversions based on a simple constant are simpler to understand

and use for practitioner.

To compare the accuracy of two given models, we compared the absolute

relative residuals via Mann-Whitney (Wilcoxon rank sum) test.

All the results described in the paper are statistically significant. The sta-

tistical significance threshold was set at α = 0.05, as usually done in Empirical

Software Engineering studies [39].

5. Study of the correlation among SiFP, IFPUG and COSMIC Func-

tion Points

Here we report the description of the analysis and the results obtained for

each dataset considered in this study.

Figure 4 shows the SiFP and UFP measures compared to CFP measures.

Circles represent data points in the SiFP-CFP plane, while crosses represent

points in the UFP-CFP plane. The distribution of points in Figure 4 suggests

that both SiFP and UFP are fairly correlated with CFP for Abualkishik, Robi-

olo, Liu, Cuadrado Gallego, and Ferrucci datasets. In the case of Desharnais and

van Heeringen datasets we can note a stronger correlation. This visual impres-

sion is confirmed by the correlation test results reported in Table 10. Observe
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Figure 4: SiFP vs. CFP and UFP vs CFP regression lines for the analyzed datasets
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that we exploited Pearson’s test for Desharnais and Liu dataset since the dis-

tributions of the measures are normal according to Shapiro’s test. Differently,

for the remaining datasets the distributions of the measures are not normal and

we applied Spearman’s and Kendall’s tests (see Table 10). From Table 10 we

can note that the correlation of CFP with SiFP and UFP is very strong for

Desharnais and van Heeringen datasets, while it is less strong –though quite

evident– in the cases of Robiolo, Cuadrado Gallego, and Ferrucci datasets.

For the same reason, we performed the analysis using OLS regression when

the distributions of the measures are normal. On the contrary, we carried out

LMS regression when measures are not normally distributed. The models found

and the corresponding accuracy indicators are summarized in Table 11.

The regression lines are also shown in Figure 4. It is possible to see that

regression lines are very close to each other for Desharnais, van Heeringen, and

Cuadrado Gallego datasets: for Desharnais dataset the two lines are both close

to the y=x line. As for the van Heeringen dataset, we can also observe that

most applications have size smaller than 750 UFP, thus LMS regression ignores

the few larger applications, so that the resulting model does not fit well such

applications. It is therefore prudent to consider the model valid only up to 750

SiFP (or 750 UFP).

The magnitude of relative errors (MRE) distributions of the two models built

for each dataset are described via boxplots in Figure 5. The blue diamonds

indicate the MMRE values (mean MRE).

It can be seen that –although with differently shaped distributions– both

SiFP and UFP correlations to CFP are fairly accurate for Desharnais, Liu, van

Heeringen, and Cuadrado Gallego datasets; differences greater than 20% are

exclusively due to outliers for Desharnais dataset. Differently, neither SiFP

nor UFP correlations to CFP are very accurate for Abualkishik, Robiolo and

Ferrucci datasets.

To test which of SiFP and UFP correlates better to CFP, we run the Mann-

Whitney (Wilcoxon rank sum) test on MRE for each dataset, and found that

the test accepts the equivalence hypothesis for SiFP and UFP MRE for each
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dataset, thus supporting the hypothesis that there is no difference between the

distributions of MRE for SiFP- and UFP-based models.

Table 10: CFP vs. SiFP and CFP vs. UFP correlation tests.

SiFP vs. CFP UFP vs. CFP

Dataset Kendall Spearman Pearson Kendall Spearman Pearson

Desharnais — — 0.926 — — 0.967

Abualkishik 0.636 0.804 — 0.636 0.811 —

Robiolo 0.532 0.760 — 0.579 0.788 —

Liu — — 0.722 — — 0.679

van Heeringen 0.805 0.931 — 0.865 0.965 —

Cuadrado Gallego 0.454 0.609 — 0.486 0.628 —

Ferrucci 0.693 0.862 — 0.687 0.831 —

Table 11: CFP convertibility models.

Dataset Model regr. outl. MMRE MdMRE Pred(25) Error range

Desharnais CFP = 0.951 × SiFP OLS 4/14 15.9% 11.3% 85.7% (-33%, 60%)

Desharnais CFP = 0.973 × UFP OLS 5/14 10.1% 6.6% 92.9% (-19%, 39%)

Abualkishik CFP = 1.108 × SiFP LMS 0/12 29.9% 25.7% 50.0% (-24%, 74%)

Abualkishik CFP = 0.855 × UFP LMS 0/12 21.0% 18.7% 58.3% (-43%, 24%)

Robiolo CFP = 0.451 × SiFP LMS 0/19 27.3% 25.9% 47.4% (-61%, 65%)

Robiolo CFP = 0.506 × UFP LMS 0/19 28.0% 22.7% 57.9% (-63%, 64%)

Liu CFP = 0.666 × SiFP OLS 1/15 15.7% 14.6% 80.0% (-33%,28%)

Liu CFP = 0.829 × UFP OLS 3/15 15.7% 12.1% 80.0% (-31%,43%)

van Heeringen CFP = 0.874 × SiFP LMS 0/25 19.3% 14.9% 64.0% (-42%,86%)

van Heeringen CFP = 0.901 × UFP LMS 0/25 18.7% 16.7% 68.0% (-33%,59%)

Cuadrado Gallego CFP = 0.637 × SiFP LMS 0/33 20.8% 20.4% 60.6% (-54%,59%)

Cuadrado Gallego CFP = 0.635 × UFP LMS 0/33 17.2% 13.0% 69/7% (-54%,31%)

Ferrucci CFP = 1.580 × SiFP LMS 0/25 39.8% 19.3% 52.0% (-28%,167%)

Ferrucci CFP = 1.784 × UFP LMS 0/25 36.4% 20.6% 52.0% (-39%,180%)

6. A study of the correlations between SiFP and UFP

The correlation between SiFP and IFPUG FP was first studied via Pear-

son’s test (for datasets featuring normally distributed data) and Kendall’s and
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Figure 5: SiFP vs. CFP and UFP vs CFP magnitude of relative error boxplots
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Spearman’s tests (for datasets featuring not normally distributed data). Results

of correlation tests are given in Table 12.

