
A

Fixing Faults in C and Java Source Code: Abbreviated vs. Full-word
Identifier Names

GIUSEPPE SCANNIELLO, University of Basilicata
MICHELE RISI, University of Salerno
PORFIRIO TRAMONTANA, University of Naples “Federico II”
SIMONE ROMANO, University of Basilicata

We carried out a family of controlled experiments to investigate whether the use of abbreviated identi-
fier names, with respect to full-word identifier names, affects fault fixing in C and Java source code. This
family consists of an original (or baseline) controlled experiment and three replications. We involved 100
participants with different backgrounds and experiences in total. Overall results suggested that there is
no difference in terms of effort, effectiveness, and efficiency to fix faults, when source code contains either
only abbreviated or only full-word identifier names. We also conducted a qualitative study to understand
the values, beliefs, and assumptions that inform and shape fault fixing when identifier names are either
abbreviated or full-word. We involved in this qualitative study six professional developers with one to three
years of work experience. A number of insights emerged from this qualitative study and can be considered
a useful complement to the quantitative results from our family of experiments. One of the most interesting
insight is that developers, when working on source code with abbreviated identifier names, adopt a more
methodical approach to identify and fix faults by extending their focus point and only in a few cases they
expand abbreviated identifiers.

Categories and Subject Descriptors: D.2.0 [Software Engineering]: General; D.2.7 [Software Engineer-
ing]: Maintenance

Additional Key Words and Phrases: Controlled Experiments, Family of Experiments, Maintenance, Replica-
tions, Software Testing, Source Code Comprehension

ACM Reference Format:
ACM Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 43 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Developers should be provided with source code and software documentation to deal
with software maintenance, testing, quality assurance, reuse, and software integration
activities [Canfora and Di Penta 2007]. A key aspect of all these activities is software
comprehension. In this respect, it has been observed that developers believe inade-
quate available documentation and tool support (e.g., [LaToza et al. 2006; Robillard
et al. 2004]). This implies that developers very often only focus on the source code of the
software under study [Roehm et al. 2012]. It could also happen that developers do not
have software documentation and have at their disposal only source code statements
and comments [Lawrie et al. 2006; Lawrie et al. 2007]. Therefore, developers have
three main source of information to perform software comprehension tasks: source
code statements, comments, and the syntactical structure of source code [Lawrie et al.
2006; Lawrie et al. 2007]. Also, source code layout could affect its comprehensibil-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

carmine gravino
Copyright © held by the Association for Computing Machinery, Inc. (ACM).
Authors version
The publisher version is available at https://doi.org/10.1145/3104029

A:2 G. Scanniello et al.

ity [Siegmund 2016]. When source code is uncommented or comments are not up-to-
date developers might take advantage from source code statements, such as identifier
names (or also simply identifiers, from here on), keywords, operators, and literals, and
clearly the syntactical structure and the layout of source code.

As for identifiers, we can distinguish three different ways to write their names: sin-
gle letters, full-word, and abbreviated. Single letter identifiers are composed by a sin-
gle char, while full-word ones are composed by full words concatenated according to a
given naming convention (e.g., camelCase). Abbreviated identifiers are full-word vari-
ants, where compounding words are shortened by using a given method. For example,
the word abbreviation could be abbreviated as abbr, abbrv or abb. An abbreviation
might be also made by omitting certain characters and bringing together the first and
last ones (e.g., dr is a contraction of the word doctor, while prt is a contraction for the
word print). Acronyms (e.g., URL) and in some cases single letter identifiers (e.g., i as
iteration) can be considered a variant of abbreviated identifier names.

Although there are a number of approaches and empirical studies on source code
identifiers (e.g., [Arnaoudova et al. 2014; Enslen et al. 2009; Gupta et al. 2013]), only
a few evaluations in the context of program comprehension have been conducted so
far [Binkley et al. 2013; Lawrie et al. 2006; Lawrie et al. 2007]. This lack is even more
evident in software testing, where the effect of identifiers on fault identification and
fixing has been marginally investigated (e.g., [Scanniello and Risi 2013]).

In this article, we present the results of a family of four controlled experiments car-
ried out to investigate whether the fixing of faults in source code is affected if that
code contains either abbreviated or full-word identifier names. We focused on three
constructs concerned with fault fixing: effort,1 effectiveness,2 and efficiency.3 The orig-
inal experiment (or baseline) was conducted with 49 Bachelor students in Computer
Science at the University of Basilicata [Scanniello and Risi 2013]. We will refer to this
experiment as UniBas, from here on. To further investigate on the results obtained in
UniBas, we carried out three replications whose participants had different background
and experience. These replications were conducted with Computer Science Master’s
degree students from the University of Naples (UniNa, from here on), and Software
Engineering Master’s degree students from the University of Naples (PoliNa). Grad-
uate students took part in the fourth experiment (Prof). They were novice employees
of different software companies enrolled in a professionalization program. In UniBas
and UniNa, we used the same source code written in the C programming language. In
the latter two replications, we asked participants to fix faults in source code written in
Java. We introduced this variation to increase our confidence in the results attained in
the original experiment first and then in the replication UniNa. To interpret quanti-
tative results, a qualitative study was conducted with six professional developers with
one to three years work experience. In this further study, we sought to understand the
values, beliefs, and assumptions of developers asked to fix faults in source code with
either abbreviated or full-word identifiers. Given this motivation, our methodological
approach could be characterized as ethnographic.

This article is organized as follows. In Section 2, we discuss motivations, background,
and related work. We present the design of our family of experiments and obtained
results in Section 3 and Section 4, respectively. In Section 5, we show the design of
our qualitative study, while its outcomes in Section 6. We discuss overall results in
Section 7. This article concludes with our final remarks.

1It is the time to fix faults in source code.
2It is the correctness and completeness to perform fault fixing tasks.
3It is the ability to effectively fix faults in source code without wasting time.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:3

2. MOTIVATION AND BACKGROUND
2.1. Motivation
Software engineering is not the first discipline that studies the effects of using dif-
ferent ways for representing information on human performance [Aranda et al. 2007;
Scanniello et al. 2015]. Therefore, we should bring the insights of other research ar-
eas to our evaluations. A branch of the cognitive science that treats humans and the
artifacts they use to solve problems as a single cognitive entity is known as exter-
nal cognition. According to Scaife and Rogers [1996], there are several ways to rep-
resent information that lets us improve reasoning, namely computational offloading,
re-representation, and graphical constraining. For example, re-representation refers to
how different representations with the same abstract structure make problem-solving
either easier or more difficult. Zhang and Norman [1994] designed a study so that
in certain conditions participants had to internalize several rules to carry out a task,
while in others the same rules were embedded. For example, in case of multiplication
tasks using roman or arabic numerals (both represent the same formal structure), the
authors observed that the former is much harder for people used to working with dec-
imal system. In general, authors observed that the fewer rules participants had to
internalize, the easier the execution of a problem-solving task was. Although Zhang
and Norman [1994] did not investigate the processes involved in dealing with program
comprehension and fault fixing in source code, we can imagine that if people are accus-
tomed to work with abbreviations then the difference in their performance (e.g., effort)
should not be so high when identifiers are in full-word and abbreviated forms.

In computer programming the use of abbreviations is not new (e.g., the abbrevi-
ation tmp stands for temporary and is often used to indicate a temporary variable,
while i stands for iterator and very often developers used it to indicate an iteration
counter). Today the use of abbreviations is widely used in social media slang as well.
In general, slang consists of a lexicon of non-standard words and phrases in a given
language [Bethany K. Dumas 1978]. The use of these words and phrases is typically
associated with a subversion of a standard language (e.g., English). Social media slang
is a kind of slang that has become more prevalent since the early 2000s. Its diffu-
sion is the result of the rise in popularity of social media (e.g., Facebook and Twitter),
where a character limit for each message requires a more condensed manner of com-
munication (e.g., 4ward and YOLO). If people daily work with abbreviated identifiers
and more and more use social media terms to communicate, we can imagine that they
become more comfortable to deal with source code that includes identifiers in abbre-
viated form. To confirm or contradict this assumption empirical studies are needed.
Our investigation goes in this direction in the sense that we are mainly interested
to quantitatively and qualitatively study if the presence of abbreviated identifiers in
source code has an effect on fixing the faults it might contain. Qualitative studies can
be considered a necessary complement to quantitative investigations [Seaman 1999]
since they are essential for gaining an understanding of the reasons and motivations
behind the problem under study (e.g., fault fixing when identifier names are either ab-
breviated or full-word). Our investigation (i.e., both the family of experiments and the
qualitative study) is also explorative because it can be considered as a pre-study to a
more thorough investigation on social media slang and abbreviated identifiers.

2.2. Replications in Software Engineering
The software engineering community has been embracing replications more read-
ily (e.g., [Shull et al. 2008; da Silva et al. 2014; Kitchenham 2008; Carver et al. 2014]).
In general, we can define a replication as the repetition of an experiment [Basili et al.
1999]. There are two factors that underlie the definition of a replication: the procedure

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 G. Scanniello et al.

(i.e., the steps to be followed) and the researchers (i.e., who conducted the replication).
As for the procedure, the kinds of replications range in between conceptual and close. A
replication is conceptual if the research questions are the same, but the experimental
procedure is different from that of a baseline experiment. On the other hand, a repli-
cation is close if its procedure is the same as that of original experiment [Shull et al.
2008]. As for the researchers factor, researchers distinguish between internal and ex-
ternal. An internal replication was conducted by the same group of researchers as the
baseline experiment [Mendonça et al. 2008], while an external replication is performed
by different experimenters to avoid as much as possible experimenters’ biases [Shull
et al. 2008; Juristo and Moreno 2001; Fucci et al. 2016]. More recently, Gómez et al.
[2014] proposed a different classification for the types of replications based on the di-
mensions of experimental configuration that changes from a baseline experiment to
a replication: protocol, operationalizations, populations, and experimenters. Based on
changes to these four dimensions, the authors established three types of replications:
Literal, where the aim is to run as exact a replication of the baseline experiment as
possible; Operational, where the aim is to vary some (or all) of the dimensions of the
baseline experiment configuration; and Conceptual, where experimenters have “noth-
ing more than a clear statement of the empirical fact” [Lykken 1968].

Independently from the classification for types of replications, there are two primary
motivations to perform replicate experiments in software engineering: (i) they are nec-
essary to solve problems and to collect evidences because they bring credibility to a
given research and (ii) they are valuable because they provide evidence on the benefits
of a software engineering practice thus allowing industrial stakeholders to use this
information to support adoption decisions [Gómez et al. 2014; Baldassarre et al. 2014;
Colosimo et al. 2009; Pfleeger and Menezes 2000]. Whatever the kind of replication is,
a family of controlled experiments contribute to the conception of important and rele-
vant hypotheses that may not be suggested by an individual experiment and/or single
replications [Basili et al. 1999].

2.3. Dealing with Identifier Names
Source code comprehensibility and modifiability have been largely investi-
gated [Roehm et al. 2012; Scanniello et al. 2014; Scanniello et al. 2015; Gravino et al.
2012; Woodfield et al. 1981]. Researchers studied the developer behavior during the
execution of maintenance tasks [LaToza et al. 2006; DeLine et al. 2005]. For example,
LaToza et al. [2006] conducted a qualitative study on developers focusing on their work
habits: development, maintenance, and communication. Surveys and interviews were
used to gather information from the participants in the study. As far as maintenance
is concerned, the authors observed that developers remained focused on the code itself
despite the availability of design documents, so concluding that documentation is inad-
equate for maintenance tasks. DeLine et al. [2005] conducted an observational study
on few professionals who updated an unfamiliar implementation of a video game. Sim-
ilar to LaToza et al. [2006], developers considered inadequate the documentation for
maintenance and evolution tasks. The studies before and that presented by Singer
et al. [1997] obtained a common result: developers prefer source code while dealing
with program comprehension and maintenance tasks. This is why we focused our in-
vestigation on the use of source code. Summarizing, developers considered inadequate
design and source documentation and tools when comprehending and evolving unfa-
miliar source code (e.g., [LaToza et al. 2006; Robillard et al. 2004]). Therefore, the most
appropriate strategy seems to deal only with source code (e.g., [Roehm et al. 2012]).

Although source code seems the most important source of information for develop-
ers, researchers have marginally investigated the effect of kind and style of identifier
names on source code comprehensibility and modifiability [Lawrie et al. 2006; Binkley

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:5

et al. 2013]. For example, Binkley et al. [2013] presented a family of studies to investi-
gate the impact of two identifier styles (i.e., camel case and underscore) on comprehen-
sion participants achieved on source code. These studies involved 150 participants with
varied demographics from two universities and considered both time and accuracy of
comprehension. Results suggested that experienced software developers appeared to
be less affected by identifier style, while beginners benefited from the use of camel cas-
ing with respect to task completion time and accuracy. Differently, Lawrie et al. [2007]
conducted a quantitative study with 100 programmers to investigate whether source
code comprehension is affected by how identifier names are written. In particular, the
authors considered identifiers of 12 functions (i.e., algorithms studied in computer sci-
ence courses and functions extracted from production code) written as: single letters,
abbreviations, and full-words. The comprehension achieved by participants on these
functions was assessed through questionnaires. Results showed that full-word identi-
fiers lead to the best comprehension with respect to abbreviated identifiers, even if this
difference is not significant. There are several difference between this study and our
family of experiments. In particular, we focus on fault fixing, participants were asked
to fix faults in source code, and finally fault fixing was performed on Java and C soft-
ware downloaded from the web. We also conducted a qualitative study as a complement
to this family of experiment. This further study allowed us to better understand the
values, beliefs, and assumptions that inform and shape fault fixing. We can state that
our family of experiments fills a gap in the studies discussed just before (i.e., [Lawrie
et al. 2006; Lawrie et al. 2007]) because we have investigated the role of full-word and
abbreviated identifiers on fault fixing tasks.

2.4. Qualitative Studies in Software Evolution and Ethnography
Qualitative studies appear to be still unusual in the software engineering field even if
they are considered a necessary complement to quantitive studies [Seaman 1999]. For
example, Roehm et al. [2012] carried out a qualitative study in the field of program
comprehension. One of the goals of this study was to understand how developers prac-
tice program comprehension and which methods and tools proposed by researchers
are used in the software industry. Roehm et al. [2012] found that developers put them-
selves in the role of end-users whenever possible. The authors observed developers
inspecting the behavior visible in user interfaces and comparing it to the expected be-
havior. This strategy aims at understanding program behavior and getting first hints
for further program exploration. Source code is considered the only source of informa-
tion to perform comprehension tasks. In addition, results show a gap between program
comprehension research and practice as the authors did not observe any use of state of
the art comprehension tools and developers seem to be unaware of them. On the other
hand, Robillard et al. [2004] conducted a qualitative (exploratory) study in the context
of software maintenance and evolution. The authors studied five developers in a lab
setting, while they have been updating unfamiliar source code. The developers were
asked to implement a change request. The results supported the intuitive notion that
a methodical and structured approach is the most effective.

Ethnography is a qualitative research method to study people and cultures. It is
largely adopted in disciplines outside software engineering and in different areas
of computer science [Hammersley and Atkinson 2007; Crabtree et al. 2009; Shapiro
1994]. Despite its potential, little ethnographic research exists in the field of software
engineering [Sharp et al. 2016]. In this context, ethnography could be very useful to
provide an in-depth understanding of the socio-technological realities surrounding ev-
eryday software development practice [Sharp et al. 2016]. Ethnography could also help
to uncover not only what software engineers (e.g., novice and senior) do, but also why
they do it. In fact, ethnographic studies are better suited to ask questions such as

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 G. Scanniello et al.

how, why and what are the characteristics of [Robinson et al. 2007]. The researcher
attends to the taken-for-granted, accepted, and un-remarked aspects of practice, con-
sidering all activities as “strange” so as to prevent the researchers’ own backgrounds
affecting their observations [Sharp et al. 2000]. To this end, the researcher immerses
himself/herself in the environment where participants work and participates to the
study, while collecting data by means of contemporaneous field notes, audio recordings,
and copies of various artifacts. Ethnographic studies should take place on a long-term.
In some fields of research, such as software engineering, this practice is not always
possible (e.g., because of time constraints). In these cases, it is common to adapt ethno-
graphic methods to a shorter timeframe [Robinson et al. 2007] and on a small number
of participants [Sharp and Robinson 2004].

