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Highlights  9 

 Reference evapotranspiration (ET0) forecasted with a limited area ensemble prediction 10 

system 11 

 Forecast performances were evaluated with both deterministic and probabilistic indices 12 

 Forecasts were robust and reliable for lead times up to 5 days. 13 

Abstract 14 

The increasing availability of operational limited-area ensemble prediction systems (LEPS) opens up 15 

new opportunities for the application of weather forecasts in agriculture and water resource 16 

management. This study aims to evaluate the performances of probabilistic daily reference crop 17 

evapotranspiration (ET0) forecasts with lead times up to 5 days and a spatial resolution of 7 km, 18 

computed by using COSMO-LEPS outputs (provided by the European Consortium for small–scale 19 

modelling, COSMO), in a region of southern Italy known for its complex topography in proximity to 20 

the Mediterranean coastline. ET0 was estimated by means of three different estimation methods, i.e. the 21 

Hargreaves-Samani (HS), Priestley-Taylor (PT) and FAO Penman-Monteith (PM) equations, in order 22 

to assess the size of the weather forecast errors with models of different accuracies. Forecasts were 23 

verified with ground-based data from 18 automatic weather stations, and for two irrigation seasons. 24 
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Performances were assessed with both deterministic indices, including BIAS, RMSE, correlation 25 

coefficients and coefficients of variation of the 16-member ensemble forecasts, and probabilistic 26 

metrics, such as the Brier skill score, reliability diagrams and relative operating characteristic. ET0 27 

forecasts with PM equation were robust and reliable, with slight sensitivity to the forecast lead time. 28 

High performances were also achieved with HS and PT equations, except for locations close to the 29 

coastline, where large systematic errors affect the numerical weather forecasts. 30 
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1. Introduction 34 

Predicting evapotranspiration is fundamental in hydrological applications addressing water resources 35 

and irrigation management issues. Evapotranspiration is often retrieved as a function of the daily 36 

reference crop evapotranspiration (ET0), which is evapotranspiration from a well-watered hypothetical 37 

reference crop. An internationally recognized standard method for computing ET0 is the FAO-56 38 

Penman-Monteith (ET0-PM) equation (Allen et al., 1998). ET0-PM is considered the best method for 39 

estimating daily ET0 in all climates, because the FAO-56 Penman-Monteith (PM) equation follows a 40 

physically based approach incorporating both physiological and aerodynamic parameters and thus does 41 

not require any local calibration (e.g., Garcia et al., 2004). ET0-PM entails the availability of a complete 42 

set of meteorological data, including air temperature, wind speed, solar radiation and relative humidity. 43 

These data are often unavailable in many regions of the world or are available with large uncertainty, 44 

since they are estimated by spatial interpolation of sparse meteorological ground stations. Other 45 

equations have been proposed for estimating ET0 with a reduced number of meteorological data, but 46 

with additional empirical parameters that, where possible, are calibrated at local scale. Allen et al. 47 

(1998) proposed the Hargreaves-Samani (HS) equation for estimating ET0 (hereinafter referred to as 48 

ET0-HS) solely from temperature data (Hargreaves and Samani, 1985). The Priestley-Taylor (PT) 49 

equation (Priestley and Taylor, 1972) has also been suggested as a valid alternative for estimating ET0 50 

(hereinafter referred to as ET0-PT) for locations where only temperature and radiation data are available 51 

(e.g. Pereira, 2004).  52 

One practical aspect is that ET0, whatever equation is used for computing it, is only a function of weather 53 

variables and thus ET0 can be regarded as a diagnostic meteorological variable. Forecast performance 54 

of numerical weather prediction (NWP) models have considerably improved in the 21st century, making 55 

their output a valuable source for estimating ET0 maps, alternative to the spatial interpolation of spatially 56 

coarse ground-based weather datasets (WMO, 2012).  57 
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Recent studies have focussed on assessing the performance of ET0 estimates obtained with output data 58 

of regional weather models, also known as limited area models (LAM), which exploit the prediction 59 

of global circulation models (GCM) for identifying the initial and boundary conditions of a small 60 

region where the meteorological phenomena are explicitly resolved with finer spatial resolution. 61 

Nesting NWP models with finer scale into coarser models is equivalent to dynamically downscaling 62 

the output of the coarser model, consistently with the physical and empirical laws numerically resolved 63 

for describing the main meteorological phenomena. 64 

Cai et al. (2007; 2009) employed weather forecast messages produced by the China Meteorological 65 

Administration for estimating daily ET0-PM. Ishak et al. (2010) applied the regional model MM5, nested 66 

with ERA-40 reanalysis data provided by the European Centre for Medium-Range Weather Forecast 67 

(ECMWF) global model, and found that ET0-PM was overestimated by 27%-46%. Silva et al. (2010), 68 

also applying MM5 outputs, estimated daily ET0-PM in Central Chile with a root mean square error 69 

(RMSE) between 0.99 mmday-1 and 1.54 mmday-1. They managed to reduce the RMSE by 10-20% 70 

after bias correcting raw NWP model outputs. Er-Raki et al. (2010), to overcome the scarcity of ground 71 

data in a semi-arid region of Central Morocco, employed the temperature fields produced by the 72 

ALADIN regional NWP model (nested with the ARPEGE global model) and, by applying an 73 

uncalibrated HS equation, estimated monthly ET0 maps with an average RMSE of 16 mm. Srivastava 74 

et al. (2013) compared ET0-PM estimates in southeast England with weather data obtained by nesting the 75 

WRF regional NWP model with reanalysis data, respectively provided by ECMWF ERA-interim and 76 

the National Centers for Environmental Prediction (NCEP). The study suggested that ET0-PM estimates 77 

obtained by dynamically downscaling ECMWF reanalysis data outperform those obtained with NCEP 78 

reanalysis data. 79 

Other recent studies evaluated the possibility to exploit operational numerical weather model outputs 80 

for real-time forecasting ET0 in the short-medium range, i.e. with a lead time up to 1-2 weeks. Perera et 81 

al. (2014) applied output data provided by the ACCESS-G global model output operated by the 82 

Australian Bureau of Meteorology with a spatial resolution of 80 km, to estimate ET0-PM with lead times 83 
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up to nine days. The study showed good forecast performances with average RMSE less than 1 mm 84 

day-1 for lead time up to four days, after removing systematic bias of the numerical weather output data 85 

with respect to the ground weather stations.  86 

In the last two decades, ensemble prediction systems (EPS) have become increasingly popular in 87 

operational decision-making processes. Unlike traditional deterministic forecasts where the numerical 88 

weather prediction model is run only once, in EPS the NWP model is run several times from very 89 

slightly different initial conditions and perturbed model parameters, to produce an ensemble of forecasts 90 

that are used to account for uncertainty in initial atmospheric conditions and NWP model errors (Buizza 91 

et al., 1999).  92 

Tian and Martinez (2012a,b) employed Global Forecast System (GFS; Hamill et al., 2006) ensemble 93 

reanalysis data provided by NCEP to generate 1-15 day probabilistic ET0 forecasts and then statistically 94 

downscale the forecasts by means of the analog approach (Hamill and Whitaker, 2006) in the 95 

southwestern United States. The GFS data set consisted of 15 members with a spatial resolution of 96 

about 200 km. Since the GFS dataset did not include all meteorological data required for estimating 97 