Table 12: SiFP–UFP correlation tests.

Dataset Kendall Spearman Pearson

Desharnais — — 0.990

Abualkishik — — 0.961

Robiolo 0.860 0.961 —

Liu — — 0.974

van Heeringen 0.886 0.967 —

Cuadrado Gallego 0.798 0.930 —

Ferrucci 0.900 0.980 –

Table 13: SiFP–UFP convertibility models.

Dataset Model regr. outl. MMRE MdMRE Pred(25) Error range

Desharnais SiFP = 0.957 × UFP OLS 1/14 7.2% 5.9% 100% (-22%, 13%)

Abualkishik SiFP = 1.132 × UFP OLS 1/12 15.7% 7.6% 91.7% (-19%, 92%)

Robiolo SiFP = 1.046 × UFP LMS 0/19 7.8% 6.7% 100% (-21%,6%)

Liu SiFP = UFP1.033 (*) OLS 0/15 4.8% 4.3% 100% (-9%,10%)

van Heeringen SiFP = 1.034 × UFP LMS 0/25 7.0% 3.8% 92.0% (-27%, 25%)

Cuadrado Gallego SiFP = 1.121 × UFP LMS 0/33 8.0% 7.3% 97.0% (-15%,30%)

Ferrucci SiFP = 1.221 × UFP LMS 0/25 5.0% 4.9% 100% (-11%, 13%)

(*) no statistically significant linear model could be found for this dataset; this model was obtained after log-log transformation of data.

Regression analysis yielded the models that are summarized in Table 13. The

distributions of the models’ MRE are described via boxplots in Figure 6. The

blue diamonds indicate the MMRE values (mean MRE). Outliers are not shown

to keep the figure readable; however, the presence of outliers can be guessed by

looking at Table 13: the only dataset having a data point not shown in Figure 6

is the dataset by Abualkishik (this also explains why MMRE is so much greater

than MdMRE for this dataset).

7. Analysis of the correlations involving BFC’s

Not all the datasets provide the same information. However, it was possible

to carry out several studies concerning the correlation of functional size measures
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Figure 6: SiFP vs. UFP magnitude of relative error boxplots for all the analyzed datasets.

with different types of IFPUG or COSMIC measure elements (e.g., ILF and

Exit). Most studies reported in the following sections are supported by three

or more datasets.

In what follows, we generally show the statistically significant models fea-

turing MMRE not greater than 30%; this is a somewhat arbitrary choice, but

necessary to limit the number of models to be described. Concerning multivari-

ate models, only models having uncorrelated independent variables are given.

7.1. Correlation of measures with the number of COSMIC Functional Processes

This analysis was supported by the datasets by Desharnais, Abualkishik,

Robiolo, Liu, Van Heeringen and Ferrucci.

The models found are illustrated in Table 14. It is interesting to note that

in several cases UFP and SiFP are estimated more accurately than CFP. This

result is not surprising, since the number of functional processes is generally

also the number of transactions, or #UGEP. Anyway, who wants to perform
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Table 14: Correlation of measures with the number of COSMIC Functional Processes (#FPr)

Dataset Model regr. MMRE MdMRE Pred(25) Error range

Desharnais UFP = 6.57 #FPr OLS 10.5% 3.6% 79% -36%..37%

Desharnais CFP = 6.74 #FPr OLS 18.3% 13.3% 71% -36%..53%

Desharnais SiFP = 6.47 #FPr OLS 8.3% 6% 93% -33%..16%

Abualkishik UFP = 5.22 #FPr OLS 19.8% 19.3% 67% -53%..30%

Abualkishik SiFP = 6.22 #FPr OLS 9.8% 5.9% 83% -29%..12%

Robiolo UFP = 5.6 #FPr LMS 34.6% 34.3% 32% -68%..68%

Robiolo CFP = 4.21 #FPr LMS 19.6% 14% 74% -60%..49%

Robiolo SiFP = 7.29 #FPr LMS 32.8% 28.6% 47% -62%..89%

Liu UFP = 6.33 #FPr OLS 18.5% 14.6% 67% -41%..30%

Liu CFP = 5.92 #FPr OLS 20.3% 10.1% 67% -27%..57%

Liu SiFP = 7.45 #FPr OLS 15.3% 11.5% 73% -35%..26%

Van Heeringen UFP = 6.46 #FPr LMS 20.2% 17.5% 64% -54%..62%

Van Heeringen CFP = 7.50 #FPr LMS 20.6% 18.7% 64% -25%..47%

Van Heeringen SiFP = 6.71 #FPr LMS 18.3% 16.5% 76% -56%..66%

Ferrucci UFP = 4.34 #FPr LMS 27.7% 19.5% 52% -68%..113%

Ferrucci CFP = 7.94 #FPr OLS 11.9% 10.7% 88% -28%..33%

Ferrucci SiFP = 5.52 #FPr LMS 25.9% 22% 52% -66%..101%

approximate estimations of the functional size based on the number of functional

processes should not necessarily target CFP to get the most accurate estimates.

7.2. Correlation of measures with IFPUG BFC’s

This analysis was supported by the datasets by Robiolo, Liu and Ferrucci. In

this analysis, we do not consider SiFP, since it would hardly make sense to corre-

late a measure (SiFP) that does not involve evaluating the ‘complexity’ of data

and transactions with BFC’s that incorporate the evaluation of ‘complexity’.

The models found having no more than two independent variables are illus-

trated in Table 15. Those having more than two variables are more accurate,

but are less interesting, since it is quite clear that the more information is avail-

able (via more work), the more accurate will be the measure (in the extreme,

the model of UFP vs. all IFPUG BFC’s will be perfectly accurate).
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The models in Table 15 show that it is possible to obtain fairly good approx-

imations of the functional size measured in UFP by means of only two BFC’s

(e.g., the model based on ILF and EI has MMRE=15.9% for the dataset by

Robiolo, the model based on ILF and EO has MMRE=11.2% for the dataset

by Liu, and the model based on EI and EQ has MMRE=17.1% for the dataset

by Ferrucci).