In the context of software maintenance and evolution field, Salviulo and Scanniello
[2014] conducted an ethnographically-informed study with students and profession-
als. The goal of this study was to understand the role of comments and identifiers
in source code comprehensibility and maintainability. Authors observed the following
outcomes: (i) professional developers (as compared with students) prefer to deal with
source code and identifiers rather than comments and (ii) the participants (profession-
als and students) believed essential the use of naming convention techniques when
writing identifiers. There are differences and similarity between that study and the
ethnographically-informed study presented in this article. The most important differ-
ence is that we focus here on fault fixing (on code contains either abbreviated or full-
word identifier names) that is a very specific kind of task in the context of software
maintenance and evolution. Prior to fixing a fault, developers must inevitably investi-
gate the source code of the target application. This aspect can be considered similar in
both these studies although the differences in the experimental objects, e.g., the used
code contained either abbreviated or full-word identifier names in the investigation
presented in this article. In this respect, Salviulo and Scanniello [2014] observed that
participants believed that the names of identifiers were important and that develop-
ers should properly choose them. From our quantitive results, we observed that how
identifier names are written is not a major issue to fix faults in source code. In some
sense, these results and those shown in Salviulo and Scanniello [2014] show a sort
of discrepancy between what the developers claimed to do and what they actually did
when dealing with source code. Ethnography is a viable empirical method to detect and
explain such a kind of discrepancies [Sharp et al. 2000] and this is why we decided to
conduct a such kind of study to better analyze and explain the results from our family
of experiments.

Singer et al. [1997] studied how software engineers maintain a large telecommuni-
cations system. They focussed on developer’s habits and tool usage during software
development. This study was hosted in a single company. Also Singer et al. [1997] dis-
covered a discrepancy between what developers claimed to do when performing main-
tenance operations and what they actually did. For example, despite the developers
stated that “reading documentation” was what they did, the study showed that search-
ing and looking at source code was much more common than looking at documentation.
Again, one of the value of ethnographic research is that it might help in highlighting
and explaining such a kind of discrepancies to make clearer un-remarked aspects of
practice [Sharp et al. 2000].

Beynon-Davies [1997] conducted an ethnography study and observed that ethno-
graphic research may be useful for capturing knowledge about intangible or unquan-
tifiable aspects of the software life cycle. In particular, these author noted that for re-
searchers in the software engineering field, ethnographic research may provide value
in the area of software development, specifically in the process of capturing tacit
knowledge during the software development. Later, Beynon-Davies et al. [1999] used

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:7

1st Experiment
UniBas

49 Bachelor students

Computer science

2nd Experiment
UniNa

19 Master students
Computer Science

4th Experiment
Prof

16 Practitioners

3rd Experiment
PoliNa

16 Master students

Software Engineering

March 2013

January 2014

July 2013

December 2013

Agenda,
Financial,

GAS-Station,
and Hotel-

Reservation

AveCalc
and

LaTazza

Experimental
Objects

Fig. 1. Summary of the family of experiments.

ethnography on rapid application development to uncover the negotiated order of work
in a software project and the role of collective memory in software development.

Sharp and Robinson [2004] reported a study on eXtreme Programming. This study
was carried out in a small company that mostly based its business on the development
of web-based intelligent advertisements. The main result the authors observed was
that the XP developers were clearly “agile.” In particular, Sharp and Robinson [2004]
observed that this agility seemed intimately related to the relaxed, competent atmo-
sphere that pervaded the developers working in groups. Later, Romano et al. [2017]
conducted an ethnographically-informed study in the context of TDD (Test Driven De-
velopment). TDD is an iterative software development technique where unit tests are
defined before production code. Developers repeat short cycles consisting of: (i) writing
a unit test for an unimplemented functionality or behavior; (ii) supplying the minimal
amount of production code to make unit tests pass; (iii) applying refactoring where
necessary, and checking that all tests are still passed after refactoring [Beck 2003]. In
this study, the authors involved 14 novice software developers (i.e., graduate students
in Computer Science) and six professional software developers (with one to 10 years
work experience). Romano et al. [2017] concluded that developers (novice and profes-
sional) write quick-and-dirty production code to pass the tests and ignore refactoring.

3. THE FAMILY OF EXPERIMENTS
We conducted of a family of controlled experiments composed of: the baseline exper-
iment, an internal closed replication, and two external replications that are also dif-
ferentiated because different participants and experimental objects were used [Basili
et al. 1999]. These replications are operational because we varied some dimensions
of experimental configuration [Gómez et al. 2014]. In PoliNa and Prof, we varied the
experimenter, the population, and the operationalizations, while only the population
in UniNa. This family is summarized in Figure 1. Rectangles represent experiments
and are grouped by the experimental objects used in. Agenda, Financial, GAS-Station,
and Hotel-Reservation are all implemented in C, while AveCalc and LaTazza in Java.
In Figure 1, we also summarize important aspect related to individual experiments:
their execution order (e.g., the first experiment), the kind of participant (e.g., Bachelor
students), the number of participants (e.g., 49), and the textual label associated to each
experiment (e.g., UniBas).

We carried out our experiments by following recommendations provided by Juristo
and Moreno [2001], Kitchenham et al. [2002], and Wohlin et al. [2012]. We reported
these experiments according to the guidelines suggested by Jedlitschka et al. [2008].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 G. Scanniello et al.

programming
language

kinds of
identifiers

effort

efficiency
cause effect

construct

variable
task

completion
time

task
effectiveness

task
efficiency

method
(abbreviated vs. full-word)

RQ1

RQ2

language
(C vs. Java)

effectiveness

Fig. 2. Conceptual model.

For replication purposes, our experimental material (e.g., source code of used applica-
tions) is available online.4

3.1. Goal
We defined the main goal of our family of experiments that, by applying the Goal
Question Metrics (GQM) template [Basili and Rombach 1988], can be formalized as
follows: Analyze the presence of either abbreviated or full-word identifiers in source
code (e.g., C and Java) for the purpose of evaluating their effect with respect to effort,
effectiveness, and efficiency to execute fault fixing tasks from the point of view of the
researcher and the practitioner in the context of novice developers and students in
Computer Science and Software Engineering unfamiliar with that code.

According to this goal, we have defined and investigated the following two main
research questions:

RQ1. Does the presence of either abbreviated or full-word identifiers in source code
penalize the effort to accomplish fault fixing tasks in that code and the effectiveness
and efficiency to accomplish this kind of task?
RQ2. Does programming language (i.e., C and Java) affect the effort, effectiveness,
and efficiency to execute fault fixing tasks?

When dealing with existing source code, a developer searches for relevant pieces of
code (manually and using search tools) by following incoming and outgoing dependen-
cies of relevant code and collects code and other information [Ko et al. 2006]. This could
make indistinguishable program comprehension tasks and the identification and the
fixing of faults in source code. This is why we simply refer to all these tasks together
as either fault fixing or fault fixing task.

4www2.unibas.it/gscanniello/Identifiers/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www2.unibas.it/gscanniello/Identifiers/

A:9

We show the conceptual model of our family of experiments in Figure 2. We built it
on the basis of the formalization of our family of experiments, our own experience, and
an analysis of the literature about source code comprehension and approaches to write
identifier names [Lawrie et al. 2006; Lawrie et al. 2007; Salviulo and Scanniello 2014;
Binkley et al. 2013]. The relationship between our conceptual model and both RQ1 and
RQ2 is also shown. For example, the bottom part (right hand side) of this figure shows
the metrics we exploited to measure the constructs: effort, effectiveness, and efficiency
in fixing faults in source code. We studied the same relation between cause and effect
for both RQ1 and RQ2.

We also defined and investigated two additional research questions. We consider
these questions secondary because they are not directly related to the main goal of our
study. This is why we do not include them in the conceptual model in Figure 2. These
further research questions are:

RQ3. Can developers correctly and completely expand abbreviated identifiers?
RQ4. Do developers perceive fault fixing on source code containing abbreviated
identifiers as more difficult/simple than fault fixing on source code containing full-
word identifiers?

We investigated RQ3 to understand the possible difficulties developers have in as-
sociating the right meaning to the abbreviated compounding words of identifiers. We
investigated RQ4 to understand if developers perceive abbreviated identifiers in source
code harmful (or not) when they have to fix faults in that code. The presence of abbre-
viated identifiers is common in source code and this trend has been becoming even
more evident in the recent years [Arnaoudova et al. 2014].

3.2. Context Selection
The applications/programs considered in our family of experiments are summarized
in Table I. In this table, we also report some descriptive statistics on these programs:
LOC, number of files or classes (#files/#classes), and percentage of abbreviated identi-
fiers. As for LOC, we considered source code without comments. Reported source code
metrics have been gathered by the Understand tool.5 The percentage of abbreviated
identifiers is computed with respect to the number of full-word identifiers in the orig-
inal versions of the applications. The number of abbreviated identifiers was manually
counted. The percentage of abbreviated identifiers in the applications seems to con-
firm our assumption that the use of identifier names in abbreviated form is common
in software development.

The source code of the Java and C applications contained both abbreviated (e.g.,
mobNum in Agenda) and full-word identifiers (e.g., filePointer in GAS-Station).
Acronyms were also present (e.g., CFU indicated CreditFormativeUnit). One of the au-
thors (the second) had to create two versions for each application. One version con-
tained only abbreviated identifiers, while the other only full-word identifiers. The au-
thor expanded compounding words of each identifier using the Babel6 dictionary. Full-
word and abbreviated identifiers were both in English. Source code comments were
omitted from each created version. The presence of comments could be an extraneous
factor and could affect participants’ results in an undesirable way (e.g., the effort to fix
faults). The source code layout was similar in C and Java programs (e.g., statements
were semantically grouped).

We downloaded from the web the C applications used in our baseline experiment and
in UniNa. Similarly, the Java applications used in PoliNa and Prof were distributed

5https://scitools.com
6www.cs.tut.fi/tlt/stuff/misc/babel.html

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

https://scitools.com
http://www.cs.tut.fi/tlt/stuff/misc/babel.html

A:10 G. Scanniello et al.

Table I. The Experimental Objects used in the Family of Experiments

Experiments Name Description LOC #files/
#classes

% Abbr.
Identifiers

UniBas & UniNa Agenda It keeps track of personal contacts. In particular, it allows the user
to add new contacts by specifying their name, last name, telephone
number, mobile number, birthday, and email address. Existing contacts
can be searched by specifying one of the fields above. All the contacts
can be also sequentially browsed. The user can load a file containing
contacts. This enables the user to manage different contact lists sep-
arately. http://www.planet-source-code.com/vb/scripts/ShowCode.asp?
txtCodeId=2299&lngWId=3

609 4/- 29.5%

GAS-Station It manages the main feature of a GAS station. The application takes
as input the daily price of: Petrol-Oil, Diesel, and Compressed Natural
GAS. GAS-Station is able to manage receipts and bills regarding the re-
fueling of Petrol-Oil, Diesel, and Compressed Natural GAS. The bills are
stored on the hard-disk to be successively searched, modified, and browsed
by the user. http://www.planet-source-code.com/vb/scripts/ShowCode.
asp?txtCodeId=11639&lngWId=3

649 1/- 37.2%

Financial It is a command line option price calculator. It uses Black-Scholes that is
a mathematical description of financial markets and derivative investment
instruments. The model develops partial differential equations whose solu-
tion (i.e., the Black-Scholes formula) is widely employed to price European
puts and calls on non-dividend paying stocks. http://www.paulgriffiths.
net/program/c/finance.php

202 3/- 37.8%

Hotel-Reservation It manages room reservations for Hotels. To reserve a room the ap-
plication asks for the fiscal code number of the client and dates for
both the check-in and check-out. The user can modify and delete
reservations as well. The status of all the rooms in the hotel can
be also shown in Hotel-Reservation. http://www.vyomworld.com/source/
code.asp?id=01&l=C_Projects&t=HotelReservationSystem

458 1/- 50.0%

PoliNa & Prof AveCalc It is a desktop application written in Java that manages an electronic reg-
ister (record book) for Master’s students. A student can add a new exam to
the register, remove an existing exam and remove all exams. AveCalc com-
putes some statistics: average of the exams passed, total number of CFUs
(i.e., Credit Formative Units), number of exams passed, (hypothetical) de-
gree vote and whether the student has passed a number of exams sufficient
to defend his/her thesis.

1388 8/33 39.7%

LaTazza It is a desktop application for a hot drinks vending machine. LaTazza sup-
ports sale and supply of small-bags of beverages (Coffee, Tea, Lemon-tea,
etc.) from the Coffee-maker. This application supports two kinds of clients:
visitors or employees. Employees can purchase beverage paying by cash or
on credit, visitors only paying by cash. The secretary can: sell small-bags to
clients, buy boxes of beverages, manage credit and debt of employees, check
the inventory and check the cash account.

1215 18/18 72.2%

online and have been already employed in a number of empirical studies (e.g., [Ricca
et al. 2008]). We chose both the C and Java applications because their application
domains can be considered a good compromise of generality and industrial application.
We also selected the two Java applications so that they were not much different one
another. Similar considerations can be done on the C applications used in UniBas and
UniNa. This is advisable in software engineering experiments [Wohlin et al. 2012].

For each application, we injected the same faults in each variant (i.e., with only
abbreviated identifiers and with only full-word identifiers) by performing mutation
analysis [DeMillo et al. 1978]. All the versions of the applications used in our family of
experiments were syntactically correct.

Mutation analysis was originally introduced as a method to evaluate a test suite in
how good that suite is at detecting faults. The main idea behind this kind of analysis
is to seed artificial faults based on what is thought to be real errors commonly made
by programmers [Fraser and Zeller 2012]. This was the main reason why we used
mutation analysis to inject faults in the applications used in our family of experiments.

The injection process was based on the Kim’s mutation operators [Kim et al. 1999;
Kim et al. 2000]. These operators are specific to object-oriented languages and a few of
them can be also applied to imperative programming languages. In Table II, we show
the Kim’s operators (and their acronyms as defined by the author [Kim et al. 1999; Kim
et al. 2000]) and how many times we applied them to each application implemented
in C. A short description of these operators is also shown. In Table III, we show the
Kim’s operators, their description, and how many times they have been applied on the
Java applications. In Appendix A, we provide two examples of application of the Kim’s
operators used in the AveCalc and Hotel-Reservation applications.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=2299&lngWId=3
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=2299&lngWId=3
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=11639&lngWId=3
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=11639&lngWId=3
http://www.paulgriffiths.net/program/c/finance.php
http://www.paulgriffiths.net/program/c/finance.php
http://www.vyomworld.com/source/code.asp?id=01&l=C_Projects&t=Hotel\%20Reservation\%20System
http://www.vyomworld.com/source/code.asp?id=01&l=C_Projects&t=Hotel\%20Reservation\%20System

A:11

Table II. Injected faults in C programs
Operator Description Agenda GAS-Station Financial Hotel-Reservation
Literal Change Operator (LCO) It increases/decreases numeric values or swap

boolean literals.
2 1 - -

Language Operator Replacement (LOR) It replaces a language operator with other le-
gal alternatives.

1 1 1 -

Control Flow Disrupt operator (CFD) It disrupts normal control flow: add/remove
break, continue, and return statements.

1 1 - 1

Variable Replacement Operator (VRO) It replaces a variable name with other names
of the same type and of compatible types.

- 1 1 1

Total number of injected faults 4 4 2 2

Table III. Injected faults in Java programs
Operator Description AveCalc LaTazza
Language Operator Replacement (LOR) It replaces a language operator with other le-

gal alternatives.
- 1

Control Flow Disrupt operator (CFD) It disrupts normal control flow: add/remove
break, continue, and return statements.

1 1

Variable Replacement Operator (VRO) It replaces a variable name with other names
of the same type and of compatible types.

- 1

Relational Operator Replacement (ROR) It replaces relational operators with other le-
gal alternatives.