ET0-PM, ET0 forecasts were produced by using both the PM equation with alternative approximations of 98 

some of its main variables as well as the Thornthwaite equation (Thornthwaite, 1948). The statistical 99 

downscaling method was calibrated and verified with a set of ET0-PM produced with a 32 km grid 100 

reanalysis dataset provided by the North American Regional Reanalysis dataset (NARR; Mesinger et 101 

al., 2006). The results showed that most of the forecasts were skilful in the first five lead days.  102 

Tian and Martinez (2014) replicated the experiment with a second GEFS reanalysis dataset, which was 103 

operationally available from 2012 (Hamill et al., 2013), with 11 ensemble members and a spatial 104 

resolution of 100 km. Tian and Martinez (2014), compared with the previous experiment (Tian and 105 

Martinez 2012a,b), managed to improve the skill of the probabilistic ET0-PM forecasts as well as the 106 

accuracy in estimating the soil water deficit for irrigation scheduling in the first five lead days, thanks 107 

to the availability of a complete meteorological dataset produced by a more advanced NWP model at 108 

higher spatial resolution. 109 

This is a post-peer-review, pre-copyedit version of an article published in "Agricultural Water Management". 
The final authenticated version is available online at: https://doi.org/10.1016/j.agwat.2016.09.015



  

Compared with the dynamic downscaling, statistical downscaling as the analog method has an 110 

advantage in requiring much less computational resources. However, simultaneous ground observations 111 

and forecast reanalysis data are required for a long period of time (e.g., about 25 years) in order to 112 

achieve a good calibration and verification of the statistical techniques. Such datasets are available with 113 

difficulty: indeed, Tian and Martinez (2012 a,b; 2014) resorted to model data generated at higher 114 

resolution as a surrogate for ground observations. No studies evidenced that statistical downscaling of 115 

forecasts performs better than dynamic downscaling of forecasts. Statistical downscaling is also 116 

exposed to limitations in tracking the effects of changing climatic conditions as well as weather 117 

conditions that are not represented by the sample data set employed for its calibration.   118 

In recent years, limited area ensemble prediction systems (LEPS) have been developed as dynamic 119 

regional downscaling of global ensemble prediction systems. The development of operational LEPS 120 

was mainly motivated by the need to support decision makers with forecasts of high-impact weather 121 

events and particularly precipitation fields, at higher resolution and greater reliability than what could 122 

be achieved with single deterministic regional forecasts. The operational availability of LEPS opens up 123 

new opportunities for the application of weather forecasts in agriculture and water resource 124 

management, since high resolution probabilistic forecasting allows water irrigation managers to set-up 125 

agrometeorological advisory services based on a more reliable risk analysis.  126 

One of the first examples is the limited-area ensemble prediction system, developed by the Consortium 127 

for small-scale modelling (COSMO-LEPS), which is now operationally used by several countries in 128 

Europe (Montani et al., 2011; Marsigli et al., 2014). COSMO-LEPS is nested on selected members of 129 

ECMWF EPS and is designed to combine the advantages of the probabilistic EPS approach with the 130 

high–resolution details gained in the mesoscale integrations (Montani et al., 2011). 131 

This study aimed to evaluate the performance of probabilistic reference evapotranspiration forecasts 132 

based on numerical weather predictions produced by COSMO-LEPS. To our knowledge this is the 133 

first study explicitly examining the probabilistic performance of numerical weather predictions 134 

produced by dynamic downscaling of global ensemble forecasts for evapotranspiration studies. 135 
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The performance analysis focused on two irrigation seasons in southern Italy where a simultaneous 136 

set of meteorological data from 18 ground automatic weather stations and COSMO-LEPS forecasts 137 

was collected within a research programme to develop an advanced irrigation advisory service (Vuolo 138 

et al., 2015). ET0 forecasts with lead times up to five days were computed with the PM equation and 139 

with uncalibrated HS and PT equations. The forecast performances are presented and discussed herein, 140 

using both deterministic and probabilistic indices. 141 

2. Data 142 

2.1. Study area  143 

The study area was the region of Campania, about 14000 km2 of land in southern Italy, between the 144 

Tyrrhenian Sea and the Southern Apennines (Figure 1). Weather forecasting is a challenging task in 145 

this region, as in other coastal regions of the central Mediterranean basin, where weather patterns are 146 

strongly influenced by the complex topography close to the coastline (e.g. Buzzi et al., 1994).  147 

Under the Köppen-Geiger climate classification, most of the region is characterised by dry-summer 148 

subtropical climates, which are often described as being a “Mediterranean climate”. The coastal zone 149 

presents warm summers, while the adjacent inland zones are subject to hot summers. The eastern border 150 

zone of the region, close to the Apennines range, has a continental climate, as frequently occurs at 151 

higher elevations adjacent to areas with a Mediterranean climate (Peel et al., 2007).   152 

The mean monthly temperature ranges from 25°C to 30°C in summer and between 11°C and 17°C in 153 

winter. The mean annual precipitation ranges from 800 to 1100 mm: the coastal and central 154 

mountainous areas have higher precipitation than the north-eastern side of the region. The maximum 155 

monthly precipitation values are recorded during November and December, the minimum during July 156 

and August. 157 

Field irrigation starts no earlier than April and lasts till the end of September, although the actual time 158 

span of the irrigation season is influenced by the weather fluctuations and specific agricultural practices.  159 
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 160 

 161 

Figure 1. Relief map of the study area along with AWS stations.  162 

2.2. Meteorological data 163 

2.2.1. Observed ground-based data 164 

Meteorological data from 18 ground-based automatic weather stations (AWS) distributed across the 165 

region were collected (Figure 1). These stations are part of the reference weather monitoring network 166 

of the Regional Meteorological Service. The AWS network complies with the EUMETNET technical 167 

specifications (De Leonibus and Vecchi, 1999): each station is equipped with redundant sensors to 168 

provide measurements with high accuracy and precision standards. 169 

Table 1 reports a complete list of the AWSs along with their coordinates and elevations, ranging from 170 

1 m a.s.l. to 848 m a.s.l. The AWS sites were chosen to achieve a good representation of the climatic 171 

variability within the region, including the coastal areas, the central hilly areas on the west side of the 172 

Apennines, as well as the inland side of the region. 173 
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No. Name Elevation [m] Latitude [°] Longitude  [°] 

