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Abstract

Context. The demand for green software design is steadily growing higher es-
pecially in the context of mobile devices, where the computation is often limited
by battery life. Previous studies found how wrong programming solutions have
a strong impact on the energy consumption.

Objective. Despite the efforts spent so far, only a little knowledge on the in-
fluence of code smells, i.e., symptoms of poor design or implementation choices,
on the energy consumption of mobile applications is available.

Method. To provide a wider overview on the relationship between smells and
energy efficiency, in this paper we conducted a large-scale empirical study on
the influence of 9 Android-specific code smells on the energy consumption of 60
Android apps. In particular, we focus our attention on the design flaws that are
theoretically supposed to be related to non-functional attributes of source code,
such as performance and energy consumption.

Results. The results of the study highlight that methods affected by four code
smell types, i.e., Internal Setter, Leaking Thread, Member Ignoring Method, and
Slow Loop, consume up to 87 times more than methods affected by other code
smells. Moreover, we found that refactoring these code smells reduces energy
consumption in all of the situations.

Conclusions. Based on our findings, we argue that more research aimed at
designing automatic refactoring approaches and tools for mobile apps is needed.

Keywords: Code Smells, Refactoring, Energy Consumption, Mobile Apps

1. Introduction

Energy efficiency is becoming a major issue in modern software engineering,
as applications performing their activities need to preserve battery life. Al-
though the problem is mainly concerned with hardware efficiency, in the recent
past researchers have successfully demonstrated how even software may be at
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the root of energy leaks [1]. The problem is even more evident in the con-
text of mobile applications (a.k.a., “apps”), where billions of customers rely on
smartphones every day for social and emergency connectivity [2].

Green mining is the branch of software engineering responsible for the iden-
tification of factors causing energy leaks, as well as for the definition of practical
solutions to deal with them. In this context, recent research has ranged from
the definition of approaches to measure the power profile of mobile apps [1, 3]
to the analysis of the impact of programming solutions on the energy consump-
tion [4, 5, 6, 7].

Recent advances in the latter category of studies revealed that wrong choices
made by programmers during the development tend to negatively influence the
energy usage of mobile apps. For instance, Sahin et al. [4] highlighted the
existence of design patterns that negatively impact the power efficiency, as well
as the role of code obfuscation in the phenomenon [8]. Linares-Vasquez et al.
[5] studied the API usage of Android apps and their relationship with energetic
characteristics of apps. More recently, Hasan et al. [7] investigated the impact
of the Java Collections, finding that using the wrong type of data structure can
decrease the energy efficiency by up to 300%.

Although several important research steps have been made and despite the
ever-increasing number of empirical studies aimed at understanding the reasons
behind the presence of energy leaks in the source code, little knowledge is avail-
able in literature on the potential impact on energy consumption of the so-called
bad code smells (also named code smells or simply smells) defined by Reimann
et al. [9]. Unlike the traditional smells introduced by Fowler [10], these smells
represent a set of bad programming practices in Android mobile applications.
While the impact of these smells on energy consumption has been theoretically
assumed by Reimann et al. [9], there is a lack of studies providing evidence on
this impact. Indeed, only the work by Carette et al. [11] initially explored the
relationship between smells and energy efficiency. However, they analyzed the
behavior of just three code smell types on five mobile apps, finding that the
removal of such code smells has a limited effect on energy efficiency (quantified
as a 4% improvement of the overall energy consumption).

In this paper, we provide a deeper investigation to determine (i) to what
extent code smells affecting source code methods of mobile applications influence
energy efficiency, and (ii) whether refactoring operations applied to remove them
directly improves the energy efficiency of refactored methods. In particular, our
investigation focuses on 9 method-level code smells specifically defined for mobile
applications by Reimann et al. [9] in the context of 60 Android apps belonging
to the dataset provided by Choudhary et al. [12]. To the best of our knowledge,
this is up to date the largest study aimed at practically investigating the actual
impact of these code smells on energy consumption and quantifying the extent
to which refactoring code smells is beneficial for improving energy efficiency.

To conduct our analyses, we built upon two tools that we previously devel-
oped and evaluated, i.e., aDoctor and PETrA. The former is a novel Android-
specific code smell detector that has been evaluated in our prior study [13] using
18 apps and it is very accurate, with a precision of 98% and a recall of 98%.
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Table 1: The Code Smells considered in our Study

Abbreviation Name Description Refactoring
DTWC Data Transmission Without Compression A method transmitting a file over a network without compressing it Add Data Compression
DWL Durable Wakelock A method acquiring a wakelock and not releasing it Aquire WakeLock with Timeout
IDS Inefficient Data Structure A method using an Hashmap<Integer, Object> Use Efficient Data Structure
ISQLQ Inefficient SQL Query A method using a SQL query over a JDBC connection to a remote server Use JSON query
IDFAP Inefficient Data Format And Parser A method using a TreeParser Use Efficient Data Parser and Format
IS Internal Setter Internal fields are set via setters Direct Field Access
LT Leaking Thread A method using a thread that will never be stopped Introduce Run Check Variable
MIM Member-Ignoring Method Non-static methods that don’t access any property Introduce Static Method
SL Slow Loop A slow version of a for-loop is used Enhanced For-Loop

The latter is a software-based tool that estimates the energy profile of mobile
applications [14]. It has been evaluated using 54 apps [14] and provides an es-
timation error within 5% of the actual values measured with a hardware-based
tool [5] in 95% of the cases.

Results of our study highlight the existence of four specific energy-smells,
namely Internal Setter, Leaking Thread, Member Ignoring Method, and Slow
Loop: methods affected by these design flaws consume up to 87 times more
energy than methods affected by other code smells. Moreover, we shed light
on the usefulness of refactoring as a way of improving energy efficiency by code
smell removal. Specifically, we found that it is possible to improve the energy
efficiency of source code methods by refactoring code smells.

Structure of the paper. Section 2 reports the design of the empirical study,
while Section 3 describes the results achieved. Section 4 discusses the threats
that could affect the validity of the results. Section 5 summarizes the related
literature in the context of green mining and code smells. Finally, Section 6
concludes the paper.

2. Empirical Study Definition and Design

The goal of the study is to analyze the source code of mobile apps with
the purpose of investigating whether (i) the presence of code smells influences
energy consumption and (ii) the removal of such design flaws through refac-
toring actually reduces the energy consumption of mobile applications. More
specifically, the study addresses the following three research questions:

• RQ1: To what extent are the considered code smells diffused in the meth-
ods of the analyzed applications?