1 -

Assignment Operator Replacement (ASR) It replaces shortcut assignment operators. 2 1
Arithmetic Operator Insertion (AOI) It inserts shortcut arithmetic operators. 1 1
Conditional Operator Insertion (COI) It inserts unary conditional operators. - 1
Conditional Operator Replacement (COR) It replaces binary conditional operators with

other binary conditional operators.
1 -

Total number of injected faults 6 6

While choosing mutator operators, we made the assumption (i.e., competent pro-
grammer hypothesis [DeMillo et al. 1978]) that very often source code is very close
to its correct version, or that the difference between current and correct code for each
fault is very small [Gopinath et al. 2014]. When applying mutation operators, our main
objective was to create faults representative as real ones and avoid as much as possible
interactions among seeded faults. In addition, we tried to apply operators that seeded
faults that presumably had similar complexity to be fixed and that did not interact
with the main factor understudy. We performed an analysis post-hoc to verify these
assumptions. The obtained results are summarized in Appendix B.

We conducted the experiments in research laboratories under controlled conditions.
For each experiment, participants had the following characteristics:

UniBas. Participants were 2nd-year undergraduate students of a course on Algo-
rithms and Data Structures. The experiment was conducted as an optional exer-
cise in this course. Participants had passed all the exams related to the following
courses: Procedural Programming and Object Oriented Programming I. In these
courses, participants studied C/C++ and Java on university problems.
UniNa. Participants were 2nd-year graduate students of a Software Engineering
II course. The experiment was conducted as an optional laboratory exercise in this
course. During the Bachelor program in Computer Science at the University of
Naples, participants had passed all the exams related to the following courses:
Procedural Programming, Software Engineering I, Object-Oriented Programming
I and II, and Databases. Participants had a reasonable level of technical maturity
and knowledge of software design, development, and testing.
PoliNa. Participants were 2nd-year graduate students at the Polytechnic of Naples.
The experiment was conducted as an optional laboratory exercise of an Advanced
Software Engineering course. Students had passed all the exams related to the fol-
lowing courses: Procedural Programming, Software Engineering I, Object-Oriented
Programming I and II, and Databases. Participants had a reasonable level of tech-
nical maturity and knowledge on object-oriented software design, development, and
software testing. Students’ development experience level can be considered similar
to that of participants in UniNa.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 G. Scanniello et al.

Prof. Participants had all a Master’s degree. In particular, we had 10 Biomedical
Engineers, 4 Telecommunication Engineers, and 1 Electronic Engineer. There was
also one participant with a Master’s degree in Computer Science. All the partici-
pants had passed exams on the following courses held in a professionalization pro-
gram in the context of design of platforms for innovative services in the future Inter-
net: Object Oriented Programming, Mobile Applications Development, Testing and
Debugging Techniques. Participants in Prof also made an internship in industry.
The experiment was conducted at the end of this internship. We can consider devel-
opment experience of participants in Prof not inferior to that of graduate students,
but superior to participants in UniBas.

Participants in UniBas, UniNa, and PoliNa were informed that their grade on the
course in which the experiment was conducted would not be affected by their perfor-
mance in that experiment. For their participation in the study, we rewarded them with
a bonus in their final mark. Participants in Prof participated in this experiment as part
of their professionalization program. This choice was made to encourage participation.
In addition, we did not compel them to participate. We informed participants that data
collected during the experiment were only used for research purposes, treated confi-
dentially, and shared in aggregated form and anonymously.

3.3. Variable Selection
The bottom part of Figure 2 reports the metrics used to assess the effect of having full-
word or abbreviated identifiers on fault fixing. Participants who were given source code
without comments and with full-word identifiers as comprising control group, while
treatment group comprised participants who were given source code without comments
and with abbreviated identifiers. Thus, method is the main independent variable of our
study or also main factor or manipulated factor or main explanatory variable, from
here on. This variable is nominal and assumes values: ABBR (source code without
comments and with abbreviations) and FULL (source code without comments and with
full-word identifiers). For each application, the source code layout was the same in both
the variants (i.e., ABBR and FULL). We also investigate if the programming language
with which the experimental objects were implemented (i.e., language) might affect
fault fixing. Thus, language is a nominal variable and assumes C and Java as the
possible values.

To study RQ1 and RQ2, we considered the effort, the effectiveness, and the efficiency
to fix faults in source code. For each of these constructs, we used a measure. In the
following subsections, we describe these measures and their link with the constructs
(see Figure 2).

3.3.1. Effort and task completion time. To assess the effort construct we used task com-
pletion time. Considering the time as an approximation for effort is customary in liter-
ature and it is compliant with the ISO/IEC 9126 standard [International Organization
for Standardization 1991] definition: effort is the productive time associated with a
specific project task. Other aspects that may be related to effort, for example, the cog-
nitive effort of participants, were not measured. Task completion time indicates the
number of minutes to accomplish a fault fixing task and then it assumes only positive
integer values. Low values for task completion time mean that participants spent less
time (or less effort) to complete a fault fixing task.

3.3.2. Effectiveness and task effectiveness. We considered the number of faults success-
fully identified and removed from the source code. This construct takes into account
correctness and completeness of fault fixing tasks. We measured correctness and com-
pleteness by using an information retrieval-based approach [Salton and McGill 1983].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:13

In particular, we estimated correctness by the precision measure (P), while complete-
ness by recall (R). We used the following formulations for these two measures:

P =
#(faults correctly fixed)

#(faults fixed)
(1)

R =
#(faults correctly fixed)

#(faults present)
(2)

#(faults fixed) includes bugs that the participant both correctly and incorrectly fixed.
We could easily compute this value because we knew the source code without seeded
faults, the source code with injected faults, and the source code modified by partici-
pants at the end of each experimental trial. We determined if a fault was correctly or
incorrectly fixed in two stages. First, for each participant and fault, we inspected the
modified source code. If this modification produced the same source code as before ap-
plying mutation operator, we concluded that the fault was correctly fixed. Otherwise,
we applied test cases on the participant source code. If all test cases passed, we as-
sumed that the participant had correctly fixed the fault. On the original source code of
each application (before applying mutation operators), we defined from 3 to 5 test cases
(input and expected output). These test cases were used to perform a sort of regression
testing on the applications modified by the participants. The rationale behind this sec-
ond step was that there is not a single way to fix a bug. It is worth mentioning that
we provide no test case to the participants to perform fault fixing in the experimental
trials.

As for precision, it assumes value 1, if and only if all the faults a participant fixed
were correctly fixed. For example, if a participant fixes 2 faults (out of 4) in Agenda
and these two faults are correctly fixed then precision assumes 1 (#faults fixed = 2
and #faults correctly fixed = 2) as the value. On the other hand, if a participant fixes
4 faults in Agenda and among them only 2 are correctly fixed then precision assumes
0.5 (#faults fixed = 4 and #faults correctly fixed = 2) as the value. This measure as-
sumes 0 as the value, when the participant either did not fix any faults or no fault was
correctly fixed. Recall is 1 when all faults we injected were correctly fixed. For example,
if a participant fixes 4 faults (out of 4) in Agenda and all of them are correctly fixed then
recall assumes 1 (#faults correctly fixed = 4) as the value. In all the other cases, recall
assumes a value less than 1. In the case of the C programs, we used the following aggre-
gated formulations for precision and recall: P =

∑
i #(faults correctly fixed in applicationi)∑

i #(faults fixed in applicationi)

and R =
∑

i #(faults correctly fixed in applicationi)∑
i #(faults present in applicationi)

. Aggregated formulations for precision
and recall assume values in between 0 and 1 and can be interpreted as the P and R
shown in the Equations 1 and 2, respectively. These different formulations for P and
R were needed because participants in UniBas and UniNa were asked to fix faults in
two C applications in each experimental trial (see Section 3.5).

A single measure that trades-off precision versus recall is the F-measure [Manning
et al. 2009]. It is a weighted harmonic mean of precision and recall. In our case, we
opted for the default balanced F-measure (commonly written as F1). It equally weights
precision and recall:

F1 =
2 ∗ P ∗R
P +R

(3)

F1 assumes values in between 0 and 1 and measures task effectiveness. For this mea-
sure, a value equals to 1 means that a participant correctly and completely removed
all the faults. That is, the participant obtained 1 as the value for both precision and
recall. In all the other cases, F1 assumes a value less than 1.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 G. Scanniello et al.

3.3.3. Efficiency and task efficiency. We also considered the efficiency with which a fault
fixing task was accomplished. The efficiency construct is measured by means of the
variable task efficiency. It is a derived measure that is computed as the ratio between
task effectiveness and task completion time and estimates the efficiency of a partici-
pant in the execution of a fault fixing task. That is, this measure estimates the ability
to effectively fix faults in source code without wasting time:

task efficiency =
task effectiveness

task completion time
(4)

The larger the task efficiency value, the better it is. The perspective we adopted is that
of the quality in use (e.g., [ISO 2000; ISO 2011]): efficiency measures task effectiveness
achieved to expenditure of resources. For example, if a participant p1 obtains 1 for task
effectiveness and 25 minutes for task completion time, then task efficiency is equal to
0.04. On the other hand, if a participant p2 obtains 0.8 for task effectiveness and 30
minutes for task completion time, then task efficiency for this participant is equal to
0.0266. Comparing the task efficiency values for p1 and p2, we understand that p1 is
better because he/she has got a better trade-off between effectiveness and effort to
identify and fix faults.

3.4. Hypotheses Formulation
The following null hypotheses have been formulated and tested.

Hn0. The method (ABBR or FULL) does not affect the effort (task completion time)
to fix faults.
Hn1. The method does not affect the effectiveness (task effectiveness) when per-
forming fault fixing.
Hn2. The method does not affect the efficiency (task efficiency) when performing
fault fixing.
Hn3 X. There is no difference in fixing faults in the source code written either in
C or Java with respect to the dependent variable X (i.e., task completion time, task
effectiveness, and task efficiency).

Alternative hypotheses for Hn0 (¬Hn0), Hn1 (¬Hn1), and Hn2 (¬Hn2) admit a pos-
itive effect of ABBR or FULL. All these null hypotheses are two sided because we
could not postulate any effect of method on the dependent variables (or also response
variables, from here on). We defined them to investigate the research question RQ1,
while Hn3 (described as a single parameterized hypothesis) concerns the investigation
of RQ2.

3.5. Design of the Experiments
We used the experimental design summarized in Table IV. It ensured that each partic-
ipant works on different experiment objects in two laboratory trials/runs, using ABBR
or FULL each time. As for UniBas and UniNa, the experimental objects were A+F
(i.e., Agenda plus Financial) and G+H (i.e., GAS-Station plus Hotel-Reservation). We
grouped the selected applications in experiment objects according to their size, number
of injected faults, and application domain. For each experimental object, we provided
participants with the source code of two applications forming the experimental object
together. Therefore, given a laboratory trial participants could freely work on any fault
and application. As for PoliNa and Prof, we replaced the objects A+F and G+H with
AveCalc and LaTazza, respectively.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:15

Table IV. Experiment design
Trial Variable Group A Group B Group C Group D
First Object A+F or AveCalc A+F or AveCalc G+H or LaTazza G+H or LaTazza

Method ABBR FULL ABBR FULL
Second Object G+H or LaTazza G+H or LaTazza A+F or AveCalc A+F or AveCalc

Method FULL ABBR FULL ABBR

Table V. Group Composition
Experiment Group A Group B Group C Group D Total

UniBas 13 13 12 11 49
UniNa 5 5 4 5 19
PoliNa 4 4 4 4 16

Prof 4 4 4 4 16

We opted for this kind of design because it mitigates possible carry-over effects7 as
well as the effect of experimental objects in each experiment [Wohlin et al. 2012]. In
UniBas, UniNa, and PoliNa, we used participants’ average grades to distribute partic-
ipants among groups in Table IV. In other words, these groups were similar to each
other in terms of number of participants with high and low average grades.8 As for par-
ticipants in Prof, Master’s degree grade9 was used to distribute them among groups in
Table IV. For each experiment of our family, we report the number of participants as-
signed to each of these groups in Table V. It is worth mentioning that we originally
assigned 12 students to the group D, but for a health problem one of these students
had to abandon the first trial in UniBas.

3.6. Experimental Tasks
We asked participants to perform the following tasks:

— Fault Fixing. We asked to identify and fix faults in the source code of the experi-
mental objects according to our experimental design (see Table IV). For each exper-
imental object, we provided participants with its mission (or problem statement). A
mission summarized the intent of an application. We also gave participants a bug
report for each injected fault. A bug report contained both the title of the bug (i.e.,
a short description) and its (long) description and ID. Given a bug, its report is the
same independently from the method (ABBR and FULL). For each fault, the partic-
ipants had to indicate the portion of modified source code that fixed that fault (i.e.,
the patch). In particular, the participants had to delimit the code of the patch using
comments as follows: /* fault <fault_ID> start */ at the beginning of the patch
and /* fault end */ at the end of the patch. Since we knew the injected faults, the
number of faults a participant correctly fixed was easy to compute. This information
was necessary to estimate the effectiveness and efficiency constructs.
In each bug report, there was no reference to the source code, namely identifiers
in abbreviated and full-word form were not mentioned. In addition, we wrote reports
trying to give the same level of detail and accuracy in each bug description. This is not
a major issue here because possible biases related to unbalances in bug descriptions
would equally affect tasks accomplished with both ABBR and FULL. A bug report
for the Agenda application is shown in Figure 3.

7 Carryover is the persistence of the effect of one treatment when another treatment is applied later [Vegas
et al. 2016].
8In Italy, the exam grades are expressed as integers and assume values in between 18 and 30 The lowest
grade is 18, while the highest is 30. As suggested by Abrahão et al. [2013], we consider here the average
grade as low if it is below 24/30, high otherwise.
9In Italy, grades are expressed as integers and assume values in between 66 and 110 cum laude. We consider
the grade as low if it is below 105/110, high otherwise.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 G. Scanniello et al.

ID 2
Title Truncated domain in e-mail address
Description In some cases the domain of the e-mail address is truncated when contacts are

shown (both browsing and searching for). For example, when the e-mail address
giuseppe.scanniello@unibas.it was inserted the application did not produce any warning mes-
sage, while when I searched it Agenda showed giuseppe.scanniello@uniba followed by birthday.

Fig. 3. A sample of bug report for the Agenda application.

Table VI. Post-experiment Survey Questionnaire administered to Participants in
UniBas

Id Question
Q1 I had enough time to perform the tasks.
Q2 The task objectives were perfectly clear to me.
Q3 The bug reports were clear to me.
Q4 I found it difficult to understand the abbreviated identifiers.
Q5 The presence of abbreviated identifiers made the fixing of

faults in source code difficult.
Q6 There is not difference in using abbreviated or full-word iden-

tifiers while identifying and fixing faults in source code.
Q7 I find the execution of fault fixing tasks useful from a practical

point of view.

— Expanding identifiers. We asked participants to expand abbreviated identifiers in the
source code of the task accomplished with ABBR. In particular, we gave the complete
list of abbreviated identifiers contained in the code in a separate file (i.e., a CSV file)
and asked them to write for each abbreviated identifier its full-word version. We did
not impose any rule and time limit to expand identifiers. We gave this list at the
end of the second laboratory trial. The goal of this task was to assess whether or
not participants correctly expanded abbreviated identifiers. For each identifier, we
had both its abbreviated and full-word versions. A participant correctly expanded
an abbreviated identifier name if he/she provided its full-word version. We used the
data gathered from the expanding identifiers task to study RQ3. Please note that
task completion time (i.e., the variable to assess the effort construct) does not take
into account the time needed to expand abbreviated identifiers.

— Post-experiment task. We asked participants to fill in the post-experiment survey
questionnaire shown in Table VI. The statements of the post-experiment survey ques-
tionnaire admit closed answers according to a 5-point rating scale: (1) strongly agree;
(2) agree; (3) neutral; (4) disagree; and (5) strongly disagree. The goal of that ques-
tionnaire was to obtain feedback about participants’ perceptions of the experiment
execution and about the perceived effect of abbreviated identifiers on fault fixing
tasks. For example, even if we did not impose any time limit to perform laboratory
trials, we asked Q1 to understand if participants perceived any pressure to accom-
plish the tasks. Statements Q5 and Q6 in Table VI were exploited to study the re-
search question RQ4. In UniNa, PoliNa, and Prof, we asked participants questions on
the used social media and slang. In addition, we also asked questions to understand
if participants perceived that social media slang was changing how developers chose
identifiers and wrote source code comments. The added questions are those reported
in Table VII. Since the participants might have a different notion of social-media
slang, we provided them with a definition of social-media slang and some well known
terms of such slang.