1 Agerola METEO 848 40° 38’ 49’’ 14° 32’ 28’’ 

2 Ariano Irpino METEO 631 41° 11’ 49’’ 15° 8’ 10’’ 

3 Benevento METEO 236 41° 6’ 54’’ 14° 49’ 30’’ 

4 Cellole METEO 9 41° 11’ 46’’ 13° 50’ 17’’ 

5 Conza della Campania METEO 770 40° 51’ 43’’ 15° 16’ 55’’ 

6 Lago Patria METEO 1 40 56’ 31’’ 14° 1’ 19’’ 

7 Montella METEO 515 40° 50’ 17’’ 15° 2’ 20’’ 

8 Montesano Marcellana METEO 552 40° 15’ 22’’ 15° 39’ 50’’ 

9 Nisida METEO 88 40° 47’ 38’’ 14° 9’ 50’’ 

10 Postiglione METEO 660 40° 33’ 43’’ 15° 14’ 13’’ 

11 Rocca d'Evandro METEO 62 41° 25’ 30’’ 13° 52’ 48’’ 

12 S.Bartolomeo METEO 750 41° 25’ 19’’ 15° 2’ 28’’ 

13 San Marco Evangelista METEO 31 41° 1’ 12’’ 14° 20’ 38’’ 

14 S.Salvatore Telesino METEO 167 41° 14’ 49’’ 14° 28’ 23’’ 

15 Salerno METEO 13 40° 38’ 38’’ 14° 50’ 13’’ 

16 Torre Orsaia METEO 413 40° 7’ 55’’ 15° 27’ 32’’ 

17 Alife 117 41° 20’ 20’’ 14° 20’ 2’’ 

18 Battipaglia 64 40° 36’ 40’’ 14° 58’ 34’’ 

 Table 1. List of Automatic Weather Stations 174 

These AWSs have been operating since 2007. The following data recorded from April to September 175 

were considered for the forecast verifications: air temperature and humidity at 2 m; global incoming 176 

solar radiation; wind speed at 10 m; barometric pressure. Performance analyses focused on irrigation 177 

seasons for the years 2013 and 2014 which did not experience extreme weather conditions. Table 2 178 

summarises some average statistics of the observed data from April to September for 2013 and 2014. 179 

 Min Max Mean Standard deviation 

T [°C] -0.6 40.5 19.9 4.3 

RS [W m-2] 20.2 403.5 243.3 71.4 

WS [m s-1]  0.3 13.2 2.4 0.9 

RH [%] 28.3 100 75.5 10.7 

Table 2. Statistics of the weather variable datasets over the region based on data collected during two 180 

irrigation seasons (2013 and 2014) 181 
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2.2.2. NWP forecast data 182 

The numerical weather prediction outputs used for forecasting daily ET0 are those given by COSMO-183 

LEPS, which is a limited area ensemble prediction system, implemented by the HydroMeteoClimate 184 

Regional Service of Emilia-Romagna, located in Bologna, Italy (ARPA–SIMC). COSMO-LEPS was 185 

developed within the Consortium for small–scale modelling (COSMO), whose associates are 186 

Germany, Greece, Italy, Poland, Romania and Switzerland. It was the first mesoscale ensemble 187 

application to be run on a daily basis in Europe. COSMO-LEPS is based on 16 integrations of the 188 

non–hydrostatic mesoscale model COSMO, and combines the advantages of the probabilistic 189 

approach by global ensemble systems with the high–resolution details gained in the mesoscale 190 

integrations (Montani et al., 2011). The current model configuration has been in operation since 2009. 191 

Since December 2011, COSMO-LEPS has run twice a day, at 00:00 UTC and 12:00 UTC. The model 192 

has a forecast range of 132 hours, with data available at three-hour intervals, and a spatial resolution 193 

of 7.5 km. The locations of the COSMO-LEPS grid points overlaid with the reference AWS sites are 194 

shown in Figure 2.  195 

 196 

Figure 2. Location of the AWS stations (red triangles) and COSMO-LEPS grid points (blue squares)  197 
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In this study, the relevant weather variables to calculate ET0 were extracted from grib files released as 198 

output of the 00:00 UTC run: atmospheric pressure reduced to mean sea level, net short wave radiation, 199 

albedo, wind speed at 10 m, temperature and relative humidity at 2 m.  200 

The forecast dataset consists of variable ensemble output produced by the operational chain of the 201 

COSMO-LEPS from April 1st to September 30th in 2013 and 2014, for a total of 366 days, with lead 202 

times from one day to five days.  203 

3. Methods 204 

3.1. Computation of the daily reference evapotranspiration ET0 205 

The PM equation is that recommended by the Food and Agriculture Organization (FAO), in Paper 206 

No. 56, as the standard method for computing reference evapotranspiration ET0. It applies the energy 207 

balance and mass transfer principles to estimate evapotranspiration from a uniform grass reference 208 

surface. Specific parameters are employed to model the surface and aerodynamic resistance from the 209 

vegetation (Allen et al., 1998). The PM equation is expressed as follows: 210 
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 (Eq. 1) 211 

where ET0-PM is the daily reference evapotranspiration in (mm day−1), Rn is the net radiation at the 212 

crop surface (MJ m−2 day−1), G is the soil heat flux density (MJ m−2 day−1), T is the daily mean air 213 

temperature at 2 m height (°C), u2 is the wind speed at 2 m height above ground (m s−1), es is the 214 

saturation vapour pressure (kPa), ea is the actual vapour pressure (kPa), Δ is the slope of the vapour 215 

pressure curve (kPa °C−1) and γ is the psychometric constant (kPa °C−1). 216 

The net radiation (Rn) was calculated as the difference between the incoming net shortwave radiation 217 

and the outgoing net longwave radiation. As suggested by Allen (1998) for the reference crop, the 218 

incoming net shortwave radiation was calculated by coupling the measured or predicted incoming 219 

shortwave solar radiation with an albedo of 0.23. The outgoing net longwave radiation was estimated 220 
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from the daily maximum and minimum air temperature and relative shortwave radiation, which is 221 

computed as the ratio of the incoming shortwave solar radiation and the clear-sky radiation. The soil 222 

heat flux density (G) is computed as a fraction of Rn as suggested by Allen et al. (1988) for the 223 

reference crop.  224 

Daily mean air temperature was computed as the average of daily maximum and minimum air 225 

temperature, instead of computing it by averaging the data at the lowest available time-resolution, 226 

which would lead to underestimating the daily ET0-PM, as a result of the non-linear relationship 227 

between the saturation vapour pressure and temperature (Allen et al., 1998).  228 

Daily wind speed was computed as the average of the predicted or observed wind data at the highest 229 

available temporal resolution. Wind speed (u2) values, both forecasted and measured at 10 m height 230 

above ground, were adjusted at 2 m above ground by employing the logarithmic equation of the wind 231 

speed profile suggested by Allen (1998).The actual vapour pressure was computed as a function of 232 

the mean air relative humidity. 233 

The PM equation implies the availability of a complete weather dataset, which is normally feasible 234 

in a limited numbers of locations. This was one of the main motivations of previous studies exploring 235 

the applicability of numerical weather prediction outputs as a proxy of ground weather data, as 236 

mentioned in the introduction (e.g. Cai et al., 2007; 2009; Ishak et al., 2010; Silva et al., 2010; Er-237 