The size expressed in CFP can be estimated at similar levels of accuracy

only for Liu’s dataset (see for instance the model based on EI and EQ).

7.3. Correlation of measures with COSMIC data movements

This analysis was supported by all datasets, except Van Heeringen’s and

Cuadrado-Gallego’s.

The models found are illustrated in Table 16.

It can be seen that estimates based on just Exit data movements are fairly

accurate for all the datasets. This is good news for organizations that need to

estimate the size in CFP without going through the whole measurement process,

since counting Exit data movements is clearly faster and easier than counting

also the Entry, Read and Write data movements.

7.4. Correlation of measures with unweighted IFPUG BFC’s

This study concerns the correlation of functional size measures with un-

weighted IFPUG BFC’s, i.e., #ILF, #EIF, #EI, #EO and #EQ. This analysis

was supported by the datasets by Robiolo, Liu, Van Heeringen and Ferrucci.

In this case, models with more than two independent variables are interest-

ing, because they indicate the possibility of getting estimates of the standard

functional size measures (namely, UFP and CFP) based on a set of counts that

are quite easy to obtain. In fact, most approximate functional size estimation

methods (like NESMA estimated [3], as well as the official IFPUG early esti-

mation method [9]) are based on unweighted IFPUG BFC’s.

We found 154 models; for space reasons, here we report only a selection of

such models.

34



The models of CFP featuring the lowest MMRE are given in Table 17. These

models indicate that it is possible to estimate the functional size in CFP based

on early products of the IFPUG measurement process.

A selection of the models of UFP are given in Table 18. It is easy to see that

fairly accurate models are available for all the datasets. These results support

the idea at the base of the SiFP method: it is hardly necessary to apply the full-

fledged IFPUG process to get values that are fairly close to the actual measures.

The models that involve all the independent variables (i.e., #ILF, #EIF, #EI,

#EO and #EQ) –not reported in Table 18– feature MMRE < 10%.

The models found involving SiFP are not reported, since they tend to re-

produce the definition of SiFP Function Points, i.e., 7 (#ILF + #EIF) + 4.6

(#EI + #EO + #EQ), with MMRE close to zero.

Finally, it should be stressed that all the models presented in this section

are suitable as approximate estimation methods, since they require only a small

set of data that are obtained quite easily. In fact, it is sufficient to identify

the logic data and the transactions involved in the software application to be

measured, and classify data as internal or external, and transactions as input,

output or inquiries, according to IFPUG rules. These activities are much faster

and cheaper than the full-fledged IFPUG process [16], since the most expensive

and time-consuming activities —namely analyze each logic data file and each

transaction to determine their “complexity”— are not required.

7.5. Correlation of measures with unspecified generic data and processes

This analysis concerns the correlation of functional size measures with un-

specified and generic data (UGDG) and processes (UGEP), as defined in Sec-

tion 2.4. This analysis was supported by all datasets.

The models found are illustrated in Table 19. For SiFP, only univariate mod-

els are given, since —as could be expected— bivariate models tend to reproduce

the SiFP computation formula (3).

The models illustrated in Table 19 suggest a few interesting observations:
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• For all datasets it was possible to estimate UFP measures with MMRE

better than 20% (with the exception of Abualkishik’s dataset, for which

MMRE=20.1%). Even more interestingly, the accuracy of UFP estimates

based on UGEP and UGDG does not appear worse than the accuracy

of estimates based on weighted IFPUG BFC’s (see Table 15). This ob-

servation seems to support the idea at the basis of SiFP, that classifying

and weighting data and transactions does not add value to functional size

measures.

• CFP measures are often correlated with UGEP and only in one case (the

dataset by Robiolo) with UGDG. Only for the datasets by Cuadrado-

Gallego and Ferrucci a model CFP = f(UGEP, UGDG) was found. This

observation seems to confirm that —since data do not enter in the defini-

tion of the COSMIC measure— also CFP estimates are hardly based on

data measures.

• SiFP measures can be estimated with fairly good accuracy based on UGEP

alone. This means that one could simplify even further the process of

measuring SiFP, by skipping the measurement of UGDG.

7.6. Correlation of measures with IFPUG FTR

This study concerns the correlation of functional size measures with the

number of File Type Referenced according to the IFPUG method. The anal-

ysis was supported by the datasets by Desharnais, Abualkishik and Cuadrado

Gallego.

The models found are illustrated in Table 20. In this case it is particularly

interesting that COSMIC Function Points appear better correlated to FTR (an

IFPUG concept) than IFPUG and SiFP Function Points. This finding can be

partly explained by considering that FTR (the number of references to logic data

files) is conceptually correlated to COSMIC Read and Write data movements.
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8. Discussion of results

In this section we provide an interpretation of the results obtained from the

analyses described above. We also provide some suggestions for the practical

envisioned usage of the mentioned results.

8.1. Convertibility

In Section 4.2.1 we described why an organization could possibly be inter-

ested in converting their historical measures from a given unit into another.

Here we describe how to perform such conversions, according to the results of

the analyses described in Sections 5–7.

8.1.1. Convertibility among functional size measures

The examined FSM measures appear statistically correlated. For all the

available datasets it was possible to derive statistically significant models that

associate measures expressed in a given functional size measurement unit to

measures expressed in another unit (see Tables 11 and 13).

The conversion accuracy achieved is sufficiently good to allow for practical

usage of the conversion models. However, it is up to project managers and other

people interested in conversion, to evaluate if the accuracy levels are acceptable

or not for their specific purposes. To this end, the data provided in Tables 11

and 13 provide clear indications about the level of accuracy that can be expected.

It is important to note that different datasets support different models.