3.7. Experiment Operation
All the participants in our family of experiments first attended an introductory lesson
(a few days before the experiment) in which we presented detailed instructions on the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:17

Table VII. Additional Questions to the Post-Experiment Survey Questionnaire
administered to the participants in UniNa, PoliNa, and Prof

Id Question
Q8 Indicate the social media you most frequently use.
Q9 I use social media:

� every day � often � rarely � never
Q10 I use social media slang to communicate through social media

� every day � often � rarely � never
Q11 I think that the social media slang is changing how developers

choose identifiers.
� yes � no

Q12 I think social media slang is changing how developers write
source code comments.
� yes � no

experiment procedure. Details on experimental hypotheses were not provided to avoid
affecting results.

We asked participants to accomplish a training exercise similar to that which would
appear in actual experimental tasks. As for UniBas and UniNa, we used Tower of
Hanoi.10 This application was originally implemented in C. We ported this version from
C to Java and used the latter in PoliNa and Prof as training exercise. We injected the
same two bugs in the C and Java versions of the Tower of Hanoi. The rationale behind
this design decision was to allow participants to familiarize with the experimental
procedure that they then used in the laboratory trials.

After the introductory lesson, but on the same day as the training exercise, the
participants filled in a pre-questionnaire. We asked questions to understand whether
there were any inherent differences among participants in each experiment and to get
information on their university career (e.g., average grades of passed exams for stu-
dents and Master’s degree grades for participants in Prof). We used the gathered data
to assign participants to the groups A, B, C, and D in Table IV.

To surf, execute, and debug source code, participants in UniBas and UniNa used
Dev-C++11 (release 4.9.9.2) in both the training exercise and the experiment. This is
an open-source Integrated Development Environment (IDE) for C/C++. We opted for
this IDE because it was widely used in academic programming courses. As for PoliNa
and Prof, participants used Eclipse in the training exercise and experiment. We opted
for this IDE because it was well known and widely used in academia and industry.

We asked participants in our family of experiments to use the following experimen-
tal procedure: (i) specifying their name and start-time; (ii) identifying and fixing the
faults; and (iii) marking the end-time. Participants could compile and execute the ap-
plications before and after each modification performed on source code. We did not
suggest any approach to surf, execute, and debug source code. That is, participants
could freely use the features implemented in the used IDE. This design choice allowed
us to reproduce what real developers do when dealing with faults fixing. That is, this
allowed us to reduce possible external validity threats.

To carry out the experiment, participants first received the material of the first lab-
oratory trial. For example, we provided participants in group A of UniBas with the
source code of both Agenda and Financial and corresponding bug reports. Participants
freely chose on how to deal with faults in these applications. When participants had
finished the first trial, the material for the second laboratory trial was provided to
them. After the completion of both the two trials, we asked participants to expand

10http://www.paulgriffiths.net/program/c/hanoi.php
11http://www.bloodshed.net/dev/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.paulgriffiths.net/program/c/hanoi.php
http://sourceforge.net/projects/orwelldevcpp

A:18 G. Scanniello et al.

abbreviated identifiers in the source code of the task accomplished with ABBR. Once
participants concluded this task, we gave them the post-experiment questionnaire and
asked them to fill it in. Interaction was permitted among participants neither while ac-
complishing tasks nor while passing from the first trial to second one.

3.8. Analysis Procedure
To perform data analysis, we used the R environment12 for statistical computing and
we carried out the following steps:

(1) We undertook the descriptive statistics of the dependent variables.
(2) To test Hn0, Hn1, and Hn2, we applied multivariate linear mixed model analyses.

This kind of model is an extension of the general linear model and it is a better
method for analyzing models with random coefficients (as is the case of partici-
pants in software engineering experiments) and data dependency due to repeated
measures (as it is the case of our experiments) [Vegas et al. 2016]. We used a multi-
variate linear mixed model analysis to verify the effect of the main factor/variable
(i.e., Method) and other explanatory variables (i.e., Experiment, Trial, and Object)
and the presence of a significant interaction13 between the main factor and these
explanatory variables. We also applied a multivariate linear mixed model to test
Hn X. To apply multivariate linear mixed model analyses two assumptions have
to be verified: that residuals follow a normal distribution and their mean has to be
equal to zero [Vegas et al. 2016]. In the absence of normality of residuals, transfor-
mation of the response variable data is an option (e.g., exponential and logarith-
mic transformations). We used the Shapiro-Wilk W test [Shapiro and Wilk 1965]
(Shapiro test, in the following) to perform the normality analysis of residuals. A
p-value smaller than an α value allows concluding that residuals are not normally
distributed.

(3) To summarize and analyze raw data and to support their discussion, we ex-
ploited different graphical representations, such as boxplots and clustered bar
charts [Peck and Devore 2011; Wohlin et al. 2012].

In all the executed statistical tests, we decided (as it is customary) to accept a prob-
ability of 5% (i.e., α value) of committing Type-I-error [Wohlin et al. 2012].

3.9. Summary of the Differences
We introduced a number of differences between the baseline experiment by Scanniello
and Risi [2013] and its replications. These differences are sketched in Table VIII and
summarized in the following:

- Participants in UniNa, PoliNa, and Prof can be considered more experienced than
those in UniBas. This alteration was made to reduce external validity threats and
to better analyze the effect of the kind of participants on the studied constructs.

- We changed the experimental objects in PoliNa and Prof. In these two experiments,
participants were asked to fix faults in Java source code rather than in C source
code. This alteration has also the value of reducing external validity threats.

- We extended the post-experiment survey questionnaire and administered it to par-
ticipants in all the replications. This alteration was made to study RQ4.

- We considered new dependent variables. We introduced this alteration because
these new variables are considered basic measures for information retrieval to as-

12www.r-project.org
13The presence of an interaction makes more difficult to predict consequences of one variable with respect
to another one given a factor.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

www.r-project.org

A:19

Table VIII. Summary of differences between UniBas and
its replications

UniNa PoliNa Prof
Kind of participants 6= 6= 6=
Experimental objects = 6= 6=
Post-experiment task 6= 6= 6=
Dependent variables 6= 6= 6=
Data Analysis 6= 6= 6=
Experimenters = 6= 6=

sess effectiveness and efficiency [Manning et al. 2009]. These measures have been
also largely used in empirical software engineering (e.g., [Abrahão et al. 2013; Ricca
et al. 2007]). In addition, we believe that task effectiveness and task efficiency better
fit the constructs object of our family of experiments.

- We extended and modified the data analysis. This modification is a direct conse-
quence to the modification just before.

- A different experimenter conducted both PoliNa and Prof.

3.10. Threats to Validity
To better comprehend strengths and limitations of our family of experiments, threats
that could affect results and their generalization are presented and discussed in this
section. Despite our effort to mitigate as many threats as possible, some of them are
unavoidable. We discuss the threats to validity following the guidelines proposed by
Wohlin et al. [2012].

3.10.1. Internal Validity. Threats to this kind of validity are influences that can affect
the independent variable with respect to causality.

— Maturation. The adopted experimental design (a kind of cross-over design — Ta-
ble IV) should mitigate the presence of carry-over effects [Wohlin et al. 2012]. To be
sure, we analyzed the effect of the laboratory trials on the response variables. If this
effect is present, we will properly mention it in our data analysis.

— Diffusion or imitation of treatments. This threat concerns information exchanged
among participants within each experiment and among experiments. Experiment
supervisors monitored participants to prevent that they communicated with one
another. As an additional measure to prevent diffusion of material, we asked partic-
ipants to return material at the end of each trial.

— Selection. The effect of letting volunteers take part in an experiment may influence
results. In fact, volunteers could be more motivated.

3.10.2. External Validity. External validity threats concerns generalizability of results.

— Interaction of selection and treatment. The use of students as participants may affect
generalizability of results [Carver et al. 2003; Ciolkowski et al. 2004; Hannay and
Jørgensen 2008]. To mitigate this kind of threat, we conducted replications with
novice professional software developers. A qualitative study with professionals was
also conducted to deal with this kind of external validity threat.

— Interaction of setting and treatment. In our study, the kind of experimental tasks
may affect result validity. For example, differences observed on the kind of experi-
mental objects could not be related to the C and Java programming language, but
to extraneous factors (e.g., the domain of the applications). Also the size and the
complexity of used applications (both those implemented in C and Java) might af-
fect external validity. The use of Dev-C++ in UniBas and UniNa and the use of
Eclipse in PoliNa and Prof might also threaten the validity of results. For example,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 G. Scanniello et al.

it could be possible that a few participants were more familiar with Eclipse than
others. Identifier renaming (when producing the two versions of each application)
might also bias results. Another threat to external validity is that identifiers and
bug reports were in English, while participants were Italian students and profes-
sionals. That is, the participants’ skill in English could be an issue if they are not
at an advanced level. Injected faults might also threaten external validity. In this
respect, our design choice reduced possible experimenters’ expectancies (see next sec-
tion) even if in this way we introduced issues related to representativeness of seeded
faults with respect to real ones.

3.10.3. Construct Validity. Construct validity threats regard the link between concrete
experimental elements and abstract concepts of experimental goals. Threats to con-
struct validity are also related to experiment design and social factors.

— Interaction of different treatments. To mitigate this kind of threat, we adopted a kind
of cross-over design and analyzed the possible effect of co-factors.

— Confounding constructs and level of construct. The procedure used to divide partici-
pants into the groups in Table IV could affect construct validity.

— Experimenters’ expectancies. To deal with this kind of threat we used an injection
process based on the Kim’s mutation operators [Kim et al. 1999; Kim et al. 2000].
In addition, faults were injected to favor none between ABBR and FULL. The post-
experiment survey questionnaire was designed to capture participants’ perception
and designed using standard methods and scales [Oppenheim 1992].

3.10.4. Conclusion Validity. It concerns issues that may affect the ability of drawing
correct conclusions.

— Random heterogeneity of participants. There is always heterogeneity in a study
group. If the group is very heterogeneous, there is a risk that the variation due
to individual differences is larger than due to the treatment [Wohlin et al. 2012]. As
far as Prof, experience of participants could be heterogeneous.

— Reliability of treatment implementation. A possible threat concerns the fact that we
did not impose any time limit to perform tasks. It could be possible that the exper-
iments were not able to reveal differences because of this design choice. As for cor-
rectness and completeness of the expansions of identifiers, our design choice could
have affected results. In particular, participants who fixed faults with ABBR in the
second trial could be advantaged with respect to those participants experimented
ABBR in the first trial. However, if we would ask participants to expand identifiers
at the end of the first trial we had the issue of overburdening participants and then
affecting results in the second trial. Participants performed fault fixing tasks on ei-
ther Java or C source code. This could also affect the validity of the obtained results.
The IDEs and their tools (e.g., debugger and search engine) could have also affected
conclusion validity, when comparing UniBas and UniNa with PoliNa and Prof.

— Reliability of measures. This threat is related to how response variables were mea-
sured. For example, faults could not be equally difficult to find and to fix in each
application and across the applications (see Appendix B, where we present the
results of a further analysis on the faults seeded in the applications used as ex-
perimental objects). Then, the method used to assess effectiveness and efficiency
constructs could have affected results. Regarding task completion time, we asked
participants to write start and stop times (e.g., [Huang and Holcombe 2009]). The
measures used to estimate correctness and completeness of the identifier expansion
(see Section 4.3) could affect results concerned the research question RQ3.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:21

Table IX. Descriptive statistics task completion time, task effectiveness, and task efficiency

Experiment Variable FULL ABBR
Mean St. Dev. Mean St.Dev.

UniBas
task completion time 73.4898 33.3979 78.3673 33.1239
task effectiveness 0.7203 0.1893 0.7277 0.1804
task efficiency 0.0137 0.0126 0.012 0.0085

UniNa
task completion time 38.8947 32.7633 38.1053 29.0438
task effectiveness 0.8186 0.2484 0.7709 0.2688
task efficiency 0.0365 0.027 0.033 0.0228

PoliNa
task completion time 47.6875 25.1123 45.6875 16.1275
task effectiveness 0.5541 0.2392 0.5184 0.2356
task efficiency 0.016 0.0101 0.0116 0.0058

Prof
task completion time 47.9375 28.5971 50.125 15.2003
task effectiveness 0.5672 0.1834 0.548 0.213
task efficiency 0.0156 0.0097 0.012 0.0063

Table X. Results for Hn0, Hn1, and Hn2

Hypothesis Method Experiment Trial Object Method:Experiment Method:Trial Method:Object

Hn0 0.26 < 0.001 < 0.001 0.939 0.993 0.791 0.734
Hn1 0.538 < 0.001 < 0.001 0.95 0.848 0.345 0.881
Hn2 0.103 < 0.001 0.093 0.986 0.9 0.333 0.803

4. RESULTS FROM THE FAMILY OF EXPERIMENTS
In this section, we present the results of our data analysis following the procedure
previously presented in Section 3.8.

4.1. Descriptive Statistics and Exploratory Data Analysis
In Table IX, we report the values of mean and standard deviation for task completion
time, task effectiveness, and task efficiency grouped by method and experiment. The
distribution of the values for these variables is graphically summarized by the boxplots
in Figure 4. For example, we report the boxplots for task completion time grouping the
values by experiment and method in Figure 4(a). Descriptive statistics and boxplots
indicate overall that in all the experiments there is not a huge difference between
FULL and ABBR.

4.2. Hypotheses Testing
Results for the null hypotheses Hn0, Hn1, and Hn2 are summarized in Table X. In par-
ticular, we report for each hypothesis the p-values the multivariate linear mixed model
returned for: Method, Experiment, Trial, and Object, and the interaction between
Method and the other explanatory variables (i.e., Method:Experiment, Method:Trial,
and Method:Object).

4.2.1. Hn0: task completion time. As for task completion time, one of the assumptions
to apply a multivariate linear mixed model was not verified because the Shapiro test
returned a value less than 0.05 on the residuals. Therefore, we performed an exponen-
tial transformation to apply the multivariate linear mixed model on task completion
time [Vegas et al. 2016]. The built model did not allow us to reject Hn0 (see second
column in Table X). That is, the effect of Method is not statistically significant for task
completion time. The results suggest that there is a significant effect of Experiment
and Trial for task completion time. That is, the participants in UniBas spent more
time than the participants in the other experiments. As for Trial, the participants
spent less time to accomplish tasks in the second trial. We did not observe any inter-
action between Method and the other explanatory variables and the effect of Object is
not significant.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 G. Scanniello et al.

FULL ABBR

0
50

10
0

15
0

UniBas

ta
sk

 c
om

pl
et

io
n

tim
e

FULL ABBR

0
50

10
0

15
0

UniNa

ta
sk

 c
om

pl
et

io
n

tim
e

FULL ABBR

0
50

10
0

15
0

PoliNa

ta
sk

 c
om

pl
et

io
n

tim
e

FULL ABBR

0
50

10
0

15
0

Prof

ta
sk

 c
om

pl
et

io
n

tim
e

(a)

FULL ABBR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UniBas

ta
sk

 e
ffe

ct
iv

en
es

s

FULL ABBR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UniNa

ta
sk

 e
ffe

ct
iv

en
es

s

FULL ABBR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PoliNa

ta
sk

 e
ffe

ct
iv

en
es

s

FULL ABBR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prof

ta
sk

 e
ffe

ct
iv

en
es

s

(b)

FULL ABBR

0.
00

0.
02

0.
04

0.
06

0.
08

UniBas

ta
sk

 e
ffi

ci
en

cy

FULL ABBR

0.
00

0.
02

0.
04

0.
06

0.
08

UniNa

ta
sk

 e
ffi

ci
en

cy

FULL ABBR

0.
00

0.
02

0.
04

0.
06

0.
08

PoliNa

ta
sk

 e
ffi

ci
en

cy

FULL ABBR

0.
00

0.
02

0.
04

0.
06

0.
08

Prof
ta

sk
 e

ffi
ci

en
cy

(c)

Fig. 4. Boxplots for task completion time (a), task effectiveness (b), and task efficiency (c) grouped by
method and experiment.