Raki et al., 2010; Srivastava et al., 2013). Related to this, another aspect that is worth taking into 238 

consideration is that all forecasted weather variables involved in the ET0-PM estimation are affected 239 

by forecast errors, which all contribute to downgrade the ET0-PM forecasts (Perera et al., 2014). Thus, 240 

in this study we also evaluated simpler and uncalibrated methods for estimating reference 241 

evapotranspiration, which employs a number of uncertain weather forecast variables smaller than 242 

those required for computing ET0-PM. The motivation for assessing the forecast performances with 243 

different evapotranspiration methods arises from the purpose of investigating how the uncertainty 244 

associated with the input weather variables propagates into the estimated ET0. Since each forecasted 245 

weather variable brings its own uncertainty into the ET0 equation, we sought to assess to what extent 246 
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the application of equations based on a reduced number of weather variables for computing ET0 could 247 

compensate the effect of the reduced accuracy deriving from simpler uncalibrated ET0 estimation 248 

methods (Droogers and Allen, 2002; Cai et al., 2007; Bormann, 2011). 249 

In this study we considered a temperature-based model as the HS equation (Hargreaves and Samani, 250 

1982) and a radiation-based model as the PT equation (Priestly and Taylor, 1972). The HS equation 251 

is that suggested by Allen et al. (1998) in the FAO guidelines for estimating ET0, when only 252 

temperature data are available, and is given as: 253 

   17.8 0.408
0 HS HS max min a

ET K T T T R


    (Eq. 2) 254 

where ET0-HS is the daily reference evapotranspiration in (mm day−1), Ra is the extraterrestrial 255 

radiation (MJ m−2 day−1), Tmax and Tmin are respectively the daily maximum and minimum temperature 256 

(°C), and KHS is an empirical coefficient, assumed to be equal to 0.0023 as suggested by Allen et al. 257 

(1998). The formula only needs temperature data, since the extraterrestrial radiation is a function of 258 

latitude and time of year. The HS equation has been widely used thanks to its simplicity and 259 

acceptable results. The term (Tmax – Tmin) indirectly estimates the effect of the daily radiation, as it is 260 

related to humidity and cloudiness (e.g. Shahidian et al., 2012). 261 

Finally, the PT equation was considered:  262 

 0.408
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 (Eq. 3) 263 

where ET0-PT is the daily reference evapotranspiration in (mm day−1), and α and β are empirical 264 

coefficients. Wind speed and relative humidity data are not needed, since potential evapotranspiration 265 

is estimated in terms of energy fluxes without an aerodynamic component. Parameters α and β are 266 

assumed to be equal to 1.26 and 0, respectively, as found by the authors for “advection-free” saturated 267 

surfaces and theoretically explained by Lhomme (1997).  ET0-PT mainly depends on solar radiation, 268 

but temperature data are also needed for computing Rn, G and . 269 

The empirical parameters of (Eq. 2) and (Eq. 3) can also be specifically calibrated, accounting for the 270 

local weather and terrain characteristics, as done in previous studies (e.g. Xu and Singh, 2000; Er 271 
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Raki et al., 2010; Shahidian et al., 2012). In this study, we used the values recommended for the most 272 

general case since, as explained above, our interest was to evaluate the relative impact of the weather 273 

forecast uncertainty on the estimated ET0 values with methods of different levels of accuracy, without 274 

any preliminary bias correction.  275 

3.2. Assessment of forecast performances 276 

The COSMO-LEPS forecasted meteorological outputs and ET0 estimated using the outputs in 277 

question were verified with the corresponding ground-based observations. The PM equation was used 278 

to compute the reference evapotranspiration with ground-based data (hereinafter referred to as ET0g-279 

PM). ET0g-PM are hereinafter also denoted as “observed ET0” and are taken as benchmark values to 280 

evaluate the performances of the daily ET0 forecasts. ET0g-PM values were compared with those 281 

forecasted with lead times from one to five days, respectively computed with the PM, HS and PT 282 

equations (Eqs. 1, 2 and 3).  283 

From an operational perspective, two alternative interpolation strategies for estimating ET0 forecasts at 284 

the AWS nodes can be followed: i) interpolating forecasted weather data prior to computing ET0 values 285 

at each node; ii) interpolating ET0 values computed at the COSMO-LEPS grid nodes. These strategies 286 

can lead to different results, since the ET0 equations employed are non-linear. We preferred the first 287 

strategy as we suppose that this better preserves the spatial structure of the weather input variables and 288 

their cross-correlation (Van Schaeybroeck and Vannitsem, 2015). A triangle-based bi-linear 289 

interpolation method was employed, which consists in interpolating the three grid points closest to the 290 

examined site. 291 

The forecast performances were assessed with both deterministic and probabilistic metrics. 292 

Deterministic metrics are well-suited for single-valued forecast verifications. Probabilistic metrics are 293 

used to verify the forecast probabilities (given by the forecast ensembles) with the observed frequencies. 294 

In the case of probabilistic forecasts, deterministic metrics of forecast performance cannot provide a 295 
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comprehensive assessment of the forecast quality, which instead can be evaluated only through 296 

estimation of the joint distribution of forecasts and observations (Wilks, 2011).    297 

3.2.1. Deterministic metrics 298 

Statistical performance indices are computed for all lead times by comparing the median value, i
P
~

, 299 

of the ensemble of the predicted variables retrieved from the COSMO-LEPS forecasts on the generic 300 

i-th day, with the predicted variable retrieved from the ground-based weather stations, i
O . We chose 301 

the median value as representative of the ensemble forecasts, instead of the mean value, since outliers 302 

occasionally make the ensemble distribution strongly asymmetric and thus the mean results become 303 

biased. 304 

The first index is the BIAS, which was used as an indicator of accuracy of the ET0 forecasts: 305 
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  (Eq. 4) 306 

where n denotes the number of examined days, in this study equal to 366. 307 

The second deterministic performance indicator is the root mean square error, RMSE, which gives 308 

insight into both accuracy and precision of the ET0 forecasts: 309 
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 (Eq. 5) 310 