• RQ2: Do methods affected by code smells have high energy consumption?

• RQ3: Does the refactoring of code smells positively impact the energy
consumption of mobile apps?

The first research question (RQ1) is a preliminary investigation into the
diffuseness of code smells in our dataset: this was done with the aim of studying
the relevance of the considered problem and the extent to which each code
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smell type affects source code methods of Android apps. Our RQ2 represents
a deeper investigation into the relationship between the presence of code smells
and energy consumption of the affected methods, while RQ3 aims at assessing
the gain provided by refactoring of code smells in terms of energy consumption.

2.1. Context Selection

The context of the study consists of 60 open source Mobile Android apps
publicly available in the F-Droid repository1. Specifically, we selected all the
apps from the benchmark dataset provided by Choudhary et al. [12], which
collects a subset of apps used in previous studies [16, 17, 18, 19] having different
size and scope and that are still maintained by their own developers. The
dataset comprises 2,701 classes and 19,504 methods. The complete list of the
apps used in this study is available in our online appendix [15].

Table 1 reports the set of code smells investigated in the study, together with
a brief explanation and the corresponding refactoring operations. In particu-
lar, we analyzed the behavior of 9 Android-specific code smells extracted from
the catalog defined by Reimann et al. [9]. This catalog reports a set of poor
design/implementation choices applied by Android developers that are believed
to impact non-functional attributes of mobile apps, such as software quality,
user experience, performance, and energy consumption. However, it is impor-
tant to point out that the actual impact of the defined smells on non-functional
attributes has only been conjectured by the authors of the catalog, and no em-
pirical evaluation has been directly conducted to verify and measure such an
impact.

Among the 30 types of Android-specific design flaws available in the catalog,
we selected only 9 code smells for three main reasons. First of all, we selected the
design flaws that directly affect the source code, while the catalog also includes
problems related to poor user interface design choices, e.g., Nested Layout. Sec-
ondly, we included the code smells supposed to be directly connected with the
energy consumption of the app rather than the ones related to violations of
other non-functional aspects, such as data security and privacy. For instance,
we have not considered the Public Data code smell, which appears when private
data is stored in a location publicly accessible by other applications [9]: even if
this problem affects the source code of an app, it does not seem directly con-
nected with its energy consumption. Finally, we focused on method-level code
smells only, since for them we can isolate the energy consumption for each single
method execution. On the other hand, the analysis of class-level code smells
(e.g., most of the Fowler’s smells [10]) are particularly challenging because ob-
jects (instances of a class) can remain in memory during the execution of the
app2 and, hence, isolating their behavior is more difficult. Therefore, while the
analysis of other class-level code smells could be worthwhile, it requires special-
ized tools and methodologies able to adequately deal with them. It is, therefore,

1https://f-droid.org/
2https://developer.android.com/reference/android/app/Activity.html
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part of our future research agenda.
It is worth observing that we included in our selection the so-called Inter-

nal Getter/Setter : this smell arises when methods access external fields using
getters and setters. While this is usually a good design practice that allows the
encapsulation of the internal fields of a class, using getters and setters may lead
a mobile app to be less performing as they represent additional function calls
[9]. Since Android 2.3, the compiler automatically optimizes “simple getters
that do nothing other than return the field” [20], while it does not optimize for
setters. On the one hand, this means that taking into account this smell still
make sense, as internal setters might have an impact on energy efficiency. At
the same time, the original definition of the code smell needs to be revised. For
this reason, in the context of this paper we considered as smelly methods only
those accessing internal fields via setters. In other words, we only considered
the Internal Setter component of the original smell definition.

2.2. Data Extraction

In this section, we provide an overview of the data extraction process to
(i) detect code smell instances and (ii) measure the energy consumption of the
considered apps.

2.2.1. Code Smell Detection

To answer our research questions, we first needed to identify the instances
of the 9 code smells considered in the study. A manual detection would have
been prohibitively expensive because of the number of both code smell types
and mobile apps involved in the study. For this reason, we relied on a code
smell detector that we previously developed, named aDoctor [13]. aDoctor
extracts structural properties from the source code to detect instances of all
the considered smells. It is important to notice that the design flaws defined
for Android apps are often easier to identify when compared to the traditional
smells described by Fowler [10]. As an example, the Inefficient Data Structure
smell is based on the fact that the mapping from an integer to an object is slow:
for this reason, the smell is strongly related to the use of an HashMap<Integer,

Object> as data structure and, therefore, easily detectable automatically by
identifying the methods using an instance of HashMap<Integer, Object>. The
complete list of detection rules exploited by aDoctor is available in [13]. To
evaluate the performance of our tool in detecting smells, we have conducted a
case study involving 18 apps in our dataset, finding that aDoctor is able to
suggest code smells with an average precision of 98% and an average recall of
98%. Thus, the detection process is quite effective. The interested reader can
find the publicly available version of the tool as well as more information about
its validation in [13].

2.2.2. Energy Consumption Estimation

The second step consisted of deriving the energy consumption profile of
Android apps. Despite the fact that a number of tools have been proposed
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Listing 1: PETrA workflow

1 computeEnergyConsumption(apkLocation , appName , tCase , nRuns){
2 installApp(apkLocation);
3 for (run=0; run <nRuns; run ++) {
4 clearAppCache(appName);
5 resetBatteryStats ();
6 startProfiler ();
7 exerciseApp(appName , tCase);
8 stopProfiler ();
9 collectBatteryStatsData ();

10 collectSysTraceData ();
11 collectDMTraceDumpData ();
12 loadPowerProfile ();
13 for each method call in trace file {
14 computeCallEnergyConsumption ();
15 }
16 saveResults ();
17 stopApp(appName);
18 }
19 uninstallApp(apkLocation)
20 }

to perform such measurements, these are not available [3] or require hardware
equipment and a strong experience in the set-up of the test bed [21]. For this rea-
son, in our study, we relied on PETrA (Power Estimation Tool for Android),
which is publicly available [14]. PETrA is a software-based approach that is
able to estimate the energy consumed by each executed method. More in de-
tail, the tool instruments the methods of the app under analysis and runs a set
of test cases received as input. PETrA records the time needed to complete
the execution of each exercised method along with the estimation of the joules
consumed by the app during the time between the entry and the exit of the
monitored method.

More formally, as depicted in Listing 1, PETrA’s main process is composed
of three main blocks: (i) app preprocessing, (ii) energy profile computation,
and (iii) output generation. In the following paragraphs, we detail each part
independently.