4.2.2. Hn1: task effectiveness. Results indicate that there is not a statistically signifi-
cant difference between ABBR and FULL (p-value = 0.538). As shown in Table X, there
is a positive effect of Experiment and Trial on task effectiveness. The participants in
UniBas and UniNa achieved better task effectiveness values than the participants in
the other two experiments. As for trial, we observed that the participants achieved on
average better task effectiveness values in the first trial. It is worth mentioning that
we did not observe any interaction between Method and the other considered explana-
tory variables and the effect of Object is not significant.

4.2.3. Hn2: task efficiency. One of the assumptions to apply a multivariate linear mixed
model was not verified for task efficiency (the Shapiro test returned a value less than
0.05 on the residuals). This was why we applied a logarithmic transformation. On the
basis of the results shown in Table X, we did not reject Hn2, i.e., the effect of Method
is not statistically significant on task efficiency because the p-value is larger than 0.05
(i.e., 0.103). The results of the multivariate linear mixed model indicate a positive
effect of Experiment, namely the participants in UniNa obtained better task efficiency
values. We observed neither a significant effect of the other explanatory variables nor
a significant effect of the interaction between Method and these explanatory variables.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:23

Table XI. Results for Hn3 X

X (response variable) Language Method:Language Mean
improv./reduction

task completion time 0.009 0.895 -26.899%
task effectiveness <0.001 0.654 -26.465%
task efficiency 0.317 0.554 -

Table XII. Descriptive statistics of the participants’
results for the manual expansion of the abbreviated
identifiers

Min Max Mean St. Dev.

UniBas P 0.467 1 0.765 0.116
R 0.037 0.852 0.372 0.172

UniNa P 0.672 1 0.824 0.103
R 0.52 0.988 0.761 0.145

PoliNa P 0.713 1 0.913 0.075
R 0.24 0.885 0.493 0.201

Prof P 0.8 1 0.95 0.061
R 0.08 0.65 0.37 0.212

4.2.4. Hn3 X: C vs. Java. In Table XI, we report the p-values of a multivariate linear
mixed model used to study if the programming language with which the experimen-
tal objects have been implemented (i.e., the explanatory variable Language) affects
results. We had to apply a logarithmic transformation (for each response variable)
since residuals did not follow a normal distribution (i.e., the Shapiro test returned
a value less than 0.05 on the residuals). The results of our statistical analysis show
the presence of a statistically significant difference for the response variables: task
completion time and task effectiveness. That is, the built models allowed us to reject
the null hypothesis Hn3 on these two dependent variables. We can also observe that
the values for the mean percentage reduction14 suggest that participants spent less
time (-26.899%) and obtained worse task effectiveness values on the applications im-
plemented in Java (-26.465%). We also verified the interaction between Method and
Language (i.e., Method:Language). Results suggest the absence of such a kind of inter-
action.

4.3. Expanding identifiers
We estimated correctness and completeness of the identifier expansion by the preci-
sion (i.e., P = #(identifiers correctly expanded)

#(unique identifiers expanded)) and recall (R = #(identifiers correctly expanded)
#(unique identifiers present))

measures, respectively. It is worth mentioning that an identifier was considered cor-
rectly expanded if and only if all its compounding abbreviated words were expanded
correctly.

Descriptive statistics (minimum, maximum, mean, and standard deviation values)
on precision and recall are reported in Table XII, while we show the boxplots for these
measures in Figure 5. We can observe that correctness is higher than the complete-
ness. The shown pattern holds in all the experiments. Indeed, in UniNa the difference
between correctness and completeness is not so high and the values of the measures to
estimate correctness and completeness are very close to 1 (see Figure 5). We will better
discuss the observed pattern in Section 7.1.

4.4. Post-experiment Survey Questionnaire
We first summarize results from responses to post-experiment survey questionnaires
of all the experiments. Successively, we present results on the responses to the state-

14It can be considered a more intuitive effect size indicator.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 G. Scanniello et al.

ments from Q8 to Q12 for UniNa, PoliNa, and Prof. The responses to Q8 are graphically
summarized in Figure 6, while those to Q9 and Q10 are summarized in Figure 7.

Time needed to carry out the experiments was considered appropriate in all experi-
ments. For each experiment, the greater part of participants’ responses were strongly
agree or agree for Q1 (enough time to perform tasks). As for Q2, a similar trend was
observed. In particular, participants’ responses were strongly agree or agree on the
clarity of the task objectives. Participants also found clear the bug reports we gave
them to find and fix faults (Q3). The greater part of participants’ responses to Q3 was
either strongly agree or agree. Participants to UniBas were those that found it more
difficult to understand abbreviated identifiers. In general, there were not unanimity
in the responses given on Q4 in all the experiments. As for Q5, all participants in Uni-
Bas, UniNa, and PoliNa agreed that the presence of abbreviated identifiers made fault
fixing difficult. Participants in Prof were more neutral on this point. Participants in
PoliNa and UniNa disagreed that there was no difference in using abbreviated or full-
word identifiers while fixing faults in source code (Q6). It seems that the presence of
abbreviated identifiers is more problematic in case of C code and for less experienced
participants. Participants found the experiments useful (Q7).

Responses to Q8 (see Figure 6) indicate that the most used social media were: Face-
book (45 out of 51), LinkedIn (26 out of 51), Google+ (21 out of 51), and Twitter (21
out of 51). The greater part of participants used a social medium everyday and exploit
social media slang to communicate (Q9). The greater part of participants in UniNa,
PoliNa, and Prof used every day at least one social medium. As for the use of social
media slang, a slightly different pattern was present in the responses to Q10. That is,
slang was used every day or often in most cases (see on the bottom of Figure 7).

As for responses to Q11 and Q12, participants in UniNa, PoliNa, and Prof believed
that the use of social media slang was changing how developers wrote identifier names
and source code comment. Indeed, the participants in these experiments believed that
the use of social media was affecting slightly more how identifiers were written. It is
worth mentioning that mostly all participants that asserted to use social media slang
also positively answered Q11 and Q12.

5. ETHNOGRAPHICALLY-INFORMED STUDY
We performed an ethnographically-informed study to better interpret results from our
family of experiments. We studied the developer’s behavior, while they had to fix actual
faults in an open-source application implemented in Java. We were also interested to

(a) (b) (c) (d)

Fig. 5. Boxplots on the results related to the participants’ manual expansion of abbreviated identifiers.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:25

Fig. 6. Responses to the question Q8.

(a) UniNa (b) PoliNa (c) Prof

Fig. 7. Responses to the questions Q9 and Q10: UniNa (a), PoliNa (b), and Prof (c).

investigate the possible differences between the developers’ behavior when they were
provided with source code with either abbreviated or full-word identifiers. To address
these goals, we adopted a design similar to that used in the experiments of our family.
This design also presents some similarities with that used in the exploratory study
by Robillard et al. [2004]. Similar to this latter study, our ethnographically-informed
study relies on the following two main assumptions:

— There is a relation between program investigation behavior and the success (or not)
with which developers can perform fault fixing tasks.

— Personal characteristics of a developer (e.g., the skill, experience, and expertise) are
reflected in his/her program investigation behavior.

Rejecting the first assumption would imply that a developer could investigate only ir-
relevant source code and still correctly fix a fault. Rejecting the second assumption
would imply that the program investigation behavior of a developer is either com-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 G. Scanniello et al.

pletely algorithmic or completely random. Our two assumptions allowed us to focus
on the characteristics of developers’ investigation behavior that influence participant’s
effectiveness without having to consider the factors explaining the program investiga-
tion behavior. We believe that our results are then more useful and generalizable.

According to our assumptions, the adopted experimental methodology met two spe-
cific requirements: realism and reproduction. To pursue realism, we needed to study
a situation representative of realistic fault fixing tasks. In practice, this meant a real
application (large enough and developed by multiple people over multiple evolution cy-
cles) with real faults to be fixed so that to require participants a significant amount of
effort to investigate the application and to fix these faults. To increase realism partic-
ipants in the study were junior Java professional developers. As for the reproduction
requirement, we needed to be able to contrast the behavior of successful and unsuc-
cessful reproduction. The rationale here is to identify the characteristics of program
investigation behavior associated with successful fault fixing tasks. This requirement
implies some form of reproduction of the task. Additionally, because success can be
heavily influenced by the kind of task, programming language, and other factors inde-
pendent of developers, we needed to control the fault fixing task and the environment
in which it was performed. These requirements are conflicting because, as we stud-
ied realistic tasks, we face increasing problems controlling for the factors that might
influence results, and increasing difficulty analyzing enough of the data and informa-
tion collected to account for the complexity of the observed phenomenon. In some way,
these requirements (realism and reproduction) are conflicting one another; we needed
to study realistic tasks in a realistic setting and to face increasing problems controlling
for factors that might influence the results due to the complexity of the phenomenon to
observe. To deal with these issues, we performed an ethnographically-informed study
with six different professional developers. This offered a reasonable tradeoff between
the cost and detailed qualitative analysis and the generalizability of the results. In the
following of this section, we provide details on the design (e.g., context, experimental
setting, threats to validity, and so on) of this study.

5.1. Definition and Context
Prior to fixing a fault, developers must inevitably investigate the source code of the tar-
get application to find and understand source code affected by the fault fixing. The way
a developer investigates a source code with abbreviated identifiers can yield important
insights into fault fixing. Therefore, we were interested in exploring the following top-
ics in our ethnographically-informed study:

— how young professional developers investigate unfamiliar Java source code, without
comment and with abbreviated identifiers, when fixing actual faults;

— why do abbreviated identifiers (with respect to full-word ones) penalize (or not) fault
fixing?

— what are the characteristics the developers believe source code and identifiers, in
particular, must have so that they can successfully identify and fix faults.

We invited (by e-mail) eleven Java professional developers in our ethnographically-
informed study. These developers were employees of software companies in the indus-
trial contact network of the software engineering research group at the University
of Basilicata. They worked on or participated in research projects conducted by this
group. Six out of eleven developers accepted our invitation. These developers had from
one to three years of work experience as professional Java programmers. They worked
in six small/medium companies located in southern Italy. Regarding the industrial do-
mains, one company worked in the area of software consultancy and two companies
developed web-based systems and apps for smart devices as their main business ac-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:27

tivity. Two professionals had a Master degree in Computer Science and Engineering,
while four had a Bachelor degree in Computer Science. All the professionals took their
degree from the University of Basilicata. In their academic carrier, they passed (basic
and advanced) Java programming exams. The participants had experience with the
execution of maintenance and evolution tasks performed on unfamiliar source code.
They had also knowledge of testing approaches and techniques (e.g., unit testing, inte-
gration testing, and system testing). The participation in the study was on voluntary
basis, i.e., we did not pay professional developers. These developers participated in the
study outside their work hours. This choice allowed us to have motivated participants.
They did not know the goals of our study.

The target application for our study was JGraphT.15 It is a free Java graph library
providing mathematical graph-theory objects and algorithms. The participants de-
clared to be familiar with the problem domain of JGraphT because they passed ex-
ams on graph theory and on algorithms and data structures in their academic carrier.
Participants were not familiar with the codebase used in the study.

Some descriptive statistics of this application follow: 6161 LOC, 166 types, and hav-
ing 19.5% of the identifiers abbreviated. As for LOC, we considered source code without
comments. Reported source code metrics have been gathered by the Understand tool.
The percentage of abbreviated identifiers is computed with respect to the number of
full-word identifiers in the original version of JGraphT. The number of abbreviated
identifiers was manually counted and the high value of abbreviated identifiers con-
firms that developers widely use abbreviated identifiers. We used JGraphT because
its faults are well documented in its publicly available software repository. This ap-
plication is also used in a number of empirical studies (e.g., [Monperrus et al. 2012;
Tempero et al. 2010]). From the JGraphT software repository, we randomly selected
two real faults so that their fixing fitted participants’ time constraints; they gave their
availability for a fixed amount of time, namely three/four hours. In Figure 8, we show
the bug reports used in the study. Similar to the experiments in our family, a bug re-
port contained: an ID (the identifier the original developers used) and a title (a short
description) and a long description of the failure (i.e., the difference between expected
and observed behavior). No reference to the source code was present in these reports
to avoid affecting the identification and the fixing of the faults.

The fourth author of this paper produced two versions of JGraphT adopting the same
procedure described in Section 3.2. One version contained only abbreviated identifiers,
while the other only full-word identifiers. The source code layout was the same in both
these versions. Source code comments and test cases were omitted from each version.

5.2. The Setting
For the scope of this ethnography, we kept the experimental setting as close as possible
to the natural environment in which the developers carry on their everyday work activ-
ities. Describing the setting is a good practice in ethnographically-informed studies, as
the spatial organization could be relevant insofar for developers working to accomplish
a given task [Sharp and Robinson 2004].

The participants worked on the two faults following a fixed schedule. The partici-
pants and the observer (the fourth author) established this schedule before the study.
Only the observer and a participant were present in each experimental session. All the
participants used the same laptop to carry out the task. These measures were taken
to minimize any possible bias arising from the differences in physical experimental
settings. All the participants were familiar with Eclipse, namely the IDE used in the
study. They used Eclipse in their work activities.

15http://jgrapht.org, version 0.7.0

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 G. Scanniello et al.

ID 1862338
Title Edges not removed in reverse graphs
Description After creating the reverse graph from a directed multigraph, when removing the edges from a

given vertex to another one in the reverse graph, these edges are not removed. For example,
consider the following directed multigraph (there are two edges from 2 to 3):

1 2 3

Its reverse graph (there are two edges from 3 to 2) is:
1 2 3

When removing the edges from 3 to 2 in the reverse graph, then the obtained graph should be:
1 2 3

Actually, the obtained graph is:
1 2 3

Namely, the edges from 3 to 2 are not removed.
ID 892621
Title Listenable graphs do not fire some events regarding the removing of edges
Description When removing a vertex from any kind of graph, the incoming and outgoing edges of this

vertex are removed too. Thus, if a listenable graph has been created from another graph and
a vertex has been removed from this listenable graph, then the listenable graph should fire
events regarding the removing of the vertex and its incoming and outgoing edges (if they
exist). For example, consider the following listenable graph:

1 2 3

When removing the vertex 2 from the listenable graph, then the edges from 1 to 2 and from 2
to 3 are removed too. The obtained listenable graph is:

1 3

The listenable graph should fire 3 events: (i) removing of the vertex 2, (ii) removing of the edge
from 1 to 2, (iii) removing of the edge from 2 to 3.
Actually, only the first event is fired whereas the other two are not fired.

Fig. 8. Used bug reports for JGraphT.

5.3. The Study
The study was conducted by a single observer (the fourth author) from November
to December 2016 and it was founded on one-to-one sessions between the observer
and each participant. This experimental procedure is customary in ethnographically-
informed studies (e.g., [Romano et al. 2016; Romano et al. 2017]). We conducted our
study in Italian to avoid biasing the study results since participants were Italian pro-
fessionals and they may have different familiarity with the spoken English language.

The observer (if needed) engaged with the participants (without conditioning their
work habit) focusing on both the application and solution domains of JGraphT. It was
important for the observer to participate in the study because: (i) the ethnographic
approach encourages the participation of the observer to the study [Sharp et al. 2000];
(ii) the observer could appreciate the perspective of the developers while carrying out
the assigned tasks; and (iii) the observer could get information on how faults were
identified and fixed. The observer avoided influencing the participants during the ex-
ecution of the fault fixing tasks. To mitigate subjective assumptions, the observer had
to consider all the activities related to our study as “strange”, as suggested by Sharp
et al. [2000]. The data and the information regarding these tasks were collected by
using: contemporaneous field notes, audio recordings of discussions, copies of vari-
ous artifacts (e.g., source code), and screen recordings. We pseudo-randomly divided
the participants into two groups. This was done when the list of the participants was
closed, i.e., at the end of the time slot we fixed to receive answers by e-mail from
the invited developers. The fixed time slot was one week after the invitation sent to
the eleven developers we asked to participate in the study. The assignment to these
groups is considered pseudo-random because we imposed that each group had to con-
tain the same number of participants. A group of participants worked on the version
of JGraphT with full-word identifiers, while the other on the version with abbreviated

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:29

identifiers. The behavior of the developers in the group that worked on the JGraphT
version with full-word identifiers represents a sort of baseline for comparison.