Consider for instance models of CFP vs. SiFP: for the dataset by Robiolo

we have CFP = 0.451 × SiFP , while for the database by Ferrucci we have

CFP = 1.58 × SiFP . This means that if CFP sizes of applications in the

dataset by Ferrucci were computed using the model obtained from the dataset

by Robiolo, we would get an average error 0.451−1.58
1.58 = −71%, that is, the con-

version would grossly underestimate the actual measures in CFP. This type of

phenomen can happen with any pair of datasets including quite different appli-

cations’ measures. Accordingly, if an organization wants to perform a conversion
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of measures from one unit to another, it is strongly advised to use models de-

rived locally, using measures from applications that are similar to those whose

measures have to be converted. This observation is coherent with the results

of the empirical analysis by Ferrucci et al. [40], which showed that conversion

among UFP and CFP based on company-specific data performed better (in

terms of accuracy) than conversion based on data that originated outside of the

company interested in the conversion.

8.1.2. Convertibility using BFC’s

As shown in Sections 7, several statistically significant models link func-

tional size measures with BFC’s of other measures. Therefore, an organization

that owns historical data at the BFC level could consider exploiting BFC-based

convertibility models. For instance, if the measures or the sheer number of EI,

EO, EQ, ILF and EIF were recorded, an organization can convert their IFPUG

measures into COSMIC measures via the models given in Section 7.2 (Table 15)

or Section 7.4 (Table 17), or Section 7.5 (Table 19). If the number of FTR

was also recorded, the models given in Section 7.6 (Table 20) could be used as

well.

As expected, estimation based on more detailed information yields more ac-

curate results. For instance, it can be obseved that all the models that compute

CFP based on unweighted IFPUG BFC’s (given in Table 17) feature values of

MMRE that are smaller than those of the models that compute CFP based on

UFP (given in Table 11). Therefore, the recommendation here is to use models

based on the most detailed data that are available.

As noted in Section 8.1.1 above, different datasets support different models,

hence using local data is advisable.

8.2. Early approximate estimation of size measures

In Section 4.2.2 we described why an organization could take advantage of

early approximate measurement methods. Here we describe how to build early
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approximate size estimation models according to the results of the analyses

described in Sections 5–7.

In fact, the statistically significant models that relate measures to their

BFC’s suggest that measures can be estimated on the basis of their BFC’s.

This result supports the –already quite popular– usage of approximate estima-

tion methods [41]. Quite interestingly, the good correlation with BFC’s was

confirmed for all measures for all the available datasets.

The results illustrated in Section 7 confirm the validity of already established

practices, like estimating COSMIC Function Points on the basis of the number of

functional processes as described in the “Guideline for Early or Rapid COSMIC

Functional Size Measurement by using approximation approaches” [10]. How-

ever, our results also suggest new ways of estimating functional size measures.

For instance, in Section 7.3 (Table 16) it is shown that all datasets support

models that allow estimating CFP based on just the number of Exit data move-

ments. The accuracy of these models is also quite acceptable (the maximum

MMRE is 16.5%, for Ferrucci’s dataset). This observation is particularly inter-

esting because it shows that in cases when Functional Process specifications are

characterized only in terms of inputs and outputs, a good estimation of the size

in CFP is possible. This result was also observed in a previous study where it

was highlighted that software code size (in terms of bytes) correlated well with

the functional size obtained considering only entry and exit data movements

which were automatically measured from component diagrams [42].

8.3. Observations on the nature of functional size measures

The examined FSM measures appear statistically correlated. For all the

available datasets it was possible to derive statistically significant models that

associate measures expressed in a given functional size measurement unit to

measures expressed in another unit.

In several cases, functional size measures appear well correlated to BFC’s

of other measures. For instance, statistically significant models featuring small

MMRE and MdMRE were found linking IFPUG Function Points and COSMIC
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Exit data movements (see Table 16). Similarly, COSMIC Function Points ap-

pear correlated to unweighted IFPUG BFC’s (see Table 17). This phenomenon

suggests that –notwithstanding the differences in the definitions– FSM methods

tend to provide essentially equivalent indications.

Concerning more specifically the relationship between SiFP and UFP, the

results reported in Section 6 show that the two measures are very strongly

correlated. These results confirm the early findings [22, 23] on convertibility

between SiFP and UFP, and support the hypothesis that the SiFP method

(which requires a faster and cheaper measurement process than the IFPUG

method) can be used as a replacement of the IFPUG method.

9. Threats to validity

Concerning internal validity, we observe that the necessary conditions for

causality are satisfied in our analysis. The fact that we found statistically sig-

nificant correlations not only between measures, but also between measures

obtained via an FSM method and the BFC’s of other methods strengthens the

evidence that the correlations and associations described throughout the paper

derive from (fairly strong) causal relationships.

Concerning external validity, we may wonder to what extent the results pre-

sented here can be generalized. To this end, we observe that the number and

variety of datasets that were analyzed provide a reasonably wide sample, that

is expected to be representative of a wide range of software applications. In-

deed, even if 4 out of 7 datasets in our study included applications developed by

students (i.e., Abualkishik, Robiolo, Liu, and Cuadrado Gallego datasets) they

were not manipulated so that they could be more easily measured [26] [27] [19]

[29]. As for the type and size of the applications included in the 7 datasets, from

the description provided by the researchers who previously employed them [24]

[25] [26] [27] [19] [28] [29] [30], they can be considered representative of indus-

trial software applications. Nevertheless, it is worth highlighting that different

datasets tend to provide different conversion models. This means that –although
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the methodology used for deriving conversion models appears to be applicable

to any dataset– the quantitative models depend on specific characteristics of

the software applications that contribute data to the various datasets. It is

likely that such characteristics –not considered by current FSM methods– affect

convertibility. Consider for instance the fact that the granularity of COSMIC

data movements is the data group, while in IFPUG measurement the elementary

data that cross the boundary of the application affect size measures. As a con-

sequence, the number of elementary data in a data group affects convertibility,

but such datum is neither required for COSMIC nor for IFPUG measurement,

thus it is generally not available when building conversion models.