App Preprocessing. In the first step, PETrA needs to set the software
environment before measuring the energy consumed when executing a mobile
app. To this aim, it uses as input an executable version of the app under analysis
in the form of an apk file. The app is identified by the apk location and the
name of the app to profile, which correspond to apkLocation, and appName in
Listing 1 respectively. Then, PETrA installs the apk on a mobile phone able to
run it (e.g., a smartphone having an arbitrary version of the Android operating
system) and enables the debuggable option. Enabling debugging is mandatory
because otherwise the instrumentation and profiling of the app would not be
possible.

Energy Profile Computation. Once the app is properly set up, PETrA
exercises the app under consideration using a test case given as input, i.e.,
tCase in Listing 1. This test case can be created with automated tools (e.g.,
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Monkeyrunner or Monkey) or with manual operations performed by the software
engineer. Once the test case is run, the core process behind PETrA starts.

For the profiling phase, we leverage the Project Volta Android tools3,
which are based on the self-modeling paradigm proposed by Dong and Zhong
[22], i.e., the definition of a mobile system that automatically generates its
energy model without any external assistance. Such tools are dmtracedump4,
Batterystats5, and Systrace6. Specifically:

• dmtracedump provides an alternate way to show trace log files. The files
generated by dmtracedump are easy to parse and allow the developers to
establish precisely, at microseconds granularity, when a method call has
been invoked and when it returned. PETrA relies on this component to
store the execution traces of the app under analysis. For each method call
dmtracedump provides the entry and the exit time. The final output is a
list of the executed method calls during the run.

• BatteryStats is an open source tool of the Android framework able to
collect battery data from the device under evaluation. In particular, it
is able to show which processes are consuming battery energy and which
tasks should be modified to improve battery life. It is executable via the
command line. The data collected can be analyzed as a log file or can be
converted to an HTML visualization that can be viewed in a browser using
Battery Historian. PETrA uses the Batterystats log to retrieve the
active smartphone components and their status in a specific time window.
Furthermore, it can provide the information about the device voltage.
Given this information, it is then possible to calculate the energy consumed
by the smartphone during a time window.

• Systrace is a tool that can be used to analyze application performance.
It captures and displays the execution time of the active processes of
a smartphone, combining data from the Android kernel, i.e., the CPU
scheduler, disk activity, and application threads. The data can be viewed
as an HTML report that shows the overview of the processes in a given
time window. In PETrA, the information provided by Systrace is used
to capture the frequency of the CPU in a given time window. Consider-
ing that CPUs have different consumptions as their frequency varies, this
information completes the one provided by Batterystats improving the
estimations.

After gathering the information related to the active components with their
status, the CPU frequencies and the method call invocations, the power profile

file is loaded. The power profile values define the current consumption for a

3https://developer.android.com/about/versions/android-5.0.html#Power
4https://developer.android.com/studio/profile/traceview.html
5https://developer.android.com/studio/profile/battery-historian.html
6https://developer.android.com/studio/profile/systrace-commandline.html
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component along with an approximation of the battery drain caused by each
component over time. For instance, it specifies how many MilliAmperes of cur-
rent are required to run the CPU at a certain frequency. Every smartphone has
its own power profile. It is worth noting that each device manufacturer must
provide this information and that it can be found in a defined location in the
device7.

Given the previous data, it is possible to compute the energy consumed for
every method call invocation. First of all, given a method call invocation and
its termination we can calculate the overall time window Tw as the arithmetic
difference between the two instants of time when these two events occurred.
However, the energy consumed within one single time window is not constant
but may change because of a CPU frequency variation or a component state
change. Therefore, we divided the time windows into smaller time units, i.e.,
data frames T∆. When the entry to a method is registered, a new time window
Tw and a new time frame T∆ start. Whenever a component changes its state,
the existing time frame T∆ is terminated and a new one (for the new state) is
started. When the exit point to a method is registered, then the corresponding
time window Tw is terminated as well as the latest time frame T∆. In this
way, each data frame T∆ is characterized by coherent component states (e.g.,
CPU frequency) and by a coherent (constant) energy drain. For example, if the
CPU is working at the maximum frequency and none of the components change
their state, the time windows Tw will be composed by only one-time frame T∆

of the same duration, i.e., the difference between the method entry and exit.
Therefore, we can calculate the current power intensity at each time frame T∆

as follows:
I∆ =

∑
∀c∈C

I∆,c (1)

where C is the set of smartphone hardware components, I∆,c is the current
intensity of the component c within the current time frame T∆. For example,
92.6 is the number of MilliAmpere consumed in one second by a Nexus 4 when
the CPU frequency is fixed at 384Mhz.

After calculating the current intensity, it is possible to calculate the energy
consumed in a time frame, as follows:

J∆ = I∆ × V∆ × T∆ (2)

where J∆ is the consumed energy in Joule, I∆ is the current intensity in Ampere,
V∆ is the device voltage in Volt, and T∆ is the length of the time frame in
seconds.

Finally, the energy consumed by a method call can be calculated by summing
up the energy consumed in each time frame in which the method call was active:

J =
∑

T∆∈Tw

(I∆ × V∆ × T∆) (3)

7https://source.android.com/devices/tech/power/values.html
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Output Generation. The final output provided by PETrA is a CSV file, con-
taining the energy estimation for each method call. More precisely, it provides
the signature of each executed method call, along with the consumption in Joule
and the execution time in seconds.

Finally, PETrA relies on the Android Activity Manager8, so the apk must
be enabled for debugging. Furthermore, in order to provide a better estimation,
PETrA exercises the app multiple times (nRuns in Listing 1). Note that in our
experiments nRuns is fixed to 10 and that in order to avoid any bias due to mul-
tiple runs, at the start of each run the app cache is cleaned and Batterystats

is reset (lines 4 and 5 in Listing 1).

PETrA is able to provide power estimations similar to those obtained using
the power estimation model provided by Android. We empirically evaluated the
performances of our tool, comparing its estimations with a publicly available
oracle [5] reporting the actual consumptions provided by a hardware-based tool,
i.e., Monsoon9. To this aim, we used the same phone (i.e., LG Nexus 4) and
settings used by Linares-Vasquez et al. [5]. In summary, the results show that
the estimations produced by PETrA are very close to the actual values, more
precisely:

• The mean estimation error achieved using PETrA is 0.04 with respect to
the actual value calculated using Monsoon.

• The measurement errors are mainly due to a significant use of network
capabilities or sensors.

• In 89% of the cases, PETrA produces overestimations, mainly due to
the accumulated noise achieved during the estimations. In the remaining
cases, the use of sensors and network produces underestimations.