5.4. Design
The study was divided into four phases. To minimize potential investigator bias, each
phase was described entirely through written instructions. In any phase, the partici-
pants could ask clarifications, but we established guidelines restricting answers from
the observer to clarification on the study and its material.

— Pre-study task. To obtain participants’ demographic information, we asked them
some questions (e.g., years of work experience and preferred IDE). To be sure that
all the developers had sufficient familiarity with basic notions on the graph data
structure, we asked them to read through a tutorial, but they could end the training
period at their discretion. Before continuing on to the next phase of the study, the
participants had to answer a few proficiency questions (e.g., what is a simple graph?)
on the contents covered in this tutorial.

— Program Investigation. We asked participants to read some preparatory material
about JGraphT. This material included an excerpt from the user’s documentation of
JGraphT and instructions on how to launch it through the official demo programs
present in the JGraphT distribution. The participants were allowed to execute demo
programs at any point during the study. No demo program revealed the two faults
considered in our study.
The participants were given 30 minutes to investigate the code in preparation to the
actual fault fixing task to be performed in the subsequent study phase (i.e., Fault
Identification and Fixing). The participants were informed about the possibility of
taking notes in a text file, but we did not explicitly instruct them on how to do that.
We allowed the participants to execute JGraphT (using or not demo programs), but
they could not modify the code. Our intent in this phase was to introduce some
control over the study, and to prevent the case where a professional would try to
perform fault fixing with almost no prior investigation on the source code of the
target application. Although this is possible in the case of trivial tasks, we knew
from designing our qualitative study that the possibility of succeeding at the task
without investigating the program was extremely unlikely [Robillard et al. 2004].
We discuss the potential impact of this choice on the results in Section 5.5.

— Fault Identification and Fixing. In this phase, the observer asked the participants
to fix the faults one at time. He gave a developer one bug report first and then the
other (see Figure 8). Differently from the experiments in our family, we did not ask
participants to indicate the portion of modified source code because the observer
participated in the study. The participants were given three hours to complete the
Fault Identification and Fixing phase. This was the needed time we estimated to fix
both the faults.

— Post-experiment task. We asked participants to fill in the post-experiment survey
questionnaire shown in Table VII, that is the same questionnaire as we asked the
participants in UniNa, PoliNa, and Prof to fill in. Since the participants might have
a different notion of social-media slang, the observer provided them with a definition
of social-media slang and some well known terms of such slang.

The observer could provide support for the phases before. He could clarify concerns
related to the study and/or to the questions of the used pre- and post- questionnaires.
On the other hand, the observer immersed himself and participated (if needed) in all
the phases introduced just before, but he did not disturb or change the natural setting
of the study.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 G. Scanniello et al.

5.5. Threats to Validity
5.5.1. Internal Validity. The experimental setup may have affected the behavior of the

participants. In particular, the separation of a fault fixing task into the investigation
and fault fixing phases may have caused adjustments to the participants behavior.

5.5.2. External Validity. The number of participants could limit the generalizability of
our findings. This is not a major issue here because we used our qualitative study
as a complementary investigation to deepen results from a family of four controlled
experiments conducted with a total of 100 participants. Furthermore, results could be
also affected by the software development environment and programming language.
Although the participants were familiar with Eclipse and Java, this additional factor
limits the generalizability of the study to similar conditions. Another threat to external
validity could concern the application used in the study.

5.5.3. Construct Validity. Social factors should be taken into account when evaluating
qualitative and quantitative findings (e.g., evaluation apprehension). To deal with this
kind of threat, the observer used an informal approach to interact with the participants
in the study. Participation in the study was on voluntary basis. Voluntary participants
are generally well motivated and then results could be unintentionally affected. Fi-
nally, the influence that the observer could practice on the professionals may also affect
the validity of the results.

6. RESULTS FROM THE ETHNOGRAPHICALLY-INFORMED STUDY
We present the findings from our ethnographic analysis following a standard ap-
proach (e.g., [Beynon-Davies 1997]). We first present the main themes emerging from
our collected information and data and then the results from the post-experiment
task. We conclude highlighting some quantitative results form our ethnographically-
informed study.

6.1. Ethnographic Analysis
The goal of our ethnographic analysis was to find insights from recurrent themes in the
developers behavior, while conducting fault fixing. The meaning behind the observed
behavior must be inferred from the details of the collected information and data [Sharp
and Robinson 2004]. Our analysis is based on the following steps:

Reflecting. The observer first reflected upon the experience gained in his immer-
sion and then used the data and the information to recollect, revisit, and reconsider
what was found from such an experience;
Discussing. The observer and the other authors discussed the audio and video
recordings, the source code written by the participants, and other artifacts such
as the data collected in the questionnaires;
Confirming themes. When a theme appeared to be emerging in the behavior of a
developer working on source code with abbreviated identifiers, we searched for
data and information in the same group of developers to contradict this theme. If
no contradictory evidence emerged then the theme was confirmed, otherwise it is
not confirmed;
Verifying confirmed themes. When a theme was confirmed in the step before, we
searched for data and information in the group of developers working on source
code with full-word identifiers that could contradict this theme. If no contradictory
evidence emerged then the theme holds in both the groups of developers. If a con-
tradictory evidence emerged, we were able to find a difference in the behavior of
the two groups.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:31

This kind of analysis proceeded iteratively. This approach required a considerable de-
gree of effort, especially in the validation of potential themes with respect to the col-
lected data and information.

In our ethnographic analysis, we found several candidate themes about the develop-
ers’ investigation behavior of both the successful and unsuccessful fault fixing. Among
these themes, we confirmed the following ones:

(1) Identifier Expansion;
(2) Dealing with Focus Points;16

(3) Methodical17 Fault Fixing;
(4) Text-based Search;
(5) Inattention Blindness;18

(6) Code Recommenders;
(7) Characteristics of Indentifiers.

From the confirmed themes, we derived results about the intrinsic factors influencing
the success (or not) of developers that perform fault fixing tasks. We formulate these
results as a high-level statement. In the following subsections, we illustrate and detail
each confirmed theme.

6.1.1. Identifier Expansion. The following statement summarizes the main result from
this theme.

Developers try expanding identifiers only when it is needed to better investigate
source code to fix a given fault.

When developers deal with unfamiliar source code they build a sort of mental
model [LaToza et al. 2006; Sillito et al. 2008] of that code. We observed that the par-
ticipants in our study also built a mental model of the code when investigating it to
fix faults. They used non-lexical information (e.g., syntactical structure of the code
and/or its control and data flow) without paying attention to the abbreviated identifier
names. They tried expanding abbreviated identifiers only when they were not able to
build their mental model. In other words, in a few cases the developers also needed the
lexical information of abbreviated identifiers to enrich their mental model.

6.1.2. Dealing with Focus Points. We summarize the result from this theme as follows:

Developer need to extend their focus point to expand abbreviated identifiers.

There could be some abbreviated identifiers that the developers were not able to
easily expand in their mind. That is, they were not familiar with the abbreviation of
one or more abbreviated compounding words of an abbreviated identifier. If develop-
ers believed that this abbreviated identifier was useful to build their mental model,
then they expanded the focus point to infer the meaning of the unfamiliar abbreviated
compounding words. The developers used the following strategies to expand their fo-
cus point: (i) exploring software static and syntactic relationships starting from the

16A focus point is a point in the source code that is relevant to a given task [Sillito et al. 2008]
17As done by Robillard et al. [2004], we use the term methodical in its general sense to indicate a developer’s
behavior characterized by method and order.
18It is the failure to notice a fully-visible, but unexpected object because attention was engaged on another
task, event, or object [Mack and Rock 1998].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 G. Scanniello et al.

abbreviated identifier; (ii) exploring dynamic relationships concerned the abbreviated
identifier by debugging the application; (iii) exploring lexically and/or semantically re-
lationships of unknown compounding words of the abbreviated identifier on the basis
of known abbreviated identifiers, e.g., if a developer understands that g means graph
then he/she can infer that e and v stand for edge and vertex, respectively; and (iv) com-
bining the preceding strategies.

6.1.3. Methodical Fault Fixing. The statement that summarizes the result from this
theme is:

To fix faults in the source code with abbreviated identifiers developers apply a more
methodical approach as compared with developers working on source code with
full-word identifiers.

Developers that fixed faults in source code with abbreviated identifiers (with respect
to those provided with source code having full-word identifiers) investigated enough of
the JGraphT code to understand its high-level structures. It seemed that these devel-
opers prepared a detailed plan of the identification of faults and of the changes to be
made on the source code to fix these faults. In contrast, the behavior of developers dealt
with full-word identifiers seemed more opportunistic (antonym of methodical) because
they relied heavily on code skimming and guessing. The methodical approach did not
lead to a longer time to finish fault fixing tasks.

6.1.4. Text-based Search. We summarize the result from this theme as follows:

Abbreviated identifiers make it difficult to perform text-based searches in source
code.

To help developers to discover and understand parts of a program, Eclipse (and also
other IDEs) provides features to perform text-based searches on the source code by us-
ing queries. We noted that all the developers (i.e., professionals provided with source
code having either abbreviated or full-word identifiers) used as textual queries both
concepts of the problem and solution domain and identifier names. Developers pro-
vided with source code having abbreviated identifiers were penalized in two directions.
First, they chose as text-based queries the concepts in their full-word variant because
they were not aware that identifiers were all abbreviated in the source code. This find-
ing is coherent with that Sillito et al. [2008] observed in their study: developers search
for types representing domain concepts or for entities named something like concepts.
Second, there could be several ways to abbreviate an identifier and the likelihood to
choose the wrong textual query is high and could affect search results.

6.1.5. Inattention Blindness. We can summarize the result from this theme as follows:

Inattention blindness is slightly more frequent when source code contains abbrevi-
ated identifiers.

We noted that inattention blindness arose in the two groups of developers. How-
ever, this phenomenon seemed more frequent in the group of developers we asked to
perform fault fixing in the source code with abbreviated identifiers. In particular, two
developers in the group with abbreviated identifiers underwent this phenomenon and

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:33

one developer in the other group. Independently from the group, it happened that de-
velopers did not acknowledge source code fragments that were relevant to reproduce,
identify, or fix a given fault, when these fragments were showed accidentally. Inat-
tention blindness is not refuted by the successful ones to fix faults since all the three
participants (completely or partially) fixed the fault. This finding is coherent with that
by Robillard et al. [2004] observed in their study.

6.1.6. Code Recommenders. This theme produced the following result.

Developers use Eclipse code recommenders (also known as intelligent code comple-
tion) to reduce the navigation among software entities while identifying and fixing
faults in source code.

We noted that developers in both the groups used the Eclipse code recommenders to
identify and fix faults. Indeed, developers used this feature to obtain recommendations
of likely entities to call/use by triggering code completion on another entity (e.g., while
writing the name of a method, the tool suggests possible completions, namely the com-
patible methods). Code recommenders automatically analyze existing code and extract
common usage rules and patterns from it. The developers seemed to be aware of the
power of this feature and used it to reduce navigation among software entities while
they performed fault localization and fixing. As elaborated for the Text-based Search
theme, developers could be slightly penalized if they worked on abbreviated identifiers;
there could be several ways to abbreviate an identifier and the likelihood to choose the
wrong prefix (from which triggering code completion) is higher and this could affect
recommendations.

6.1.7. Characteristics of Identifiers. We can summarize the result from this theme as fol-
lows.

Abbreviated identifiers are not a major obstacle to fault identification and fixing.

This theme emerged from the developers in the group provided with the version of
JGraphT with abbreviated identifiers. In particular, two out of three developers did
not perceive abbreviated identifiers as a major issue to the fault identification and fix-
ing even if (as shown before) they accomplished the fault fixing task in a way slightly
different from the developers in the group with full-word identifiers. Both these devel-
opers were able to find and successfully fix one fault and the second was partially fixed
(see Section 6.3). The ability to fix faults of the participants provided with source code
with abbreviated identifiers was not inferior to that of the participants provided with
source code having full-word identifiers.

6.2. Post-experiment task
We report the responses to the questions of the post-experiment survey questionnaire
in Table XIII. The responses to Q8 indicates that Telegram is the most used social
medium, while responses to Q9 suggest that all the participants used social media
every day. As for Q10, most of the participants stated that they rarely used social
media slang. Finally, the responses to Q11 and Q12 show that participants did not be-
lieve that social media slang was changing how developers choose identifiers and write
source code comments. Summarizing the participants in the qualitative investigation
gives a perspective different from that of the participants in the family of experiments
(i.e., UniNa, PoliNa, and Prof).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 G. Scanniello et al.

Table XIII. Responses to the questions from Q8 to Q12.

Group Participant Questions
Q8 Q9 Q10 Q11 Q12

Full-word Identifiers
P1 WhatsApp Every day Rarely No No
P2 Telegram Every day Rarely No No
P3 Facebook Every day Every day Yes Yes

Abbreviated Identifiers
P4 Facebook Every day Never No No
P5 Telegram Every day Rarely No No
P6 Telegram Every day Often No No

Table XIV. The characterization of the success level for each subtask (of the fault
fixing task) and each participant.

Group Participant Faults
1862338 892621

Full-word Identifiers
P1 SUCCESS BUGGY
P2 SUCCESS UNWORKABLE
P3 SUCCESS UNWORKABLE

Abbreviated Identifiers
P4 SUCCESS BUGGY
P5 BUGGY NOT-ATTEMPTED
P6 SUCCESS BUGGY

6.3. A Quantitative Perspective on the Study
We evaluated the source code the participants wrote during the fault fixing task. The
fourth author of this paper inspected the patches the participants wrote to fix the faults
in JGraphT. To characterize the success level of each fixed fault, we used the following
classification that is inspired by the classification proposed in [Robillard et al. 2004]:

— Success. The participant completely fixed the fault.
— Buggy. The participant partially fixed the fault. That is, he/she wrote some source

code that worked in most cases.
— Unworkable. The participant did not fix the fault.
— Not-attempted. The participant did not make an attempt to fix the fault.

In Table XIV, we report the characterization of the success level for each assigned
fault (i.e., 1862338 and 892621) and participant. All the participants provided with
source code with full-word identifiers successfully fixed the fault 1862338, while two
out of three participants working on source code with abbreviated identifiers success-
fully fixed this fault. Nobody successfully fixed the fault 892621. One participant work-
ing on source code with full-word identifiers partially fixed the fault 892621. On the
other hand, two participants of the group provided with source code with abbreviated
identifiers partially fixed the fault 892621. The participant P5 spent all her time to fix
the fault 1862338. This was why she did not try to fix the fault 892621. It seems that
the fault 892621 was more difficult to find and fix than the fault 1862338. Our analy-
sis on the success level does not show a meaningful pattern. That is, it seems that the
kind of identifier does not affect fault fixing, so confirming results from our family of
controlled experiments.

7. OVERALL DISCUSSION
In the following subsections, we discuss the links between observed results and defined
research questions. We reinforce this link with the results from our ethnographically-
informed study when possible. We conclude delineating practical implications from our
qualitative and quantitative results.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:35

7.1. Linking Results and Research Questions
As for RQ1 (i.e., does the presence of either abbreviated or full-word identifiers in
source code penalize the effort to accomplish fault fixing tasks in that code and the
effectiveness and efficiency to accomplish this kind of task?), we were not able to reject
the null hypotheses: Hn0, Hn1, and Hn2. From the qualitative part of our investiga-
tion, we found results that are coherent with those from our family of experiments and
that provide a qualitative explanation for them. In particular, professional developers
in our ethnographically-informed study did not perceive abbreviated identifiers as a
major obstacle to fault identification and fixing. The lack of a significant difference be-
tween fixing faults in source code with either abbreviated or full-word identifiers could
be justified because developers apply a more methodical approach when fixing faults
in source code with abbreviated identifiers. In some way, the use of a more methodi-
cal approach allows developers to alleviate possible perils in dealing with abbreviated
identifiers (e.g., text-based search and inattention blindness). Concluding, on the basis
of our outcomes and considerations it seems that we cannot positively answer RQ1.