All regression models provide an interpretation of the available data, that

is, of a training set. As such, they cannot be used to reason about data that

are outside the range covered by the training set. Our models are no exception:

so, for instance, the models illustrated in Figure 4 apply in the [100,500] UFP

range, approximately.

It can also be observed that our datasets are characterized by few large

projects: Figure 4 shows that none of the proposed models is actually valid for

applications larger than 1000 UFP.

Unfortunately, it is very difficult to find software applications that were

measured using two or more different FSM methods. In fact, FSM is expensive,

and software development organizations are not willing to spend extra money

to get a second measure of an application. However, since most FSM methods

define measures at the elementary or functional process level, we expect that

applications involving many processes will not necessarily behave differently

than applications having less processes. On the contrary, as observed in [43], it

is the nature of processes (e.g., being more or less data and process intensive)

that could affect convertibility models.

Construct validity threats do not apply to this study, since there was no

option in choosing the functional size measures: their definitions are given (in

two cases they are standards). The relevance of the study derives largely from

the fact that the analyzed measures are widely accepted or promising proposals.
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Finally, we note that a potential threat could come from the accuracy of

measures. In fact, all functional size measures are to some extent subjective:

we limited this risk by considering only datasets containing measures provided

by experienced measurers.

10. Related work

After the COSMIC method was proposed, both researchers and practitioners

were curious to know whether historical size measures expressed in UFP could

be easily converted into CFP. To this end, the existence of statistical models

correlating IFPUG (or NESMA [3]) Function Points and COSMIC Function

Points was studied.

One of the first reviews of some provided conversion formulas was done

in [44], also reporting on the application and comparing of COSMIC and IFPUG

methods in order to analyze how related, consistent and reliable the formulas

could be.

The results of the main studies investigating statistical conversions of IF-

PUG function points and COSMIC function points are synthetically reported

in Table 21.

A few studies (Abran et al. [46], Lavazza and Morasca [49]) observed that the

relationship between UFP and CFP could be better modeled via piecewise linear

models, i.e., they proposed models composed of two segments in the UFP-CFP

plane: one that applies to smaller applications and a second one that applies

lo larger applications. The discontinuity point is around 200 FP according to

Abran, and around 300 FP according to Lavazza and Morasca. The authors

agree on the fact that the ratio CFP/UFP is larger for larger applications.

Cuadrado Gallego et al. [36] also investigated the existence of non linear

models (namely, models obtained after log-log transformation of variables): in

this way they obtained an approximated conversion factor of 1:1, i.e., 1 UFP =

1 CFP, within a confidence range of 0.9 to 1.1.

Lavazza [50] proposed a systematic approach to the conversion process. He
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pointed out that most of the conducted convertibility studies used single type of

statistical linear regression analysis over each dataset. These datasets are usu-

ally characterized by a certain degree of skewness, outliers and heteroscedastic-

ity. Thus, it is essential to use suitable statistical tools: besides log-log regres-

sion, it is suggested to use robust statistical regression, namely Least Median of

Squares, to decrease the dependence on outliers. After applying the proposed

approach to a few datasets, Lavazza concludes that –based on the available

data– it is not possible to represent convertibility by means of a single type of

equation, or even finding a single type of regression analysis that yields the best

results.

Some authors also considered the correlations involving the BFC’s of func-

tional size measures. The dataset published in [28] was used to study the rela-

tionships between IFPUG BCF’s – like the non-weighted number of transactions–

with CFP measures, and COSMIC BFC’s –like the number of functional processes–

with UFP measures [51]. Strong correlations among the examined types were

found: this fact supports the idea that in presence of a set of applications that

are quite homogeneous –i.e., same application domain and characteristics– it

is possible to obtain fairly precise estimation expressed either in UFP or CFP,

based on a small number of BFC’s.

Some of the models proposed in [51] simplify the application of the mea-

surement method. For example, using the non-weighted IFPUG BFC’s allows

estimating the size of an application early and quickly, without performing the

whole measurement process as prescribed by the IFPUG manual. Similarly,

it is possible to obtain early and quickly COSMIC Function Points based on

the number of IFPUG elementary processes. Actually, early and quick meth-

ods to estimate the functional size of applications have been proposed for both

IFPUG [9] and COSMIC [10] methods.

Gencel and Bideau [43] applied the convertibility models from the litera-

ture to a specific application, and found that they provided poor results. The

reported reasons for these results had already been identified by Gencel and

Demirors [52]. The first reason is that if the software being measured has a
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high proportion of files that are not referenced much by the processes, measures

expressed in UFP tend to be greater than those expressed in CFP. The second

factor is the IFPUG “cut-off” phenomenon (i.e., the fact that no process can

account for more than 7 UFP), while with the COSMIC method size limitations

do not apply to processes. Gencel and Bideau concluded that it should be fea-

sible to convert UFP to CFP for application types where the transactions are

not referencing a lot of data.

Results similar to those given in [51] were found for the COSMIC method

when size estimation is based on models of the requirements that are at different

levels of detail [19]. For instance, a model could support counting the number

of functional process, but could not provide details about every process: in such

case, the size in CFP could be estimated based on the number of functional

processes, as shown here in Section 7.1. In other cases, models not considered

here –e.g., those involving the number of Data Groups per Functional Process–

were found in [19].

Abualkishik et al. [25] conducted an exploratory study to examine the ac-

curacy of conversion types used in the literature, according to the principles of

measurement theory. Consequently, they proposed a new conversion type based

on FTR’s to obtain CFP. The proposed type yielded better results than tradi-

tional approach. In conclusion, they suggest that multiple conversion types are

used to obtain optimal results.

Finally, an analysis of the correlation between IFPUG Function Points and

IFPUG BFC’s was carried out, using the ISBSG dataset [53]. It was found that

EI are strongly correlated to UFP, and that development effort estimation based

on EI is as accurate as effort estimation based on UFP [54].