The correlation coefficient, R, was used to measure the linear relationship between the forecasted and 311 

observed ET0: 312 
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  (Eq. 6) 313 

where  Cov O ,P  is the sample covariance between the ensemble forecast medians and their 314 

corresponding observed values, and  Var O  and  Var P  are respectively the sample variances of 315 

the observed and forecast medians.  316 
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As indicator of the prediction uncertainty due to the ensemble spread, we computed the coefficient 317 

of variation, CV, of the forecasted ET0: 318 
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  (Eq. 7) 319 

where m=16 is the number of members in each ensemble, i
P is the mean of the ensembles on the i-th 320 

day, and ji
P

, is the j-th member value on the i-th day.  321 

Another deterministic index was employed to compare the ET0 prediction BIAS due to the weather 322 

forecast errors with the prediction BIAS due to the simplification of the reference evapotranspiration 323 

estimation method, i.e. ET0-HS or ET0-PT as compared with ET0-PM. Let ET0g-HS,i and ET0g-PT,i be the 324 

reference evapotranspiration estimated with HS and PT equations, respectively, using the data observed 325 

with the AWS on the i-th day as input weather variables. Let 0 ,HS iET   and 0 ,PT iET   be the 326 

corresponding medians of the forecasted values on the i-th day for a generic lead time. The following 327 

absolute relative bias indices are then computed: 328 
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 (Eq. 8b) 330 

The terms at the denominators of the above indices quantify the BIAS of the simplified uncalibrated 331 

ET0 prediction method. The terms at the numerators quantify the BIAS due to the numerical weather 332 

forecast errors. The above indices are greater than one if the weather forecast errors dominate the ET0 333 

model error. 334 
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3.2.2. Probabilistic metrics 335 

For a generic AWS location, let ( )
P

F p  be the cumulative distribution function of the forecasts, given 336 

by the ensembles, and let t denote a selected threshold value (in the following, the median value of 337 

the observations). Similarly to RMSE in the deterministic case, the Brier score, BS, measures the 338 

mean squared probability error (Murphy, 1973) as follows: 339 
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  (Eq. 9) 340 

where 1 is a step function that is equal to 1 if the condition   is met and zero otherwise. The Brier 341 

score ranges from 0 to 1. Values of BS equal to 0 indicate a perfect score. 342 

The Brier skill score, BSS, measures the improvement of the probabilistic forecast relative to a 343 

reference forecast: 344 

 
reference

BS
BSS 1

BS
t     (Eq. 10) 345 

where 
reference

BS is the Brier score of the reference method. In this study, we take as reference 346 

probabilistic forecast the one defined by the unconditional distribution of the observations, which is 347 

computed by the relative frequencies of the n observations Oi in the verification data set. This 348 

distribution is usually called the sample climatological distribution, or simply the sample climatology 349 

(Wilks, 2011). The Brier skill score ranges from -∞ to 1 and values of BSS equal to 1 indicate perfect 350 

skill.  351 

In addition to BS and BSS, reliability and the relative operating characteristic (ROC) diagrams were 352 

computed to investigate the forecast quality. The reliability diagram plots the observed frequency of 353 

an event (defined by the threshold t) against its forecasted probability. The range of forecast 354 

probabilities is divided into k bins. Then, on the x-axis, we plot the average probability of the forecasts 355 

that falls in the k-th bin while, on the y-axis, the fraction of the corresponding observations that are 356 

below the threshold. Reliability is a measure of systematic and conditional bias. Perfect reliability is 357 

achieved along the 45° diagonal line on the reliability diagram when the observed frequency of the 358 
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given event within each bin equals the average of the corresponding forecast probabilities. The 359 

deviation from the diagonal gives the conditional bias. A curve that lies above the diagonal line 360 

indicates under-forecasting: the forecasted probabilities related to a given event are too low if 361 

compared with the observed frequency of the event; vice versa, points below the diagonal line indicate 362 

over-forecasting. The flatter the curve in the reliability diagram, the less resolution it has. Resolution 363 

is the ability to distinguish one type of outcome from another. By definition, forecasts from the sample 364 

climatology have no resolution and this condition is shown, for comparison, on the reliability diagram 365 

by means of a horizontal line. On the same diagram, it is also possible to show the sharpness of the 366 

forecast, a measure of the forecast confidence, by means of a histogram representing the frequency 367 

of forecasts in each probability bin. A deterministic forecast is infinitely sharp while forecasts from 368 

sample climatology have no sharpness.  369 

The ROC diagram is a discrimination-based forecast verification metric (Wilks, 2011), which 370 

measures the ability to discriminate between two possible outcomes, not sensitive to bias (i.e. 371 

reliability). ROC plots the probability of detection (hit rate), POD, of an event (defined by the 372 

threshold t) against the probability of false detection (false alarm), POFD, of the same event. The 45° 373 

diagonal line on the ROC diagram represents the line of no skill while high skill is achieved with a 374 

curve located in the upper left corner of the plot. The ROC is conditioned on the observations (i.e., 375 

given that an event occurred, it shows the corresponding forecast). It is therefore a good companion 376 

to the reliability diagram, which is conditioned on the forecasts (Wilks, 2011). 377 

POD (y-axis) and POFD (x-axis) are calculated as follows, having chosen some probability thresholds 378 

pt among the interval [0, 1]: 379 
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4. Results and discussion 382 

The forecast performance of daily ET0 is obviously influenced by the forecast performance of the 383 

weather variables employed as input to the ET0. Thus we first report the forecast performance of these 384 

variables and then those of the ET0 predictions. The forecast performances of weather variables were 385 

evaluated with the deterministic metrics introduced in Section 3.2.1. We do not present any 386 

probabilistic metrics of the raw weather variables for the sake of conciseness. The performance of the 387 

ET0 forecasts is instead illustrated with both deterministic and probabilistic metrics. 388 

4.1. Forecast performances of weather variables with deterministic metrics 389 

We verified the daily forecast, with lead time up to five days, in the irrigation seasons from April to 390 

September in two years (2013 and 2014), of the following weather variables: T (defined as the mean 391 

between the daily Tmax and Tmin), solar radiation (RS), wind speed (WS) and relative humidity (RH). 392 

We did not show any results concerning the atmospheric pressure since we found almost perfect 393 

agreement between observations and forecasts. Unlike previous studies (e.g. Perera et al., 2014), we 394 

did not apply any preliminary bias corrections to the weather forecast outputs, beside their bi-linear 395 

interpolation at the AWS sites, as outlined above. 396 

The values of BIAS and RMSE for the 18 AWS sites and varying lead times are shown below in Figure 397 

3 and Figure 4, respectively. 398 

This is a post-peer-review, pre-copyedit version of an article published in "Agricultural Water Management". 
The final authenticated version is available online at: https://doi.org/10.1016/j.agwat.2016.09.015



  

 399 

Figure 3. BIAS of forecasted vs. observed daily weather variables for all 18 AWS sites and lead times 400 