As for RQ2 (i.e., does programming language affect the effort, effectiveness, and ef-
ficiency to execute fault fixing tasks?), the data analysis allowed us to reject Hn3 on
task completion time and task effectiveness. In other words, it seems that fault fixing
on C source code is faster and the participants are more effective in executing this task
independently from the kind of identifiers. It important to note that the interaction be-
tween method and programming language was not significant on all the three response
variables. Therefore, a possible justification for these outcomes could be related to the
inherent differences between C and Java, namely the programming paradigm: C is
procedural, while Java is object-oriented. For example, the information needed to com-
prehend C code and then to identify and fix faults is spread in a lower number of files.
This could reduce the effort needed to fix faults in source code. We can also postulate
that the lower the number of files, the better task effectiveness is. These postulations
are supported by the results by Ko et al. [2006]. In particular, the authors observed
that developers deal with existing source code searching for relevant pieces of code by
following incoming and outgoing dependencies of relevant code. A more recent study
found similar results [Salviulo and Scanniello 2014]. It could also be possible that the
differences shown before could be related to the IDEs rather than the programming
language. The used IDEs (Dev-C++ in UniBas and UniNA and Eclipse in PoliNa and
Prof) represent a threat to the conclusion validity (see reliability of treatment imple-
mentation in Section 3.10.4). However, from our qualitative study we observed that
professional developers largely use Eclipse features when investigating source code.
Many of these features (e.g., intelligent code completion) are not present in Dev-C++
and seemed appreciated and largely used when fixing faults. On the basis of both these
considerations and the obtained results, we can positively answer RQ2. However, we
believe that caution is needed and future work is advisable.

On the basis of our results, we are not able to definitively answer RQ3 (i.e., can de-
velopers correctly and completely expand abbreviated identifiers?) even if it seems that
participants were able to correctly expand the abbreviated identifiers present in source
code on which they performed fault fixing tasks. Participants did not have any partic-
ular difficulty in associating the right meaning to the abbreviated compounding words
of identifiers. In fact, the obtained precision values are high in all our experiments
(i.e.,the mean values of precision range in between 0.765 and 0.95). In other words, it
seems that the programming language and the kind of participant do not affect the
values for the P measure. The participants often expanded a part of the list of the ab-
breviated identifier names with respect to the whole set of identifiers we asked them
to expand. This aspect affected the R values in all the experiments that are not so high

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 G. Scanniello et al.

as compared with the P values (see Figure 5). This is true in all the experiments with
the only exception of UniNa (0.761). As far as these outcomes, we can speculate that:
(i) participants did not encounter all the abbreviated identifiers when dealing with the
fault fixing task; (ii) participants expanded identifiers only in case they were confident
that an expansion was correct; and (iii) participants did not need to understand the
meaning of all the abbreviated identifiers. Results from our ethnographically-informed
study (see the Identifier Expansion and Dealing with Focus Points themes) and those
by Weiser [1982] (e.g., he observed that developers focused only on some source code
pieces, while debugging unfamiliar program) provide supporting evidence. Finally, if
we compare UniNa and PoliNa (the two experiments with participants with similar
development experience), it seems that the programming language could make a dif-
ference with respect to R, namely participants in UniNa obtained better recall values.
However, it was impossible to answer on this point analytically because Java and C
programs were different one another and did not include the same identifiers.

As for RQ4 (i.e., do developers perceive fault fixing on source code containing abbre-
viated identifiers as more difficult/simple than fault fixing on source code containing
full-word identifiers?), gathered and analyzed responses from the statements of our
post-experiment survey questionnaire suggest that participants in our family of con-
trolled experiments perceived the presence of abbreviated identifiers (with respect to
full-word ones) in the source code as problematic while fixing faults. This is a case
in which controlled experiments provide insight into the differences between the per-
ceived and the effective disadvantages (or advantages) of administering a given treat-
ment to a participant. It is worth mentioning that the qualitative findings from the
ethnographically-informed study contrast the results from our family of controlled
experiments. Professional developers did not find abbreviated identifiers as a major
obstacle to fault identification and fixing. However, we observed some differences be-
tween professional developers provided with source code with abbreviated and full-
word identifiers. It seems that developers have to adapt their habits to investigate
source code when it contains only abbreviated identifiers. We can speculate that fault
fixing is not perceived as a major issue when fault fixing is performed on real applica-
tions with real faults and developers have a given professional experience. To conclude
our study does not provide conclusive results on how developers perceive abbreviated
and full-word identifiers when performing fault fixing tasks even if our outcomes pose
the basis for future research on this matter.

7.2. Implications
We delineate here main practical implications for our investigation from both prac-
titioner/consultant (simply practitioner in the following) and researcher perspectives.
These implications can be summarized as follows:

— Overall results suggest that the ability of participants to fix faults in unfamiliar
source code seems independent from whether identifiers are written in abbreviated
form or not. This outcome is relevant because developers could program without
paying attention to the identifier form. This implication is especially important from
the practitioner perspective. On the other hand, the researcher could be interested
in studying how developers deal with identifiers in abbreviated form. The results
from the ethnographically-informed study pose the basis on this respect. That is, we
observed that developers use a different approach to program investigation when
working on abbreviated identifiers: the developers adopt a more methodical ap-
proach to identify and fix faults extending their focus point and in only a few cases
they expand the compounding words of abbreviated identifiers.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:37

— We observed differences in fixing faults in C and Java source code in our family of
experiments. In particular, we observed difference in effort and effectiveness con-
structs. These findings are particularly relevant for the researcher, who could be
interested in further investigating how much programming language impacts on
task completion time and task effectiveness. Our results produce the basis for fu-
ture work on this matter.

— The family of controlled experiments is focused on desktop applications imple-
mented in C and Java. The researcher and the practitioner could be both interested
in studying whether our results also hold for different kinds of software (e.g., web
applications). Finally, it could be of interest for the researcher to study whether our
outcomes scale also to applications more complex and larger than those we used in
our family of experiments. The presented ethnographically-informed study might
represent a first step toward this research direction. The results from this study
seem to confirm those from our family of controlled experiments on a larger and
real application from a different domain with real faults.

— Results suggest that effort and effectiveness constructs seem not to be directly re-
lated one another for the program written in C (UniBas and UniNa). That is, spend-
ing on average more time to fix faults does not mean to improve task effectiveness
and task efficiency for both FULL and ABBR. This result could be concerned to the
participants’ experience and it is worthwhile for both the researcher and the practi-
tioner. Our study poses the basis to future investigations in that direction.

— The way people communicate with one another through social media and social me-
dia slang is creeping into the today’s society. Since source code is very often the
only artifact available to comprehend an application and to implicitly communi-
cate with other developers [Roehm et al. 2012; Salviulo and Scanniello 2014], it is
easy to imagine that both the communication and the way in which source code is
written could change. However, the use of abbreviations is not new in computer pro-
gramming (e.g., tmp and i are largely used), but social media slang may make this
practice more widespread and extensive in the future. Qualitative results from our
family of controlled experiments and from our ethnographically-informed study con-
trast on if social media slang is changing or not how developers write source code.
In particular, the participants in UniNa, PoliNa, and Prof believed that social media
slang was changing how developers write code. These participants also believed that
the use of social media affects the choice of identifier names more than how source
code comments are written. The perspective of the professional developers in the
ethnographically-informed study was different on the identifier names. The greater
part of them asserted that social media slang is not changing how developers choose
identifiers. From the gathered data, it seems that the participants who used more
often social media and their slang perceived differently from others the change pro-
cess to how developers choose identifiers. This point is of interest for the researcher,
who could want to study if and how the use of social media slang affects computer
programming style. In addition, the researcher could be interested in studying if
developers’ familiarity with social media slang might interact with their habit in
choosing and dealing with abbreviations.

8. CONCLUSION
In this article, we present a family of controlled experiments to assess whether ab-
breviated or full word identifier names have any effect on the removal of faults in
unfamiliar C and Java source code. Our family consisted of four experiments involving
a total of 100 participants. Results indicated that the difference in using abbreviated
and full-word identifier names is not statistically significant with respect to the effort,
the effectiveness, and the efficiency to identify and fix faults. We also conducted a qual-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:38 G. Scanniello et al.

itative study on a real application containing real faults. We involved in this study six
professional developers with one to three years of work experience. Results allowed
us to find additional insights and complement those from our family of experiments.
We can summarize these insights as follows: fault fixing in source code with abbrevi-
ated identifiers needs a more methodical approach and abbreviated identifiers are not
perceived as major obstacle to fix faults in source code.

ACKNOWLEDGMENTS

The authors would like to thank people who participated in our family of experiments and in our
ethnographically-informed study. We would also like to thank Massimiliano Di Penta for his precious com-
ments and suggestions.

REFERENCES
ABRAHÃO, S. M., GRAVINO, C., PELOZO, E. I., SCANNIELLO, G., AND TORTORA, G. 2013. Assessing the

effectiveness of sequence diagrams in the comprehension of functional requirements: Results from a
family of five experiments. IEEE Trans. on Soft. Eng. 39, 3.

ARANDA, J., ERNST, N., HORKOFF, J., AND EASTERBROOK, S. 2007. A framework for empirical evaluation
of model comprehensibility. In Modeling in Software Engineering, ICSE Workshop. IEEE, 7–13.

ARNAOUDOVA, V., ESHKEVARI, L. M., PENTA, M. D., OLIVETO, R., ANTONIOL, G., AND GUÉHÉNEUC, Y.
2014. REPENT: analyzing the nature of identifier renamings. IEEE Trans. on Soft. Eng. 40, 5, 502–532.

BALDASSARRE, M. T., CARVER, J., DIESTE, O., AND JURISTO, N. 2014. Replication types: Towards a shared
taxonomy. In Proc. of International Conference on Evaluation and Assessment in Software Engineering.
ACM, 18:1–18:4.

BASILI, V., SHULL, F., AND LANUBILE, F. 1999. Building knowledge through families of experiments. IEEE
Trans. on Soft. Eng. 25, 4, 456–473.

BASILI, V. R. AND ROMBACH, H. D. 1988. The TAME project: Towards improvement-oriented software
environments. IEEE Trans. on Soft. Eng. 14, 6, 758–773.

BECK, K. 2003. Test Driven Development: By Example. Addison Wesley.
BETHANY K. DUMAS, J. L. 1978. Is slang a word for linguists? American Speech 53, 1, 5–17.
BEYNON-DAVIES, P. 1997. Ethnography and information systems development: Ethnography of, for and

within is development. Information & Software Technology 39, 8, 531–540.
BEYNON-DAVIES, P., TUDHOPE, D., AND MACKAY, H. 1999. Information systems prototyping in practice.

Journal of Information Technology 14, 1, 107–120.
BINKLEY, D., DAVIS, M., LAWRIE, D., MALETIC, J. I., MORRELL, C., AND SHARIF, B. 2013. The impact of

identifier style on effort and comprehension. Empirical Software Engineering 18, 2, 219–276.
CANFORA, G. AND DI PENTA, M. 2007. New frontiers of reverse engineering. In Proc. of Workshop on the

Future of Software Engineering. 326–341.
CARVER, J., JACCHERI, L., MORASCA, S., AND SHULL, F. 2003. Issues in using students in empirical studies

in software engineering education. In Proc. of International Symposium on Software Metrics. IEEE CS
Press, 239–.

CARVER, J. C., JUZGADO, N. J., BALDASSARRE, M. T., AND VEGAS, S. 2014. Replications of software engi-
neering experiments. Empirical Software Engineering 19, 2, 267–276.

CIOLKOWSKI, M., MUTHIG, D., AND RECH, J. 2004. Using academic courses for empirical validation of
software development processes. EUROMICRO Conference, 354–361.

COLOSIMO, M., DE LUCIA, A., SCANNIELLO, G., AND TORTORA, G. 2009. Evaluating legacy system migra-
tion technologies through empirical studies. Information & Software Technology 51, 12, 433–447.

CRABTREE, A., RODDEN, T., TOLMIE, P., AND BUTTON, G. 2009. Ethnography considered harmful. In Proc.
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’09. ACM, New York, NY,
USA, 879–888.

DA SILVA, F. Q. B., SUASSUNA, M., FRANÇA, A. C. C., GRUBB, A. M., GOUVEIA, T. B., MONTEIRO, C.
V. F., AND DOS SANTOS, I. E. 2014. Replication of empirical studies in software engineering research:
a systematic mapping study. Empirical Software Engineering 19, 3, 501–557.

DELINE, R., KHELLA, A., CZERWINSKI, M., AND ROBERTSON, G. 2005. Towards understanding programs
through wear-based filtering. In Proc. of International Symposium on Software visualization. SoftVis
’05. ACM, 183–192.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:39

DEMILLO, R. A., LIPTON, R. J., AND SAYWARD, F. G. 1978. Hints on test data selection: Help for the
practicing programmer. Computer 11, 4, 34–41.

ENSLEN, E., HILL, E., POLLOCK, L. L., AND VIJAY-SHANKER, K. 2009. Mining source code to automat-
ically split identifiers for software analysis. In Proc. of International Working Conference on Mining
Software Repositories. 71–80.

FRASER, G. AND ZELLER, A. 2012. Mutation-driven generation of oracles and unit tests. IEEE Transactions
on Software Engineering 38, 2, 278–292.

FUCCI, D., SCANNIELLO, G., ROMANO, S., SHEPPERD, M., SIGWENI, B., UYAGUARI, F. U., TURHAN, B.,
JURISTO, N., AND OIVO, M. 2016. An external replication on the effects of Test-Driven Development
using a multi-site blind analysis approach. In Proc. of the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. ACM, 3:1–3:10.

GÓMEZ, O. S., JUZGADO, N. J., AND VEGAS, S. 2014. Understanding replication of experiments in software
engineering: A classification. Information & Software Technology 56, 8, 1033–1048.

GOPINATH, R., JENSEN, C., AND GROCE, A. 2014. Mutations: How close are they to real faults? In Interna-
tional Symposium on Software Reliability Engineering. IEEE Computer Society, 189–200.

GRAVINO, C., RISI, M., SCANNIELLO, G., AND TORTORA, G. 2012. Do professional developers benefit from
design pattern documentation? a replication in the context of source code comprehension. In Proc. of
International Conference on Model Driven Engineering Languages and Systems. Lecture Notes in Com-
puter Science. Spinger, 185–201.

GUPTA, S., MALIK, S., POLLOCK, L. L., AND VIJAY-SHANKER, K. 2013. Part-of-speech tagging of program
identifiers for improved text-based software engineering tools. In Proc. of International Conference on
Program Comprehension. IEEE Computer Society, 3–12.

HAMMERSLEY, M. AND ATKINSON, P. 2007. Ethnography: Principles in Practice. Taylor & Francis.
HANNAY, J. AND JØRGENSEN, M. 2008. The role of deliberate artificial design elements in software engi-

neering experiments. IEEE Trans. on Soft. Eng. 34, 242–259.
HUANG, L. AND HOLCOMBE, M. 2009. Empirical investigation towards the effectiveness of test first pro-

gramming. Information & Software Technology 51, 1, 182–194.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. 1991. Information Technology–Software Product

Evaluation: Quality Characteristics and Guidelines for their Use, ISO/IEC IS 9126. ISO, Geneva.
ISO. 2000. ISO 9241-11: Ergonomic requirements for office work with visual display terminals (VDTs) – Part

9: Requirements for non-keyboard input devices. ISO, Geneva, Switzerland.
ISO. 2011. ISO/IEC 25010 Systems and software engineering – Systems and software Quality Requirements

and Evaluation (SQuaRE) – System and software quality models. ISO, Geneva, Switzerland.
JEDLITSCHKA, A., CIOLKOWSKI, M., AND PFAHL, D. 2008. Reporting experiments in software engineering.

In Guide to Advanced Empirical Software Engineering. Springer London, 201–228.
JURISTO, N. AND MORENO, A. 2001. Basics of Software Engineering Experimentation. Kluwer Academic

Publishers, Englewood Cliffs, NJ.
KIM, S., CLARK, J. A., AND MCDERMID, J. A. 1999. The rigorous generation of Java mutation operators

using HAZOP. In Proc. of International Conference on Software & Systems Engineering and their Appli-
cations. 9–10.