11. Conclusion

The choice of using or not using FSM methods depends on several con-

tingent factors. For instance, there are countries (like Italy) where providing

functional measures is compulsory, when bidding for public administration con-
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tracts. Several organizations build cost estimation models based on historical

data including functional size measures. The state of the art is characterized by

several different practices: a couple of standard measure definitions (namely, IF-

PUG and COSMIC Function Points) are widely known and used; however, since

under specific conditions both IFPUG and COSMIC measurement methods are

relatively time-consuming and expensive, approximate estimation methods have

been proposed. These methods call for less thorough and detailed analysis of

software functional specifications: therefore, they provide faster and cheaper

approximations of IFPUG or COSMIC measures. Based on the same idea,

the Simple Function Point method defined a new functional size measure that

–being itself simple– does not need for estimation methods.

In presence of all these paths to functional size measures, practitioners need

to get quantitative information that can support decisions. For instance: if an

organization is considering switching from IFPUG to SiFP (e.g., because SiFP

method is cheaper than IFPUG), it is likely interested in converting historical

data from UFP into SiFP. Is such conversion possible, and how accurate is

it? To provide reliable answers to such questions, we performed a systematic

statistical analysis of all the suitable datasets we could find. These datasets

are partly of industrial nature. For instance, the dataset by Ferrucci contains

measures that were collected by an organization that develops web applications

and uses the data for effort estimation.

All the analyzed measures appear well correlated to each other. Statistically

significant quantitative models were found for all the combinations of measures,

for all the analyzed datasets. Several models involving Base Functional Com-

ponents were found as well.

In conclusion, the results given in this paper represent a valuable contri-

bution for researchers investigating FSM methods and practitioners employing

those methods in that: 1) the amount of data analyzed is definitely greater than

in any past study, so that more general and reliable conclusions are possible;

2) SiFP measures are involved in the analysis, so that some evidence support-

ing the equivalence of SiFP and UFP is made available; 3) the correlation of
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measures to their BFC’s was verified, so that we have evidence that estimation

methods are statistically well founded; 4) the correlation between measures and

other methods’ BFC’s was observed, so that we have evidence that the analyzed

FSM methods are structurally correlated to each other.

A final contribution of the paper can be summarized in the following indica-

tions for those organizations that do not use FSM methods and, thus, could not

be interested in conversion: 1) if you start using an FSM method, it is not ex-

ceedingly important which one you chose, since the measures they yield appear

quite well correlated (see Table 10). Considerations about the cost of measure-

ment or the suitability of a method to the development process are probably

more relevant for a choice; 2) if you chose a FSM method and then you change,

you will not lose your historical data.

Future work includes:

• Experimenting with additional datasets, hopefully containing several large

applications, so as to extend the results given here to larger applications.

• Experimenting with different ways of converting functional measures. More

specifically, we could consider conversions that take into account the model

that describes the application, as in [55] or in [56].

• If possible, reporting on the actual practice of functional size measure

conversion in industry.
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Table 15: Models correlating functional size measures and FPA’s BFC’s.

Dataset Model regr. MMRE MdMRE Pred(25) Error range

Robiolo UFP = 2.24 ILF LMS 24.8% 25.4% 47% -51%..57%

Robiolo UFP = 2.58 EI LMS 27.3% 27.8% 47% -51%..47%

Robiolo UFP = 1.79 ILF + 2.71 EIF LMS 18.5% 15.1% 63% -54%..25%

Robiolo UFP = 1.19 ILF + 1.14 EI LMS 15.9% 8.5% 68% -47%..18%

Robiolo UFP = 1.76 ILF + 0.83 EQ LMS 18.9% 16.5% 68% -49%..23%

Robiolo UFP = 1.93 ILF + 3.32 EO LMS 24.5% 13.5% 63% -44%..81%

Robiolo UFP = 2.82 EI + 2.12 EO LMS 22% 18.8% 63% -35%..61%

Liu UFP = 2.54 ILF OLS 17% 16.1% 73% -32%..56%

Liu UFP = 2.41 EI OLS 15% 13.9% 73% -27%..38%

Liu UFP = 1.96 ILF + 1.65 EO LMS 11.2% 10.5% 100% -22%..24%

Liu UFP = 1.11 EIF + 2.44 EI LMS 13.8% 7% 67% -26%..40%

Liu UFP = 2.23 EI + 1.57 EQ LMS 11.3% 5.3% 87% -23%..28%

Liu CFP = 1.96 ILF OLS 25.3% 17.2% 60% -52%..107%

Liu CFP = 1.98 EI OLS 17% 14.7% 67% -29%..38%

Liu CFP = 1.47 EI + 1.93 EQ LMS 11.9% 5.9% 87% -37%..3%

Ferrucci UFP = 2.82 EQ LMS 22.1% 17.6% 60% -59%..49%

Ferrucci UFP = 3.3 ILF + 2.16 EO LMS 18.9% 15.1% 64% -53%..27%

Ferrucci UFP = 2.37 ILF + 2.52 EQ LMS 17.6% 9.9% 72% -52%..50%

Ferrucci UFP = 2.66 EIF + 2.96 EI LMS 19.1% 10.5% 76% -72%..61%

Ferrucci UFP = 1.61 EIF + 2.19 EQ LMS 21.1% 15.1% 64% -58%..30%

Ferrucci UFP = 1.66 EI + 2.08 EO LMS 17.1% 15.5% 72% -58%..35%

Ferrucci UFP = 1.37 EI + 2.14 EQ LMS 14.1% 7.9% 76% -40%..38%

Ferrucci CFP = 5.50 EI LMS 46.9% 40.1% 44% -97%..202%

Ferrucci CFP = 5.59 EO LMS 48.3% 26.1% 48.3% -80%..231%

Ferrucci CFP = 6.65 EIF + 5.1 EI LMS 42.4% 21.1% 60% -64%..280%
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Table 16: Models correlating functional size measures and COSMIC data movements.