 401 

Figure 4. RMSE of forecasted vs. observed daily weather variables for all 18 AWS sites and lead times 402 
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As highlighted by Perera et al. (2014), the ground measurements errors may also contribute to reduce 403 

the forecast performances. However, we verified that for all weather variables the measurement errors 404 

due to the ground sensor accuracies were significantly less than the corresponding forecast 405 

uncertainties. This suggested that the effects of measurement errors on the forecast evaluations were 406 

negligible. 407 

Air temperature  408 

Air temperature is the only weather variable needed in the computation of ET0-HS but it is also needed 409 

for ET0-PT since Tmax and Tmin are required to compute the net long wave radiation and saturation vapour 410 

pressure. Tmax and Tmin are also required to calculate the vapour pressure deficit in Eq. (1). Here, for the 411 

sake of conciseness, we provide forecast performances only with reference to T, defined as the mean 412 

between daily maximum air temperature and daily minimum air temperature. 413 

Figures 3-4 show that the forecast performances for T do not significantly decline with increasing lead 414 

time for all locations. Moreover, Figure 3 highlights that there is a broad variation of forecast 415 

performances among the AWS sites. The NWP model has no systematic tendency to overforecast or 416 

underforecast T. Rather, we found T is overforecasted in half the AWS sites and underforecasted in the 417 

other half. BIAS values range between -2.1 °C and 2.3 °C. 418 

At AWSs 9 and 15, T is dramatically underpredicted. These two sites are close to the coastline (Figure 419 

1), where the COSMO-LEPS, with the bilinear interpolation method adopted for estimating the weather 420 

forecasts at the AWS sites, is unable to resolve the local weather effects associated with the proximity 421 

to sea and thus the forecasts are subject to systematic biases. The higher overprediction of T is found in 422 

correspondence to AWS 1, which is located close to the coastline, like AWSs 9 and 15, but on a cliff at 423 

an elevation of 848 m. Here, the COSMO-LEPS model with the bilinear interpolation of the values 424 

forecasted at the numerical grid is unable to resolve the small scale variability due to steep elevation 425 

gradients close to the coastline. 426 
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The RMSE ranges between 0.9 °C and 2.7 °C, with an average value over the region of 1.6 °C. These 427 

RMSE values indicate very good performances compared with the results of other studies, where these 428 

RMSE values for T were achieved only after bias-correcting the NWP outputs (e.g. Silva et al., 2010). 429 

Solar radiation 430 

The forecast performances for daily incoming solar radiation, RS, show a clear decline with increasing 431 

lead time. The BIAS values range from -26.8 W m-2 to 19.3 W m-2, the RMSE values range from 34.7 432 

W m-2 to 64.1 W m-2. The RMSE values at a 5-day lead time are 20% higher than the RMSE values at 433 

a lead time of 1 day. Strong negative BIAS values were observed at AWS sites close to the coastline 434 

(i.e., AWSs 6, 9 and 15), while strong positive BIAS values were found in inland areas (i.e. AWSs 7, 435 

8, 10 and 11). In addition, high RMSE values were found at AWSs 1, 2, 12 and 16. 436 

These forecast errors were probably produced by factors (such as the topography), which influence the 437 

local global incident radiation (direct and diffuse) and are not properly resolved by NWP model.   438 

Wind speed 439 

The forecast performances related to daily mean wind speed experience great spatial variability in the 440 

region of interest. For WS, the BIAS values range between -2.4 m s-1 and 1.2 m s-1. The RMSE values 441 

goes from 0.4 m s-1 to 2.9 m s-1. At AWS sites 5 and 10 we found the highest RMSE and BIAS in the 442 

region. In these sites, the highest WS values were observed during the year, enhanced by local terrain 443 

features not resolved by the COSMO-LEPS model, which tends to dramatically underforecast the wind 444 

speed. WS was instead overforecasted at AWSs 7 and 8, where local terrain features mitigate the wind 445 

speed with respect to the dominant wind patterns predicted for the surrounding area. 446 

Air humidity 447 

The air humidity is underforecasted at most of the AWS sites, except for three that are subject to slight 448 

overforecasting (i.e. AWSs 15, 17 and 18). The BIAS values range between -17.1 % and 1.1 %, the 449 

RMSE values range between 6.4 % and 20.5 %. The worst performances were collected at AWSs 1, 5 450 

and 12. 451 
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4.2. Forecast performances of reference evapotranspiration with deterministic metrics 452 

In the examined two irrigation seasons (2013 and 2014), the difference between the daily ET0 453 

calculated using weather forecasts and the daily ET0-gPM appears to be stochastically independent of 454 

the time of year. Thus we computed the performance indices aggregated for the entire irrigation 455 

seasons, avoiding performance assessment within smaller time-spans (e.g. monthly), as the 456 

differences were not significant.  457 

The observed long–term monthly mean of ET0g-PM computed at the 18 AWS sites in Campania region 458 

from April to September is shown in Figure 5. The monthly mean ET0g-PM ranges from 2.3 mm day-1 459 

to 5.5 mm day-1. The highest values are reached in July, when the maximum daily air temperatures 460 

are registered. The interquartile spread among the examined AWS peaks in July and August, and 461 

reaches its lowest point in May. The maximum spread (occurring in July) of the monthly mean ET0g-462 

PM among the AWS stations is about 1.2 mm day-1.  463 

 464 

Figure 5. Observed long-term monthly mean ET0 computed for the 18 AWS sites in Campania  465 

Figures 6a-f show the scatter between the observed and the median of the forecasted daily ET0 at all 466 

AWS sites for the two extreme lead times (i.e. 1 day on the left and 5 days on the right) and for the 467 

three different evapotranspiration equations. The linear trends between observed and forecasted 468 

change marginally with the increasing lead time, while the scatter increases markedly. Thus, the 469 

accuracy of the forecast appears to be more sensitive to the lead time than its precision.  470 

This is a post-peer-review, pre-copyedit version of an article published in "Agricultural Water Management". 
The final authenticated version is available online at: https://doi.org/10.1016/j.agwat.2016.09.015



  

471 

472 

 473 

Figure 6. Daily observed ET0-PM vs daily predicted ET0 at all AWS stations for 1-day and 5-day lead times and 474 

for different evapotranspiration models. The red line is the 45° line. 475 

For low values of observed ET0 (< 2 mm day-1), the forecasts tend to overpredict ET0 for all lead times 476 

and equations considered. The PT and PM methods overpredict ET0, while HS exhibits some points 477 

with largely underpredicted ET0. These points correspond to AWSs 6, 9 and 15, as clarified below. 478 
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Figures 7 and 8 show the BIAS and RMSE, respectively, for each AWS site (row) and lead time 479 

(column). The values of the BIAS range: 480 

i) from -1.96 mm day-1 to 0.46 mm day-1 for the daily predicted ET0-HS, with an average value 481 

over space and lead time of -0.16 mm day-1; 482 

ii) from -0.35 mm day-1 to 0.76 mm day-1 for the daily predicted ET0-PT, with an average value 483 

over space and lead time of 0.33 mm day-1; 484 

iii) from -0.43 mm day-1 to 0.72 mm day-1 for the daily predicted ET0-PM with an average value 485 

over space and lead time of 0.123 mm day-1. 486 

The values of the RMSE range: 487 

i) from 0.57 mm day-1 to 2.17 mm day-1 for the daily predicted ET0-HS, with an average value 488 

over space and lead time equal to 0.90 mm day-1; 489 

ii) from 0.55 mm day-1 to 1.24 mm day-1 for the daily predicted ET0-PT, with an average value 490 

over space and lead time of 0.81 mm day-1; 491 

iii) from 0.48 mm day-1 to 1.17 mm day-1 for the daily predicted ET0-PM with an average value 492 

over space and lead time of 0.71 mm day-1; 493 

Figure 9 shows, at each AWS site and for each lead time, the value of rBIASHS and rBIASPT as in Eqs. 494 