KIM, S., CLARK, J. A., AND MCDERMID, J. A. 2000. Class mutation: Mutation testing for object-oriented
programs. In Proc. of NET.OBJECTDAYS. 9–12.

KITCHENHAM, B. 2008. The role of replications in rmpirical software engineering - a word of warning.
Empirical Software Engineering 13, 2, 219–221.

KITCHENHAM, B., PFLEEGER, S., PICKARD, L., JONES, P., HOAGLIN, D., EL EMAM, K., AND ROSENBERG,
J. 2002. Preliminary guidelines for empirical research in software engineering. IEEE Trans. on Soft.
Eng. 28, 8, 721–734.

KO, A. J., MYERS, B. A., COBLENZ, M. J., AND AUNG, H. H. 2006. An exploratory study of how developers
seek, relate, and collect relevant information during software maintenance tasks. IEEE Trans. on Soft.
Eng. 32, 12, 971–987.

LATOZA, T. D., VENOLIA, G., AND DELINE, R. 2006. Maintaining mental models: a study of developer work
habits. In Proc. of International Conference on Software Engineering. ACM, 492–501.

LAWRIE, D., MORRELL, C., FEILD, H., AND BINKLEY, D. 2006. What’s in a name? a study of identifiers. In
Proc. of International Conference on Program Comprehension. IEEE CS Press, 3–12.

LAWRIE, D., MORRELL, C., FEILD, H., AND BINKLEY, D. 2007. Effective identifier names for comprehension
and memory. Innovations in Systems and Software Engineering 3, 4, 303–318.

LYKKEN, D. T. 1968. Statistical significance in psychological research. Psychological Bulletin 70, 151–159.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:40 G. Scanniello et al.

MACK, A. AND ROCK, I. 1998. Inattentional Blindness. A Bradford book. MIT Press.
MANNING, C. D., RAGHAVAN, P., AND SCHÜTZE, H. 2009. An Introduction to Information Retrieval. Cam-

bridge University Press, England.
MENDONÇA, M. G., MALDONADO, J. C., DE OLIVEIRA, M. C. F., CARVER, J., FABBRI, S. C. P. F., SHULL,

F., TRAVASSOS, G. H., HÖHN, E. N., AND BASILI, V. R. 2008. A framework for software engineering
experimental replications. In Proc. of International Conference on Engineering of Complex Computer
Systems (2009-09-30). IEEE Computer Society, 203–212.

MONPERRUS, M., EICHBERG, M., TEKES, E., AND MEZINI, M. 2012. What should developers be aware
of? an empirical study on the directives of API documentation. Empirical Software Engineering 17, 6,
703–737.

OPPENHEIM, A. N. 1992. Questionnaire Design, Interviewing and Attitude Measurement. Pinter, London.
PECK, R. AND DEVORE, J. 2011. Statistics: The Exploration & Analysis of Data. Cengage Learning.
PFLEEGER, S. L. AND MENEZES, W. 2000. Marketing technology to software practitioners. IEEE Soft-

ware 17, 1, 27–33.
RICCA, F., DI PENTA, M., TORCHIANO, M., TONELLA, P., AND CECCATO, M. 2007. The role of experience

and ability in comprehension tasks supported by UML stereotypes. In Proc. of International Conference
on Software Engineering. 375–384.

RICCA, F., TORCHIANO, M., DI PENTA, M., CECCATO, M., TONELLA, P., AND VISAGGIO, C. A. 2008. Are
fit tables really talking? a series of experiments to understand whether fit tables are useful during
evolution tasks. In Proc. of International Conference on Software Engineering. IEEE Computer Society,
361–370.

ROBILLARD, M. P., COELHO, W., AND MURPHY, G. C. 2004. How effective developers investigate source
code: An exploratory study. IEEE Trans. on Soft. Eng. 30, 12, 889–903.

ROBINSON, H., SEGAL, J., AND SHARP, H. 2007. Ethnographically-informed empirical studies of software
practice. Inf. Softw. Technol. 49, 6, 540–551.

ROEHM, T., TIARKS, R., KOSCHKE, R., AND MAALEJ, W. 2012. How do professional developers comprehend
software? In Proc. of International Conference on Software Engineering. IEEE CS Press, 255–265.

ROMANO, S., FUCCI, D., SCANNIELLO, G., TURHAN, B., AND JURISTO, N. 2016. Results from an
ethnographically-informed study in the context of test driven development. In Proc. of the International
Conference on Evaluation and Assessment in Software Engineering. ACM, New York, NY, USA, 10:1–
10:10.

ROMANO, S., FUCCI, D., SCANNIELLO, G., TURHAN, B., AND JURISTO, N. 2017. Findings from a multi-
method study on test-driven development. Information and Software Technology, –.

SALTON, G. AND MCGILL, M. J. 1983. Introduction to Modern Information Retrieval. McGraw Hill, New
York.

SALVIULO, F. AND SCANNIELLO, G. 2014. Dealing with identifiers and comments in source code compre-
hension and maintenance: Results from an ethnographically-informed study with students and profes-
sionals. In Proc. of International Conference on Evaluation and Assessment in Software Engineering.
ACM, New York, NY, USA, 1–10.

SCAIFE, M. AND ROGERS, Y. 1996. External cognition: how do graphical representations work? Interna-
tional Journal of Human-Computer Studies 45, 2, 185–213.

SCANNIELLO, G., GRAVINO, C., GENERO, M., CRUZ-LEMUS, J. A., AND TORTORA, G. 2014. On the impact
of UML analysis models on source code comprehensibility and modifiability. ACM Trans. on Soft. Eng.
and Meth. 23, 2.

SCANNIELLO, G., GRAVINO, C., RISI, M., TORTORA, G., AND DODERO, G. 2015. Documenting design-
pattern instances: a family of experiments on source code comprehensibility. ACM Trans. on Soft. Eng.
and Meth. 24, 3.

SCANNIELLO, G. AND RISI, M. 2013. Dealing with faults in source code: Abbreviated vs. full-word identifier
names. In Proc. of International Conference on Software Maintenance. IEEE Computer Society, 190–199.

SEAMAN, C. B. 1999. Qualitative methods in empirical studies of software engineering. IEEE Trans. Softw.
Eng. 25, 4, 557–572.

SHAPIRO, D. 1994. The limits of ethnography: Combining social sciences for CSCW. In Proc. of the Confer-
ence on Computer Supported Cooperative Work. 417–428.

SHAPIRO, S. AND WILK, M. 1965. An analysis of variance test for normality. Biometrika 52, 3-4, 591–611.
SHARP, H., DITTRICH, Y., AND DE SOUZA, C. R. B. 2016. The role of ethnographic studies in empirical

software engineering. IEEE Trans. Software Eng. 42, 8, 786–804.
SHARP, H. AND ROBINSON, H. 2004. An ethnographic study of xp practice. Empirical Softw. Eng. 9, 4,

353–375.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:41

SHARP, H., ROBINSON, H., AND WOODMAN, M. 2000. Software engineering: Community and culture. IEEE
Softw. 17, 1, 40–47.

SHULL, F., CARVER, J. C., VEGAS, S., AND JUZGADO, N. J. 2008. The role of replications in empirical
software engineering. Empirical Software Engineering 13, 2, 211–218.

SIEGMUND, J. 2016. Program comprehension: Past, present, and future. In Proc. of International Conference
on Software Analysis, Evolution, and Reengineering, IEEE, Ed.

SILLITO, J., MURPHY, G. C., AND DE VOLDER, K. 2008. Asking and answering questions during a program-
ming change task. IEEE Trans. on Soft. Eng. 34, 4, 434–451.

SINGER, J., LETHBRIDGE, T., VINSON, N., AND ANQUETIL, N. 1997. An examination of software engi-
neering work practices. In Proc. of the Conference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 21–.

TEMPERO, E., ANSLOW, C., DIETRICH, J., HAN, T., LI, J., LUMPE, M., MELTON, H., AND NOBLE, J. 2010.
Qualitas corpus: A curated collection of Java code for empirical studies. In Proc. of Asia Pacific Software
Engineering Conference. 336–345.

VEGAS, S., APA, C., AND JURISTO, N. 2016. Crossover designs in software engineering experiments: Bene-
fits and perils. IEEE Trans. Software Eng. 42, 2, 120–135.

WEISER, M. 1982. Programmers use slices when debugging. Communications of the Association for Com-
puting Machinery 25, 446–452.

WOHLIN, C., RUNESON, P., HÖST, M., OHLSSON, M., REGNELL, B., AND WESSLÉN, A. 2012. Experimen-
tation in Software Engineering. Springer.

WOODFIELD, S. N., DUNSMORE, H. E., AND SHEN, V. Y. 1981. The effect of modularization and comments
on program comprehension. In Proc. of the International Conference on Software Engineering. IEEE
Computer Society, 215–223.

ZHANG, J. AND NORMAN, D. A. 1994. Representations in distributed cognitive tasks. Cognitive Science 18, 1,
87–122.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:42 G. Scanniello et al.

A. SEEDED FAULTS IN SOURCE CODE
In this appendix, we show two examples of faults seeded in AveCalc and Hotel-
Reservation. To obtain the shown faulty code, we showed the application of the COR
operator to AveCalc and the CFD operator to Hotel-Reservation, respectively. In par-
ticular, we report the source code of AveCalc (i.e., the method setVote) before having
applied the COR mutation operator (on the top of Figure 9). The application of this
operator resulted in the source code shown on the bottom of Figure 9. In particular, we
replaced an or binary conditional operator (||) with an and operator (&&). The seeded
fault is highlighted in red. The presence of this fault also allows an invalid input,
namely negative integer and values greater than 30. As for Hotel-Reservation, CFD
operator was used. We show a chunk of Hotel-Reservation source code before and after
fault seeding on the top and on the bottom of Figure 10, respectively. Mutation (i.e.,
break) is highlighted in red. The presence of this fault breaks out the loop handling
only the first element of the array.

public void setVote (int vote) {
i f (vote < 0 | | vote > 30)

throw new IllegalArgumentException ("Vote must to be a number < 30 and > 0") ;
this . vote = vote ;

}

public void setVote (int vote) {
i f (vote < 0 && vote > 30)

throw new IllegalArgumentException ("Vote must to be a number < 30 and > 0") ;
this . vote = vote ;

}

Fig. 9. Example of fault seeded in AveCalc.

. . .
c l r s c r () ;
pr in t f ("R.No. Name NIC Number Check In Check Out\n") ;
for (i t e r a t o r = 1; i t e r a t o r < SIZE ; i t e r a t o r ++) {

i f (singleRoom [i t e r a t o r] == 1) {
pr int f ("%d %s %s %s %s\n" , i terator ,

guest .name[i t e r a t o r] ,
guest . fiscalCodeNumber [i t e r a t o r] ,
guest . checkinDate [i t e r a t o r] ,
guest . checkoutDate [i t e r a t o r]) ;

}
}
. . .

. . .
c l r s c r () ;
pr in t f ("R.No. Name NIC Number Check In Check Out\n") ;
for (i t e r a t o r = 1; i t e r a t o r < SIZE ; i t e r a t o r ++) {

i f (singleRoom [i t e r a t o r] == 1) {
pr int f ("%d %s %s %s %s\n" , i terator ,

guest .name[i t e r a t o r] ,
guest . fiscalCodeNumber [i t e r a t o r] ,
guest . checkinDate [i t e r a t o r] ,
guest . checkoutDate [i t e r a t o r]) ;

}
break;

}
. . .

Fig. 10. Example of fault seeded in Hotel-Reservation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:43

B. ANALYSIS OF SEEDED FAULTS
A seeded fault can be successfully fixed or not. We consider a response variable (i.e.,
fixed) that assumes one if and only if a fault is successfully fixed, while it assumes zero
if a fault is not successfully fixed. In Table XV, we show some descriptive statistics
on this variable grouping observation for operator (i.e., kind of seeded fault) and for
kind of identifier (FULL and ABBR mean that the source code contained full-word
and abbreviated identifiers, respectively). The second and third columns report the
mean and the standard deviation for kind of seeded fault and without considering the
kinds of identifier. The mean values of the fixed variable assume values in between
zero and one. The best value is one, while the worst is zero. One indicates that all the
faults seeded with that operator were successfully fixed in the family of experiments.
According to the descriptive statistics in Table XV, we can then postulate that it was
less difficult for the participants to fix the faults seeded by applying the COR and
LCO mutation operators [Kim et al. 1999; Kim et al. 2000]. The mean values for COR
and LCO were 0.875 and 0.804, respectively. There is not a huge difference in the
mean values grouping observations for FULL and ABBR. This pattern hold for all the
operators with the only exception of COI. It seems that it was less difficult to identify
and fix the fault seeded by applying this operator when identifiers were full-word. This
difference could be due to the number of observations (16 for FULL and 16 for ABBR).
It is worth noting that the standard deviation values are high in many cases because
of the considered response variable assumes two possible values: zero and one.

To complete the study on the kind of operators to seed faults in the application, we
also applied a multivariate linear mixed model analysis. We used this kind of analysis
to verify the effect of the mutation operator and the kind of identifiers and the presence
of a significant interaction between them. Results showed that there is a significant
effect of the operator on the fixed variale (p-value < 0.001), while the effect of the
identifiers is not statistically significant (p-value = 0.299). That is, some seeded faults
were easier or more difficult to fix than others, but this did not depend on the kind
of identifier. In fact, the interaction between the kind of mutation operator and the
kind of identifier is not statistically significant (p-value = 0.375). According to this
insight, we analyzed the faults bearing in bind the kind of operator we applied to seed
them. This investigation suggested that those seeded faults that modified the original
control and data flow were more difficult to identify independently from the kind of
identifiers. Although this outcome perhaps might be not surprising, the results of this
further analysis pose the basis of future investigations on the simplicity/complexity to
identify and fix faults seeded by applying mutation operators.

Table XV. Descriptive statistics for mutation operator

Operator ALL FULL ABBR
Mean St. Dev. Mean St. Dev. Mean St.Dev.

Conditional Operator Replacement (COR) 0.875 0.336 0.875 0.342 0.875 0.342
Literal Change Operator (LCO) 0.804 0.398 0.888 0.317 0.711 0.455
Variable Replacement Operator (VRO) 0.665 0.473 0.69 0.464 0.642 0.481
Relational Operator Replacement (ROR) 0.625 0.492 0.625 0.5 0.625 0.5
Language Operator Replacement (LOR) 0.585 0.494 0.577 0.496 0.593 0.493
Assignment Operator Replacement (ASR) 0.5 0.503 0.479 0.505 0.521 0.505
Control Flow Disrupt operator (CFD) 0.474 0.5 0.473 0.501 0.475 0.501
Arithmetic Operator Insertion (AOI) 0.422 0.498 0.406 0.499 0.438 0.504
Conditional Operator Insertion (COI) 0.406 0.499 0.562 0.512 0.25 0.447

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

	Introduction
	Motivation and Background
	Motivation
	Replications in Software Engineering
	Dealing with Identifier Names
	Qualitative Studies in Software Evolution and Ethnography

	The Family of Experiments
	Goal
	Context Selection
	Variable Selection
	Effort and task completion time
	Effectiveness and task effectiveness
	Efficiency and task efficiency

	Hypotheses Formulation
	Design of the Experiments
	Experimental Tasks
	Experiment Operation
	Analysis Procedure
	Summary of the Differences
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Results from the Family of Experiments
	Descriptive Statistics and Exploratory Data Analysis
	Hypotheses Testing
	Hn0: task completion time
	Hn1: task effectiveness
	Hn2: task efficiency
	Hn3_X: C vs. Java

	Expanding identifiers
	Post-experiment Survey Questionnaire

	Ethnographically-informed Study
	Definition and Context
	The Setting
	The Study
	Design
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Results from the Ethnographically-informed Study
	Ethnographic Analysis
	Identifier Expansion
	Dealing with Focus Points
	Methodical Fault Fixing
	Text-based Search
	Inattention Blindness
	Code Recommenders
	Characteristics of Identifiers

	Post-experiment task
	A Quantitative Perspective on the Study

	Overall Discussion
	Linking Results and Research Questions
	Implications

	Conclusion
	Seeded Faults in Source Code
	Analysis of Seeded Faults