The interested reader can find more information about the validation of the
tool in [14]. In the context of this work, we followed a well-defined process
already used in previous work [3, 5, 21, 23] to extract the energy profile of the
60 Mobile apps:

• The phone used in the experiment is a factory re-setted LG Nexus 4 hav-
ing Android 5.1.1 Lollipop as operating system, equipped with a 1.5 GHz
quad-core Snapdragon S4 Pro processor with 2 GB of RAM, and having
a 2100 mAh, 3.8V battery. The choice of the phone was guided by pre-
vious research in the field [3, 5, 21, 23], but also because this particular
hardware allows to be connected via a data cable, namely a cable where
the USB charging can be disabled10. Therefore, no energy is transferred

8https://developer.android.com/studio/command-line/shell.html
9http://tinyurl.com/3ys7arm

10http://tinyurl.com/jg7q3lf
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over the cable, enabling more stable measurements. Before starting the
experiment, we completely reset the phone to avoid bias in the power
measurements. Moreover, to limit noise (i) we disabled all the unneces-
sary apps and processes running on the phone to avoid race conditions,
(ii) we did not insert any sim card to avoid asynchronous events, such
as incoming messages or calls, and (iii) to avoid energy measurements by
sensors and WiFi signal changes we held the phone steady. This setup,
available in our online appendix [15], was needed to allow PETrA to work
in an adequate test environment.

• As for the test cases to give as input to PETrA, we automatically gen-
erated them using Monkey11, a tool belonging to the Android SDK that
produces pseudo-random streams of user events (i.e., clicks, touches, ges-
tures). The choice of Monkey has been guided by recent results [12, 24],
showing that this tool achieves the better compromise between coverage
and effort needed for the setup. In the experiment, we used the configu-
ration of Monkey suggested by Choudhary et al. [12]. Since Monkey may
produce events which have the effect of testing external parts of the app
under test (e.g., a click may open the status bar), we properly configured
Monkey to focus only on the app under analysis. Moreover, to not im-
properly enable/disable smartphone functionality (e.g., WiFi, Bluetooth,
GPS), we hid the status bar12.

• The measurements provided by PETrA were repeated 10 times to have
a more reliable estimation of the energy profiles. Each run costs around
five minutes since, as reported by Choudhary et al. [12], this is the time
needed by Monkey to achieve code coverage convergence. The results
achieved after 10 runs (i.e., the joules consumed by the methods in each
run) were aggregated using the mean operator. In our case, the mean can
be considered significant because the energy consumption of each exer-
cised method tends to remain similar over the 10 runs and, therefore, the
distribution of the energy consumption of each method does not contain
outliers. In particular, to verify the normality of the distribution of the
energy consumptions we adopted the following process: (i) we normalized
the data of each run in the interval [0, 1] using the mix-max algorithm
[25] and (ii) we applied the Shapiro-Wilk test [26] with an α threshold
for significance set to 0.05. It is important to remark that for this test
the null hypothesis represents the normality of the distribution. In our
case, the ρ− value assumed value equals to 0.4921 and thus we could not
reject the hypothesis that the sample comes from a population which has
a normal distribution, meaning that the variance of the distribution is not
large and, therefore, the mean operator can be considered.

Thus, the final output consisted of a unique value representing the aver-

11http://tinyurl.com/gvnxdd3
12http://tinyurl.com/jxkor7a
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age energy consumed by the methods exercised during the test execution.
Overall, the data extraction process (i.e., the smell detection and the ex-
traction of the energy profiles of 60 apps) took eight weeks.

2.3. Data Analysis

Once we extracted the code smell instances affecting the apps with aDoc-
tor, we turned our attention to answer RQ1: we verified the diffuseness of
each considered code smells in our dataset and we computed the absolute and
relative number of methods they affected. In RQ2, we aimed at providing a first
understanding of the relation between the presence of code smells and energy
consumption of the affected methods. Exploiting the energy profiles coming
from the output of PETrA, we proceeded as follows: as a first step, we ordered
the methods in our dataset by energy consumed to obtain a ranked list having
at the top the most consuming methods. Then, we computed how many of
those methods were affected by a certain type of code smell. In other words,
we assessed how many methods ranked at the top of the list were affected by a
code smell, with the aim of understanding the extent to which code smells rep-
resent a co-occurring phenomenon with respect to energy consumption. More
specifically, given the ranked list we investigated how many methods of the top
α% of them were also affected by each of the considered smells. We set α% with
values in the set [10, 20, 30, 40, 50]: in this way, we measured the extent of the
relation in the first half of the most consuming methods.

Finally, as for RQ3, we evaluated whether refactoring operations (origi-
nally targeted to remove the smells) are actually useful for reducing the energy
consumption of the smelly methods. To perform this analysis, we manually an-
alyzed the source code of the methods involved in the design problem and per-
formed refactoring operations according to the guidelines provided by Reimann
et al. [9]. In particular, the methods to analyze and refactor have been dis-
tributed among two of the authors, who were responsible for refactoring half
of the instances each. Each of the involved authors independently refactored
the methods assigned to him, by relying on (i) the definitions of refactoring
and (ii) the examples provided by Reimann et al. [9]. The output of this
phase consisted of the source code where code smells were removed. Then, the
two authors involved in this task discussed their activities to double-check the
consistency of their individual refactoring applications. It is worth remarking
that these types of smells can be removed by applying simple program trans-
formations that do not impact the external behavior of the source code. For
instance, the previously mentioned Inefficient Data Structure can be refactored
by replacing the HashMap<Integer, Object> with a SparseArray<Bitmap> [9].
To be confident that the process did not alter the behavior of the app under
analysis, we also re-executed the test cases generated by Monkey (and used to
answer our previous RQ) at the end of each refactoring. Once refactored the
source code, we repeated the energy measurements. Then, we compared the en-
ergy consumption obtained using the smelly version of the app with the energy
consumption obtained by its corresponding refactored version. To test the sta-
tistical significance of the differences (if any) between such distributions we used
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the Mann-Whitney test [29]. The results are intended as statistically significant
at α = 0.05. We estimated the magnitude of the measured differences using
Cliff’s Delta (or d), a non-parametric effect size measure [30] for ordinal data.
We followed well-established guidelines to interpret the effect size values: negli-
gible for |d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474,
and large for |d| ≥ 0.474 [30].