Dataset Model regr. MMRE MdMRE Pred(25) Error range

Desharnais UFP = 6.41 Entry OLS 11.3% 5.1% 86% -38%..50%

Desharnais UFP = 2.95 Exit OLS 10% 5.7% 86% -40%..25%

Desharnais CFP = 6.38 Entry OLS 18.3% 10% 64% -39%..45%

Desharnais CFP = 2.79 Exit OLS 12.8% 12% 93% -44%..19%

Desharnais CFP = 2.91 Read OLS 6.8% 4.1% 100% -21%..19%

Desharnais SiFP = 6.30 Entry OLS 9.8% 7.4% 93% -35%..20%

Desharnais SiFP = 2.87 Exit OLS 14.8% 8.6% 71% -43%..43%

Desharnais SiFP = 3.19 Read OLS 24% 18.3% 64% -48%..75%

Abualkishik UFP = 5.38 Write OLS 28.5% 29.4% 42% -64%..36%

Abualkishik CFP = 2.77 Exit LMS 14.7% 17.1% 92% -43%..20%

Abualkishik CFP = 2.15 Entry + 1.65 Read LMS 8.9% 6.6% 92% -29%..7%

Abualkishik SiFP = 2.89 Exit LMS 24.2% 18.4% 67% -48%..78%

Abualkishik SiFP = 7.33 Write OLS 29.7% 32.5% 42% -60%..58%

Robiolo UFP = 8.30 Read + 1.78 Write LMS 28.9% 19.4% 58% -47%..82%

Robiolo CFP = 3.31 Entry LMS 17% 15.5% 79% -47%..43%

Robiolo CFP = 3.54 Exit LMS 13.2% 7.7% 84% -26%..62%

Robiolo CFP = 2.31 Read + 2.55 Write LMS 10% 7.4% 90% -30%..25%

Robiolo SiFP = 3.01 Read + 5.99 Write LMS 27.1% 29.5% 47% -44%..94%

Liu UFP = 4.89 Exit OLS 23.7% 13.2% 67% -37%..88%

Liu UFP = 4.77 Read OLS 23.6% 17% 60% -52%..65%

Liu UFP = 5.75 Write OLS 20.4% 16.7% 80% -26%..75%

Liu UFP = 3.17 Entry + 1.79 Read LMS 18.3% 14.1% 60% -26%..42%

Liu CFP = 3.66 Exit OLS 8.9% 4.9% 87% -27%..28%

Liu CFP = 4.04 Read OLS 16.8% 15.4% 67% -32%..32%

Liu CFP = 4.36 Write OLS 17.4% 13.8% 73% -49%..31%

Liu CFP = 2.37 Entry + 1.52 Read LMS 4.5% 1.4% 100% -14%..18%

Liu SiFP = 5.68 Exit OLS 22.7% 16.8% 67% -36%..80%

Liu SiFP = 5.57 Read OLS 24.2% 23.9% 60% -48%..59%

Liu SiFP = 6.69 Write OLS 20% 15.6% 73% -29%..69%

Ferrucci UFP = 0.62 Read + 4.34 Write OLS 19.7% 13.9% 68% -59%..15%

Ferrucci UFP = 4.36 Write + 1.94 Exit OLS 20.8% 12.7% 64% -86%..40%

Ferrucci CFP = 4.83 Entry OLS 15.4% 13.8% 88% -53%..24%

Ferrucci CFP = 1.84 Read OLS 9% 5.1% 88% -21%..50%

Ferrucci CFP = 5.42 Exit OLS 16.5% 10.2% 80% -51%..57%

Ferrucci CFP = 3.99 Entry + 3.19 Write OLS 11.8% 6% 88% -61%..21%

Ferrucci CFP = 1.62 Read + 2.74 Write OLS 8% 6% 96% -19%..32%

Ferrucci CFP = 1.41 Write + 4.96 Exit OLS 15.1% 10.1% 84% -55%..59%

Ferrucci SiFP = 1.7 Entry + 8.44 Write OLS 23.1% 14% 56% -89%..42%

Ferrucci SiFP = 0.67 Read + 7.1 Write OLS 20% 9.9% 64% -63%..26%

Ferrucci SiFP = 6.47 Write + 2.35 Exit OLS 21.4% 12.6% 60% -86%..57%
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Table 17: Best CFP models based on unweighted FPA BFC’s.

Dataset Model regr. MMRE MdMRE Pred(25) Error range

Robiolo CFP = 7 #ILF + 2 #EI - 0.2 #EQ + 0.3 #EO LMS 17.2% 10.2% 63% -35%..43%

Liu CFP = 5.5 #EI + 8.3 #EQ LMS 12.4% 10% 87% -41%..23%

van Heeringen CFP = 13 #ILF + 7 #EO + 4 #EQ LMS 14.4% 9.7% 76% -44%..32%

Ferrucci CFP = 13.56 #EI + 6.35 #EQ LMS 28.3% 24.7% 56% -65%..129%

Table 18: A selection of IFPUG FP models based on unweighted FPA BFC’s.