(8a-b), to highlight the main source of error when simplified evapotranspiration methods (i.e. HS and 495 

PT) are used  instead of the PM equation. Values of rBIAS greater than one suggest that the forecast 496 

error is greater and relatively large improvements can be achieved with the same ET0 prediction method 497 

if the raw forecasts are post-processed for removing systematic prediction errors, which are mainly due 498 

to the limited capacity of the NWP model to resolve the effects of small scale variability. 499 
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 500 

Figure 7. BIAS of forecasted vs. observed daily ET0 for all 18 AWS sites and lead times 501 

 502 

Figure 8. RMSE of forecasted vs. observed daily ET0 for all 18 AWS sites and lead times 503 
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 504 

Figure 9. rBIAS of forecasted vs. observed daily ET0 for all 18 AWS sites and lead times  505 

Overall, based on Figures 7-9, the following considerations can be drawn.Except for AWS 6, 9 and 15, 506 

the prediction performances obtained with the simple HS equation are comparable with those 507 

obtained by previous studies, which employed the PM equation with bias-corrected NWP outputs for 508 

similar lead times (e.g., Silva et al., 2010; Perera et al., 2014). The forecast BIAS at AWS 6, 9 and 509 

15 is mainly due to the temperature forecast errors, which were outlined in the previous section and 510 

in Figure 3. At AWS 1, 5, 10 and 12 the forecast BIAS instead appears to be mainly due to model 511 

simplification. Since the HS method does not explicitly account for relative humidity, it can 512 

overestimate ET0 in humid regions, and underestimate it in areas of high winds and high vapour 513 

pressure deficits. For these sites, a specific calibration of KHS is particularly recommended (Allen et al., 514 

1998).  515 

ET0-PT BIAS is always positive, except for AWS 15, where both temperature and radiation are 516 

underestimated. The highest RMSE values are observed at AWS 1, 5, 10 and 12 due to the errors in 517 

forecasted temperature and solar radiation. As indicated by Figure 9, at these AWS sites, model error 518 
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and forecast errors play a similar role. For all other stations, ET0-PT exhibits absolute BIAS smaller than 519 

0.5 mm day-1 and RMSE smaller than 0.75 mm day-1, which are excellent forecast performances 520 

compared with previous analogous studies. 521 

ET0-PM forecasts present a pattern of BIAS and RMSE similar to that of ET0-PT but with smaller 522 

absolute values: the only negative BIAS are observed at AWS 9, 15 and 17; the highest RMSE are 523 

observed at AWS 1, 5, 10 and 12. AWS 12 exhibits absolute BIAS exceeding 0.5 mm day-1 for lead 524 

times greater than one day and RMSE greater than 1 mm day-1 for lead times exceeding three days. 525 

The impact of the BIAS on the forecasted air temperature at AWS 6, 9 and 15 is mitigated with 526 

equations PM and PT, where other weather variables, different from the air temperature, play a more 527 

important role and are less affected by proximity to the sea. 528 

Figures 10a-b depict the coefficients of variation (CV) and the correlation coefficient, respectively, 529 

across all 18 AWS sites for varying lead times. On each box, the central mark is the median, the edges 530 

of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data values not 531 

considered outliers, and outliers are plotted individually. The points are drawn as outliers if they are 532 

larger than q3 + 1.5(q3 – q1) or smaller than q1 – 1.5(q3 – q1), where q1 and q3 are the 25th and 75th 533 

percentiles, respectively. The circle mark represents the mean value among the AWS sites.  534 

The values of the CV increase with lead times as a result of the increasing ensemble spread. The CV 535 

also increases as the number of uncertain variables involved in the ET0 computation increases, moving 536 

from HS to equations PT and PM.  537 

The correlation (Figure 10b) exhibits a marked decrease with increasing lead time. The rate of the 538 

decreasing trend is larger for ET0-PT, due to the higher sensitivity of the forecasted radiation to the 539 

lead time. In any case, the correlation generally increases from equation HS to PT and PM, except for 540 

AWS 1, 5, 10 and 12 where the ET0-PT correlation is smaller than ET0-HS for lead times exceeding three 541 

days. 542 
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    543 

Figure 10. a) Coefficient of variation (CV) and b) correlation coefficient across all 18 AWS sites of forecasted 544 

vs. observed daily ET0 (the circles represent the mean values). 545 

An insight into the impact of the forecast errors of different weather variables, i.e. temperature, solar 546 

radiation, relative humidity and wind speed, on the daily ET0 estimation is afforded by Figure 11. It 547 

shows the variation of forecast performances in terms of RMSE when we substitute one weather 548 

variable forecast with its own observed value. The substitution of the weather variable forecast with 549 

the weather variable observation can be useful for highlighting the sensitivity of the ET0 forecast to 550 

errors in the weather forecast for that variable, as suggested by Perera et al. (2014).  551 

 552 

Figure 11. Sensitivity of daily FAO Penman-Monteith ET0 forecasts to errors in weather predicted variables 553 

Figure 11 suggests that errors in solar radiation forecast have the greatest influence on the ET0-PM 554 

forecast performance (the improvement by using its observed value is the largest), followed by 555 

relative humidity and wind speed. For temperature, the improvement by using observed values is 556 

a) b) 
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negligible, which is also the reason why we have still good performances of ET0-PM forecasts in those 557 

sites where the errors in temperature forecasts lead to severe underestimation of the predicted ET0-HS.  558 

The results in Figure 11 are somewhat consistent with the findings of Perera et al. (2014), who showed 559 

that forecast errors related to solar radiation are the main source of errors in ET0 forecasts. On the 560 

other hand, in latter's findings, the sensitivity of ET0 forecasts to errors in the temperature forecasts 561 

seems to play a more important role.  562 

4.3. Forecast performances of reference evapotranspiration with probabilistic metrics 563 

The probabilistic metrics of the forecast performances to assess the quality of the ensemble forecasts 564 

are reported in Figures 12-14. The metrics are all computed for a threshold t equal to the average 565 

(among all the AWS sites) median value of ET0g-PM (see Eqs. 9-11). Boxplots of the BSS among all 566 

18 AWS sites are shown in Figure 12 for increasing lead times. BSS declines with increasing lead 567 

time, but the reduction from lead day 1 to lead day 5 is smaller than 30% for all ET0 forecasting methods 568 

herein examined.  569 

All ET0  forecasts are better than sample climatology, except for ET0-HS forecasts at AWS 6, 9 and 15, 570 

where anomalous BSS values below zero were observed due to significant systematic bias in 571 

temperature forecasts, as illustrated above. These BSS outliers also caused a significant bias in the mean 572 