To have a practical view of the results achieved in the study, we also com-
puted the percentage of the battery charge consumed by methods affected and
not affected by code smells. In particular, given the characteristics of the phone
used in the experiments (i.e., 2,100 mAh and 3.8V battery), the percentage of
battery discharge can be computed using the following formula [31]:

f(n) =

(
V · S · I

V
· 1

I · S

)
% (4)

where V is the voltage, I represents the current intensity, and S the time.
Our measures are performed by considering the joules consumed by a method.
Formally, a joule represents the work required to move an electric charge of one
coulomb through an electrical potential difference of one volt (V · C). Since a
coulomb is the charge transported by a constant current of one ampere in one
second (I ·S), the numerator of the first part of Equation 4 (i.e., V ·S·I) is exactly
the number of joules consumed by a method. Hence, a method consuming 0.01
J will consume 3 · 10−5% of the total battery charge because Equation 4 is
instantiated as follow:(

0.01

3.8
· 1, 000

2, 100 · 3, 600

)
% = 3 · 10−5% (5)

where the value of 1,000 at the numerator is because the charge is expressed in
mAh and not in Ah, and 3,600 is used to convert hours to seconds.

3. Analysis of the Results

In this section, we describe the results achieved to answer our three research
questions.

3.1. To what extent are the considered code smells diffused in the methods of
the analyzed applications?

Figure 1 shows the code smells diffuseness throughout the entire dataset.
In particular, aDoctor detected 6,155 code smell instances (i.e., ≈32% of
the total 19,504 methods are smelly). The most frequent ones are: Member
Ignoring Method (3,104 instances, 16% of all the methods), Slow Loop (1,288
instances, 7% of all the methods), Leaking Thread (828 instances, 4% of all the
methods), and Data Transmission Without Compression (564 instances, 3% of
the smelly methods) code smells. At the same time, the least diffused smells
are Inefficient Data Format And Parser and Inefficient SQL Query, with 3
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Figure 1: Diffuseness of code smells on the considered dataset.

Figure 2: Diffuseness of code smell co-occurrences on the considered dataset.

and 0 instances, respectively. As a consequence, we can firstly conclude that
the earlier cited smells are those having the highest relevance in our dataset,
meaning that they are the ones that appear more frequently in mobile apps.
For the sake of our study, these results had a major outcome: we excluded the
Inefficient SQL Query smell from the analysis. At the same time, despite its
extremely low diffuseness we still kept the Inefficient Data Format And Parser
into consideration: it might theoretically happen that even few instances of such
code smell have a strong impact on energy efficiency. Thus, we kept evaluating
the extent to which this smell contributes to energy consumption. The detailed
results about the distribution of the studied smells over the 60 apps are reported
in our online appendix [15].

While our first analysis targeted the diffuseness of the single code smell
types, it is important to note that methods in our dataset may be affected by
multiple smell types. Several studies in the past [32, 33, 34] have shown that
smell co-occurrences might amplify the negative effects on the source code. For
this reason, we took into account the phenomenon of code smell co-occurrences.
Figure 2 shows the results of this analysis. It is worth noting that we did not
find any method affected by more than three code smell types at the same time.
Looking at our findings, it is interesting to note that 62% of the methods are
affected by more than one smell: this confirms the recent findings by Palomba et
al. [34] on the high relevance of the co-occurrence phenomenon. Further anal-
yses on the interaction between different smells revealed that most of the times
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Figure 3: Percentage of most consuming methods also affected by a code smell.

there are four specific smells that co-occur together, namely Leaking Thread,
Member Ignoring Method, Slow Loop, and Internal Setter. In particular, in 84%
of the cases, the methods having three smells are affected by a combination of
these four specific design flaws. Moreover, the frequent co-occurrence of such
smells is also visible when analyzing methods affected by two smells (Mem-
ber Ignoring Method and Slow Loop co-occur in 33% of the methods, Leaking
Thread and Member Ignoring Method in 28%, Leaking Thread and Slow Loop
in 11%, Internal Setter and Slow Loop in 8%). Interestingly, the Data Trans-
mission Without Compression smell, despite its diffuseness, generally tends to
arise alone: this indicates that its high diffuseness does not necessarily imply a
high co-occurrence with other smells.

As a matter of fact, the results of this first research question revealed that
some code smell types tend to occur and co-occur more frequently: more detailed
analysis of the impact of such smells (if any) on energy consumption is presented
in the next section.

Summary for RQ1. Overall, four of the code smells analyzed tend
to occur more frequently: they are the Leaking Thread, Member Ig-
noring Method, Slow Loop, and Data Transmission Without Com-
pression ones. The latter three, together with the Internal Setter,
are those co-occurring more frequently.
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Figure 4: Percentage of code smells appearing in the top-10%, top-20%, top-30%, top-40%,
and top-50% most consuming smells.

3.2. Do methods affected by code smells have high energy consumption?

As explained in Section 2, to investigate the impact of code smells on energy
consumption, we firstly ordered the methods in our dataset by energy consumed,
with the aim of assessing how many of those ranked at the top of the list were
affected by a code smell. Overall, we observed that in the top 50% of the list (i.e.,
9,752 methods), 3,120 methods were smelly (32%), while 2,773 smelly methods
(47%) were in the top 30% (i.e., 5,851 methods) and 1,835 (94%) were in the top
10% (i.e., 1,950 methods). These results somehow suggest a relation between
code smells and energy consumption. A representative example can be found in
the a2dpvolume project13, an app able to automatically adjust the media volume
when the phone is connected to Bluetooth devices. The method onCreate of
the Vol.AppChooser class creates a thread without closing it and, therefore,
it is affected by a Leaking Thread smell. In ten runs, PETrA estimates its
energy consumption around 0.77 joules on average (i.e., it was the 58th most
consuming method in our experiment).

The fine-grained findings of our analysis are reported in Figure 3: specifically,
the figure shows the percentage of the top-α% (with α=10, 20, 30, 40, 50),

13https://play.google.com/store/apps/details?id=a2dp.Vol
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Figure 5: Percentage of most consuming methods that are affected by one or more smells.

energy consuming methods that were also affected by each of the code smells in
our dataset. The plot highlights that four code smells tend to frequently occur
in the most consuming methods, namely Member Ignoring Method, Slow Loop,
Leaking Thread, and Internal Setter.