Dataset Model regr. MMRE MdMRE Pred(25) Error range

Robiolo UFP = 13.54 #ILF + 12.89 #EO LMS 23.3% 18.7% 58% -49%..55%

Robiolo UFP = 5.80 #ILF + 4.20 #EI + 7.53 #EQ LMS 11.6% 7% 84% -44%..29%

Robiolo UFP = 12.37 #ILF+ 8.32 #EO + 4.68 #EQ LMS 15.8% 11.3% 79% -48%..37%

Liu UFP = 13.76 #ILF + 6.20 #EO LMS 11.4% 10.7% 100% -23%..24%

van Heeringen UFP = 10.43 #ILF + 7.93 #EO LMS 16% 12.1% 76% -55%..8%

van Heeringen UFP = 12.12 #ILF + 6.51 #EO + 7.52 #EQ LMS 13.1% 11.2% 84% -55%..14%

van Heeringen UFP = 10.01 #ILF + 5.99 #EIF + 7.86 #EO LMS 14.1% 7.3% 76% -52%..34%

Ferrucci UFP = 21.20 #ILF + 5.42 #EIF + 11.16 #EO LMS 14.1% 9.3% 80% -47%..35%

Ferrucci UFP = 16.5 #ILF + 5.48 #EIF + 6.92 #EQ LMS 13.4% 10.5% 76% -40%..41%

Ferrucci UFP = 12.06 #ILF + 8.27 #EO + 4.48 #EQ LMS 10.07% 6.5% 84% -34%..41%

Ferrucci UFP = 8.23 #EIF + 5.87 #EI + 7.80 #EO LMS 11.8% 5.7% 84% -33%..37%

Ferrucci UFP = 7.83 #EIF + 8.54 #EI + 3.15 #EQ LMS 11.6% 5.9% 76% -42%..37%

Ferrucci UFP = 6.90 #EI + 6.69 #EO + 2.44 #EQ LMS 10.9% 5.2% 88% -27%..35%
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Table 19: Models correlating functional size measures and unspecified generic data and pro-

cesses.

Dataset Model regr. MMRE MdMRE Pred(25) Error range

Desharnais UFP = 24.79 UGDG OLS 22.1% 15.5% 64% -33%..76%

Desharnais UFP = 6.57 UGEP OLS 10.5% 3.6% 79% -36%..37%

Desharnais CFP = 6.74 UGEP OLS 18.3% 13.3% 71% -36%..53%

Desharnais SiFP = 25.03 UGDG OLS 21% 13.4% 79% -37%..88%

Desharnais SiFP = 6.47 UGEP OLS 8.3% 6% 93% -33%..16%

Abualkishik UFP = 5.29 UGEP OLS 20.1% 19.9% 58% -62%..32%

Abualkishik SiFP = 6.31 UGEP OLS 11.8% 10.8% 92% -28%..14%

Robiolo UFP = 14.00 UGDG LMS 18.4% 12% 68% -53%..40%

Robiolo UFP = 6.63 UGEP LMS 16.8% 12.4% 68% -34%..43%

Robiolo CFP = 10.2 UGDG LMS 28% 22.2% 68% -50%..133%

Robiolo SiFP = 15.62 UGDG LMS 20.1% 17.6% 74% -57%..35%

Robiolo SiFP = 8.33 UGEP LMS 16.3% 14.2% 79% -28%..46%

Liu UFP = 6.35 UGEP OLS 17.7% 14.1% 67% -37%..30%

Liu UFP = 3.53 UGEP + 6.70 UGDG LMS 3% 2.5% 100% -7%..6%

Liu CFP = 5.25 UGEP OLS 18.1% 14.4% 67% -35%..39%

Liu SiFP = 7.46 UGEP OLS 14.4% 10.8% 73% -30%..26%

Van Heeringen UFP = 5.97 UGEP LMS 15.9% 12.3% 68% -47%..39%

Van Heeringen CFP = 7.62 UGEP LMS 23.4% 19.2% 64% -24%..69%

Van Heeringen SiFP = 6.63 UGEP LMS 14% 9.2% 84% -46%..24%

Cuadrado-Gallego UFP = 5.30 UGDG + 4.31 UGEP LMS 8% 7.3% 100% -23%..19%

Cuadrado-Gallego CFP = 1.55 UGDG + 3.14 UGEP LMS 19.3% 16.5% 61% -64%..42%

Cuadrado-Gallego SiFP = 26.87 UGDG OLS 24.9% 19.5% 73% -62%..100%

Cuadrado-Gallego SiFP = 6.08 UGEP OLS 8.4% 6% 94% -37%..19%

Ferrucci UFP = 4.58 UGEP OLS 11.2% 9.8% 92% -29%..26%

Ferrucci UFP = 3.33 UGDG + 4.23 UGEP OLS 6.3% 4.4% 100% -12%..22%

Ferrucci CFP = 15.73 UGDG + 6.52 UGEP OLS 40% 17% 56% -19%..172%

Ferrucci SiFP = 5.22 UGEP OLS 11% 8.7% 84% -12%..22%

Table 20: Models correlating functional size measures and FPA’s FTR.

Dataset Model regr. MMRE MdMRE Pred(25) Error range

Desharnais CFP = 2.92 FTR OLS 6.9% 4.1% 100% -20%..19%

Desharnais SiFP = 3.19 FTR OLS 24% 18.3% 64% -48%..75%

Abualkishik UFP = 2.83 FTR OLS 23.2% 22.2% 50% -54%..40%

Abualkishik CFP = 3.38 FTR LMS 13.2% 8.4% 75% -35%..33%

Abualkishik SiFP = 3.35 FTR OLS 20% 18.2% 58% -36%..39%

Cuadrado-Gallego UFP = 2.73 FTR LMS 24% 22.4% 58% -49%..86%

Cuadrado-Gallego CFP = 2.46 FTR LMS 22.2% 14.5% 70% -25%..75%
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Table 21: Convertibility models found by previous studies.

Study conversion model n R2

Vogelezang and Lesterhuis 2003 [45] CFP = 1.2 NFP - 87 11 0.99

Abran [46] CFP = 0.84 UFP + 18 6 0.91

Desharnais [24] CFP = 0.99 UFP - 3.2 14 0.93

Van Heeringen 2007 [28] CFP = 1.22 NFP - 64 26 0.97

Cuadrado-Gallego et al. jjcg06, 2008 [47] CFP = 0.83 UFP -36.61 21 0.7

Cuadrado-Gallego et al. jjcg07, 2008 [47] CFP = 0.85 UFP + 0.19 14 0.86

Cuadrado-Gallego et al. jjcg0607, 2010 [36] CFP = 0.68 UFP + 13.03 35 0.85

Ferrucci et al. [48] CFP = 1.01 UFP + 207 25 0.70

NFP indicates NESMA Function Points.
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