BSS (circle marks) of ET0-HS with respect to the median values (horizontal central line of the whisker).  573 

The median BSS of ET0-HS is greater than 0.45, while its p25 exceeds 0.37, for all lead times. ET0-PT 574 

presents the largest spreads in BSS, symptomatic of a lower capacity to forecast solar radiation at a 575 

large number of AWS. Its median value is always above 0.47 and its 25th percentile is greater than 0.30. 576 

The median BSS of ET0-PM is greater than 0.50 for all lead times, while its 25th percentile exceeds 0.45.  577 

Overall, these BSS values are quite high compared with the findings of Tian and Martinez (2012a; 578 

2014), who presented the first studies with a probabilistic verification of ET0 forecasts. Tian and 579 

Martinez (2014) obtained the best BSS values by statistical bias-correcting and downscaling GFS 580 

reanalysis forecasts to a spatial resolution of 12 km2. In this case, the maximum BSS scores achieved 581 
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in the warm seasons at 1-day lead time were 0.20 for the middle terciles thresholds and around 0.40 for 582 

the upper and lower terciles. Moreover, in their study, BSS radically decreased towards zero for 583 

increasing lead times up to five days.   584 

 585 

Figure 12. BSS across all 18 AWS sites of forecasted vs. observed daily ET0 (the circles denote the mean 586 

values). 587 

Figures 13a-c show the reliability diagrams for the three examined methods: ET0-HS, ET0-PT and ET0-588 

PM. In all cases, the forecasts exhibit good sharpness as described by the histograms in the insets  589 

(upper left corners) of Figures 13a-c.As indicated by Figure 13c, ET0-PM ensures good reliability and 590 

resolution for all lead times. Slight overforecasting occurs for lead times exceeding three days. 591 

The correspondence between forecasted and observed frequencies worsens when simpler methods such 592 

as PT and HS are employed. The curves related to ET0-PT forecasts (Figure 13b) indicate 593 

overforecasting, except for a lead time of five days at high probabilities. The case of ET0-HS forecasts 594 

(Figure 13a) is the worst case with poor reliability and resolution, probably caused by those AWS 595 

sites with negative BSS (i.e. AWS 6, 9 and 15).  596 

 597 

This is a post-peer-review, pre-copyedit version of an article published in "Agricultural Water Management". 
The final authenticated version is available online at: https://doi.org/10.1016/j.agwat.2016.09.015



  

 598 

Figure 13. Reliability diagrams for a) ET0-HS, b) ET0-PT and c) ET0-PM 599 

Finally, Figures 14a-c show the ROC diagrams, respectively, for the cases of ET0-HS, ET0-PT and ET0-600 

PM. ROC diagrams clarify how well the probabilistic forecasts discriminate between events and non-601 

events. The dependence on lead time is very clear: the performances on the ROC diagram decline 602 

with increasing lead time for all the ET0 methods. Very slight differences are appreciable between 603 

Figure 14b and Figure 14c, which show, respectively, the ROC diagram for ET0-PT forecasts and ET0-604 

PM forecasts. The case of ET0-HS forecasts (Figure 14a) is that which performs worst. Yet it is still very 605 

satisfying compared with the results shown by Tian and Martinez (2012a; 2014).  606 

 607 

Figure 15. ROC diagrams for a) ET0-HS, b) ET0-PT and c) ET0-PM 608 

5. Conclusions 609 

A more rational and efficient use of water in agriculture can be achieved by supplying accurate 610 

forecasts of reference evapotranspiration (ET0), which is one of the key factors for the assessment of 611 

crop water requirements and irrigation needs. A probabilistic approach is recognized as the most 612 

appropriate to cope with the uncertainty of weather variability in the short-medium term. Although 613 

a) b) 

a) b) c) 

c) 
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statistical downscaling techniques of global ensemble forecasts have been proved to provide reliable 614 

forecasts (e.g. Tian and Martinez, 2014), their applicability is hindered by the need of large data sets 615 

of ground-based observations for their calibration. The operational availability of weather forecasts 616 

by limited area ensemble prediction systems (LEPS) offers new opportunities for developing reliable 617 

advisory services for agricultural management, particularly for rural areas where complete ground-618 

based weather data are rare. 619 

To our knowledge, this is the first study to verify the ability of LEPS outputs to forecast reference 620 

evapotranspiration in the short-medium range. COSMO-LEPS forecasts with a spatial resolution of 621 

7 km and lead times up to five days were employed for forecasting daily ET0 in southern Italy, in a 622 

region where weather forecasting is quite challenging given its complex topography in proximity to 623 

the Mediterranean coastline. The numerical weather outputs were applied without any preliminary 624 

post-processing aimed at removing local systematic errors. Forecast performances were assessed with 625 

three different empirical methods for estimating ET0, in order to evaluate the size of the weather 626 

forecast errors with models of different accuracies.  627 

ET0 forecasts with the FAO Penman-Monteith (PM) equation were skillful and reliable, with limited 628 

sensitivity to the forecast lead time. Both deterministic and probabilistic scores were better than those 629 

presented by analogous studies (e.g. Perera et al., 2014; Tian and Martinez, 2014). Solar radiation 630 

forecast errors appear to be the largest source of error for PM forecasts.  631 

High skill scores were achieved also with the simpler and uncalibrated Priestley-Taylor (PT) and 632 

Hargreaves-Samani (HS) equations, except for a few locations close to the coastline. Forecasts with the 633 

uncalibrated Hargreaves-Samani (HS) and Priestley-Taylor (PT) equations were more vulnerable to 634 

local systematic errors of the forecasted temperature and solar radiation, respectively. In almost half of 635 

the 18 locations examined, systematic weather forecast errors appear to affect ET0 forecasts errors more 636 

than the application of an uncalibrated equation as an alternative solution to the more complex PM 637 

equation. Systematic errors are mainly due to limitations of the numerical weather model to resolve 638 
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topographic effects on local weather conditions in areas with a complex terrain, as occurs along 639 

coastlines surrounded by high mountains. 640 

The performances herein presented are based on data from only two irrigation seasons which did not 641 

experience extreme weather conditions. Such conditions could enhance the effects of systematic errors 642 

of the forecasting system and thus reduce the accuracy of ET0 forecasts, particularly if estimated with 643 

simpler HS and PT estimation methods.  644 

Since the installation of comprehensive new weather stations is becoming common in modern precision 645 

farming, further studies will be devoted to develop adaptive methods for removing systematic biases 646 

with ground data in real time. Such methods could offer opportunities to fully exploit the advances in 647 

ensemble numerical weather forecasting by developing innovative advisory services based on the 648 

optimal combination of LEPS forecasts and ground-based data from newly installed automatic weather 649 

stations. 650 
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