On the other hand, instances of Data Transmission Without Compression,
Durable Wakelock, Inefficient Data Structure, and Inefficient Data Format and
Parser appeared in just the 5%, 4%, 3%, 0.001%, respectively, of the top-10%
of the most consuming methods. Nevertheless, it is important to note that such
percentages might be biased by the low diffuseness of these smells. For this
reason, we also analyzed how many of the methods affected by a given smell are
included in the top-α% (with α=10, 20, 30, 40, 50) most consuming methods,
with respect to the total number of methods affected by that smell. The results
are graphically shown in Figure 4. As it is possible to see, we discovered that
in the top-10% of the list appeared (i) 67% of all the Internal Setter instances
(i.e., 119 out of the total 178 instances), (ii) 62% of the Durable Wakelock ones
(i.e., 75/122), (iii) 81% of all the Inefficient Data Structure instances (55/68),
and (iv) 66% of Inefficient Data Format and Parser ones (2/3). In other words,
we can conclude that despite their low diffuseness, most of the instances of
these smells appear in the top-10% of the most consuming methods, indicating
that they potentially have an effect on energy consumption. The next research
question aims at investigating further the causality between the presence of code
smells and energy consumption of the affected methods. We analyzed all the
smells, independently of their diffuseness.

As a final point of discussion, it is worth analyzing the relevance of code
smell co-occurrences. Figure 5 shows that methods affected by two smells si-
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Table 2: Energy consumed by methods before and after the application of refactorings. “R-”
prefix stands for Refactored.

Smell Type Min 1st Qu. Median Mean 3rd Qu. Max
DTWC 0.004 0.006 0.008 0.010 0.013 0.018
R-DTWC 0.004 0.006 0.008 0.010 0.013 0.018
DWL 0.001 0.001 0.001 0.001 0.002 0.003
R-DWL 0.001 0.001 0.001 0.001 0.002 0.003
IDS 0.002 0.002 0.003 0.003 0.003 0.004
R-IDS 0.002 0.002 0.003 0.003 0.003 0.004
IDFAP 0.001 0.001 0.001 0.001 0.001 0.002
R-IDFAP 0.001 0.001 0.001 0.001 0.001 0.002

Table 3: Energy consumed by methods before and after the application of refactorings. “R-”
prefix stands for Refactored.

Smell Type Min 1st Qu. Median Mean 3rd Qu. Max
IS 0.076 0.076 0.082 0.083 0.092 0.092
R-IS 0.001 0.001 0.009 0.016 0.024 0.024
LT 0.01 0.02 0.03 0.077 0.013 0.77
R-LT 0.001 0.001 0.003 0.009 0.009 0.019
MIM 0.001 0.002 0.004 0.04 0.028 0.981
R-MIM 0.0001 0.002 0.018 0.02 0.019 0.038
SL 0.001 0.006 0.0119 0.056 0.026 0.929
R-SL 0.001 0.004 0.0114 0.010 0.014 0.018

multaneously are those more frequently appearing at the top of the list of the
most consuming methods.

Summary for RQ2. 94% of the most consuming methods in our
dataset were affected by at least one code smell: this might indicate
the existence of a strong relationship between the considered code
smells and the energy consumption of methods.

3.3. Does the refactoring of code smells positively impact the energy consump-
tion of mobile apps?

The results of the previous research question pointed out that most of the
analyzed code smells have a kind of relation with the energy consumption of
the affected methods. However, this is not enough to show the actual impact
of code smells. Our final research question is aimed at assessing the actual im-
pact of code smells on energy consumption. To this aim, we evaluated to what
extent the refactoring of the considered smells has an effect on the reduction
of the energy consumption of the smelly methods. Specifically, we manually
refactored the 2,354 smelly methods affected by only one of the smells consid-
ered. Note that in this research question we have not considered the methods
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Table 4: Average Battery Discharge of Methods Before and After Refactored

Smell Type % of Battery Discharge Before % of Battery Discharge After
IS 2.8 · 10−6% 3.1 · 10−7%
LT 1.1 · 10−6% 1.1 · 10−7%

MIM 1.4 · 10−6% 6.2 · 10−7%
SL 2.1 · 10−6% 3.9 · 10−7%

affected by more smells since we are interested in understanding the effect of
the single refactoring operations on the energy consumption of such methods.
The refactoring phase required approximatively 450 man-hours.

Table 2 reports the statistics on the energy consumption of the methods
affected by Data Transmission Without Compression, Durable Wakelock, Inef-
ficient Data Structure, and Inefficient Data Format and Parser, respectively,
before and after the refactoring. As it is possible to observe, the refactoring
operations applied do not have any effect on the resulting energy consumption.
On the one hand, it is important to point out that our study was conducted at
method-level, while the negative impact of certain code smell types might arise
at a higher level of granularity. For instance, the high energy consumption of
the Inefficient Data Structure smell was shown by Hasan et al. [7] when the
workload of an Hashmap<Integer, Object> increases (i.e., when many inser-
tions or iterations are done over the data structure): this indicates that some
smells may have a negative influence under stressing conditions observable at
app-level, while others (those with the highest co-occurrences with the most en-
ergy consuming methods in our study) immediately impact energy consumption
of methods. Further investigations on the role of code smells at different levels
of granularity would be desirable. On the other hand, some previous studies
(such as the one by Hasan et al. [7]) were conducted in the context of larger
and more complex applications, like Java libraries: the low relation between
certain smells and energy consumption observed in our study might also be due
to the fact that we analyzed mobile apps, i.e., significantly smaller software
systems as compared to libraries. In this context, we observed that some types
of issues are generally poorly diffused and, therefore, not particularly relevant.
For instance, Inefficient Data Structure instances represent the 0.01% of the
analyzed methods, while Inefficient Data Format And Parser only the 0.001%:
this makes their impact notably marginal while reinforcing the idea to deeper
investigate the effect of such smells at a higher level of granularity.

A similar discussion can be held with respect to the other code smells consid-
ered in the study: Durable Wakelock and Data Transmission Without Compres-
sion. Methods acquiring a wakelock without releasing it might be problematic
from an energy perspective due to a long execution of an app, as well as methods
transmitting a file over a network without compression may create energy leaks
depending on the size of the transmitted file. In other words, some smells might
be more prone to cause energy leaks in different situations of those explored in
this paper. This further confirms the need for additional studies on the impact
of code smells. At the same time, we believe that our results represent valuable
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findings since they actually show how the negative impact of some code smells
(i) is not visible at method-level and (ii) should be assessed in different contexts.

At the same time, Table 3 reports the statistics on the energy consumption of
methods affected by Internal Setter, Leaking Thread, Member Ignoring Method,
and Slow Loop, respectively, before and after the application of the correspond-
ing refactoring operations. In all the comparisons between smelly and refactored
versions a recurring pattern can be observed: when the code smells affecting the
methods are removed, the energy consumption of such methods decrease. For
methods affected by Internal Setter we can observe that the associated solution,
namely the Direct Field Access refactoring [9], reverses the negative effect of the
smell by reducing the energy consumption by almost 27 times with respect to
the smelly methods (the median energy consumption of smelly methods is 0.082
joules, while the median of the distribution of the refactored methods is 0.003J).
A representative example is the method AcalDateTime.applyLocalTimeZone

of the aCal app14, which sets the local time zone by reading information about
the actual zone using the method getUTCInstance, and then sets a new time
using the method setTimeZone. By directly using the fields reporting the actual
zone and the current time, the method consumes, on average, 0.012J , namely 7
times less than the non-refactored version (0.094J). The magnitude of the differ-
ences between smelly and refactored methods is large (d=0.67) and statistically
significant (p-value<0.005).

Similar results can be observed for the Leaking Thread smell, with the me-
dian energy consumption equal to 0.080J when methods are affected by the
smell, compared to 0.003J when the methods are refactored. Hence, the Intro-
duce Run Check Variable refactoring [9] helps in reducing the energy consump-
tion 26 times of methods previously affected by a Leaking Thread. Also in this
case, we discuss the differences between the smelly and the refactored version
of the AppChooser.onCreate method of the a2dpvolume class, mentioned in
the context of RQ2. From an average of 0.770J previously obtained, we ob-
served that the energy consumed by the refactored version is 0.010J , namely 77
times lower. The differences are statistically significant (p-value<0.001) with a
medium effect size (d=0.35).

The Introduce Static Method refactoring [9] needed to remove the Member Ig-
noring Method smell turned out to be strongly impacting the energy efficiency of
source code methods. On average, the energy consumption of methods changes
from a mean of 0.070J to 0.008J , leading to the definition of a method nine times
more efficient. The differences are statistically significant (p-value<0.001) with
a medium effect size (d=0.46). An example appeared in the Alarm Klock app15.
The method onItemClick of the alarmclock.ActivityAlarmClock class is re-
sponsible for capturing the taps of the user on the screen when using the app.
This method is therefore called in action several times during each app execu-
tion. Once refactored, we observed a strong improvement of its energy efficiency

14http://tinyurl.com/8hg67fk
15http://tinyurl.com/ngzkv3v
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(in the ten runs the consumption decreases from 0.870J to 0.030J , namely 29
times lower).

The discussion about the Slow Loop smell is similar to one of the other
energy smells. The differences are statistically significant (p-value<0.005), yet,
with small effect size (d=0.12). As an example, the onOptionsItemSelected

method, belonging to the BlinkenlightsBattery class of the Battery Circle

app16 is responsible for analyzing all the possible configuration options provided
as input by the user, using a slow version of the for loop. When refactored, the
method passed from a consumption of 0.870J to 0.010J (87 times less), i.e., it
completely changed its energy profile.

To broaden the scope of the discussion, the quantity of source code that
needs to be refactored to remove the code smells is small. For instance, the
Introduce Static Method only requires the addition of the keyword static to
the signature of the method, together with other small changes to adapt method
calls over all the project (i.e., modifying external method calls in a way they call
a static method). However, we observed that such small changes in the source
code result in a big change in the energy consumed by the methods involved.
The results are confirmed by the analysis of the percentage of battery discharge
of methods before and after being refactored, as reported in Table 4. As we can
see, all the types of refactoring result in a significantly lower energy drain. In
our opinion, this is a key result since it reveals the actual cost-effectiveness of
refactoring of Android-specific code smells.

Summary for RQ3. Refactoring code smells has a key role in im-
proving the energy efficiency of source code methods. On average,
we found that the refactored versions of methods previously affected
by Internal Setter, Leaking Thread, Member Ignoring Method, and
Slow Loop, consume up to 87 times less than methods affected by
smells. Based on these results, we observe that refactoring is a pow-
erful activity that should be applied by mobile developers.

4. Threats to Validity

The main threats related to the relationship between theory and observation
(construct validity) are due to imprecisions in the measurements we performed.
Above all, we relied on the aDoctor tool to detect candidate code smell in-
stances. We are aware that our results can be affected by the presence of false
positives and false negatives. However, the performance of the tool has been
evaluated on 18 apps considered in the study, finding that aDoctor has a
precision of 98% and a recall of 98%. These results allow us to be confident
about the code smell instances found over all the considered apps. In addition,
we replicated all the analysis performed to answer our research questions by

16http://tinyurl.com/o33ms7d
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just considering the 18 apps where the smells have been validated. The results
achieved in this analysis (available in our replication package [15]) are in line
with those obtained in our paper, confirming all our findings.

On the other hand, we measured energy consumption using our tool PE-
TrA. As briefly explained in Section 2, we empirically evaluated the accuracy
of the approach on 54 mobile apps comparing the power estimation of the tool
with the oracle provided by Linares-Vasquez [5]. The validation revealed that
in 95% of the cases the estimations of our tool are within 5% of the actual
values. Therefore, we believe that the data provided by the tool are consistent
and close enough to the actual energy consumption [14]. Moreover, in case of
differences between the estimations provided by PETrA and the hardware-
based tool, these would be consistent for both methods affected by smells and
refactored methods, so that the error would not invalidate our findings. We
aggregated the results given by PETrA using the mean operator. As high-
lighted in section 2, in our case, the mean can be considered significant because
the energy consumption of each exercised method tends to remain similar over
the ten runs and, therefore, the distribution of the energy consumption of each
method does not contain outliers. Despite this, to be more confident about our
findings, we repeated the experiment by aggregating the energy consumption
using the sum, i.e., the final output was a unique value representing the sum
of the energy consumption of the methods exercised during the ten runs. The
results achieved from this analysis are available in our online appendix [15] and
similar to those reported in Section 3. Furthermore, it is worth noting that to
measure the consumption of each method we analyzed the energy consumed by
the application within a certain time frame. Although this is clearly an approx-
imation (e.g., the presence of more threads running simultaneously might bias
the measurements), the same procedure has been performed in several previ-
ous research papers [37, 38, 39, 40, 41], which, however, also include additional
approximations due to tail energy usage (that arise when certain hardware com-
ponents are optimistically kept active by the operating system, even during idle
periods): in this sense, we believe that our measurement process is still more
precise than previous work and thus we are confident about the results provided
in this paper.

To execute the apps, we automatically generated test cases using Monkey.
Despite the possible limitations of this tool, it is worth considering that a previ-
ous study [12] demonstrated that Monkey was one of the best alternatives on the
set of apps considered in our empirical study, as it was the tool able to perform
best in terms of coverage. Moreover, it is worth noting that this tool does not
deal with preliminary authentication steps of an application like, for example,
the login phase. Nevertheless, this did not represent a threat in our case since
all the applications taken into account did not have any preliminary step to
access the real functionalities. Thus, we could entirely test the involved apps.
To collect the energy consumption for each method, we had to run the apps
in debugging mode. It is possible that due to this process, some optimization
phases were prevented. However, on the one hand, we followed a well-defined
process already used in previous work [3, 5, 21, 23] and on the other hand the
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official Android documentation does not provide any information on this topic.
Despite this, we acknowledge the possible threat.

All the experiments were performed on an LG Nexus 4, equipped with An-
droid 5.1.1. It is worth considering that this choice was guided by previous
research in the field [3, 5, 21, 23]. However, it is possible that different results
could be achieved on different smartphones and Android versions.

We cannot exclude that in the relation between code smells and energy
consumption other factors may have played a role: however, we strengthen the
observations made in RQ3 by explicitly performing a study on how refactoring
of those smells affect the investigated phenomenon. Another observation is that
some methods might tend to be more smelly because of application design, e.g.,
some design constraints enforcing developers in introducing code smells. While
it would be worth analyzing the extent to which code smell introduction is due
to such design constraints, our work aims at targeting the Android-specific code
smells that impact more on energy efficiency as well as the impact of refactoring
on the resulting energy consumption.

To study the effect of refactoring on energy efficiency (RQ3), we manually
refactored the source code. The procedure involved two of the authors who
carefully followed the guidelines provided by Reimann et al. [9]. At the end of
the first stage of refactoring, the authors involved in the task opened a discus-
sion aimed at double checking the refactoring operations individually performed.
While we cannot exclude imprecision and some degree of subjectiveness (miti-
gated by the discussion) in the way we refactor the source code, it is important
to note that we re-executed the same test cases generated by Monkey to (i)
double-check the validity of the refactoring operations applied and (ii) control
that the external behavior of the refactored methods was not changed after the
refactoring. As a result, all tests passed, confirming that the refactoring of code
smells did not change the external behavior of the app.

Threats related to the relationship between the treatment and the outcome
(conclusion validity) are represented by the analysis methods exploited in our
study. We discuss our results by presenting descriptive statistics and using
proper statistical tests in order to assess the significance and the magnitude of
our findings. In addition, the practical relevance of the differences observed in
terms of energy consumption is highlighted by effect size measures. Another
aspect to discuss is related to the granularity of the measurements conducted,
which might have influenced our observations. We worked at the method level
as our goal was to assess the relation between code smells and energy consump-
tion of methods: nevertheless, this does not exclude that other code smells at
class- or app-level might still have an impact when considering the overall app
consumption. For example, the Inefficient Data Structure might still be highly
consuming in cases where several operations (e.g., frequent insertions/itera-
tions/removals of elements) are performed over a Hashmap<Integer, Object>
[7]. Thus, it might be worth to spend future research effort on studying the
impact of higher level code smells on the energy consumption.

Threats to internal validity concern factors that could influence our obser-
vations. We are aware that in principle we cannot claim a direct cause-effect
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relationship between the presence of code smells and the energy consumption
of methods. However, on the one hand, the impact of code smells is firstly
demonstrated by the fact that we observed a strong improvement of the en-
ergy efficiency when such smells were refactored (RQ3). On the other hand,
we performed an additional analysis to verify whether other factors could have
influenced our results. Specifically, we re-run our analysis by considering the
energy consumption of both smelly and non-smelly methods having different (i)
size, (ii) complexity, and (iii) level of test coverage. We selected these three
confounding factors for the following reasons: size can impact energy consump-
tion since longer methods might execute more code, thus leading to consume
more energy; more complex methods can have more complex programming con-
structs that might require more energy consumption; as we executed test cases,
the level of coverage might impact the number of executed statements and,
therefore, a higher/lower coverage might influence the energy consumed by a
certain method. In details, we performed the following operations to control for
the three confounding factors:

1. We grouped together methods with similar size by considering their dis-
tribution in terms of size. Specifically, we computed the distribution of
the lines of code of methods. This step results in the construction of (i)
the group composed of all the methods having a size lower than the first
quartile of the distribution of all the size of the methods, i.e., small size;
(ii) the group composed of all the methods having a size between the first
and the third quartile of the distribution, i.e., medium size; and (iii) the
group composed of the methods having a size larger than the third quartile
of the distribution of all the method sizes, i.e., large size;

2. We computed the energy consumption for each method belonging to the
three groups, to investigate whether larger methods consume more than
smaller methods.

The experiment has been repeated considering the McCabe cyclomatic com-
plexity [42] and the coverage obtained by the test cases ran over the methods
analyzed [43] as measures to split methods in small, medium, and large sets. We
reported the achieved results in our online appendix [15], however, we observed
that such characteristics are not strongly related with the energy consumption
of the methods: specifically, only 13% of the largest methods are in the top-10%
of the most consuming methods. Similarly, 11% of the most complex ones are
in the top-10% and 6% of the methods having the highest coverage are on the
list of the most consuming smells. These results indicate that such confounding
factors do not have a relevant impact on energy efficiency. We are aware that
other factors might have influenced our findings: for instance, methods belong-
ing to Activity classes of Android apps might consume more by design, as they
are called more frequently. Nevertheless, our main goal was to study the effect
of code smells and the results obtained by refactoring smelly instances make us
confident enough the causation between their removal and the improvement of
energy efficiency of methods. However, further investigations on the role of the
additional factors on energy consumption would be worthwhile.

23



Finally, regarding the generalization of our findings (external validity), we
evaluated the impact of nine code smell types on the energy consumption of 60
mobile applications. However, further studies aiming at replicating our work on
larger datasets are desirable and part of our future agenda.

5. Related Work

This section discusses the related literature about code smells and energy
consumption.

5.1. About Code Smells and Refactoring

The traditional code smells defined by Fowler [10] have been widely studied
in the past. Several studies demonstrated their negative effects on program com-
prehension [33], change- and fault-proneness [44, 45], and maintainability [46,
47]. At the same time, several approaches and tools, relying on different sources
of information, have been proposed to automatically detect [48, 49, 50, 51], and
fix them through the application of refactoring operations [52, 53].

Traditional code smells have also been studied in the context of mobile apps
by Mannan et al. [54], who demonstrated that, despite the different nature
of mobile applications, the variety and density of code smells is similar. In
the same context, Morales et al. [55] studied the effect of several anti-patterns
[10, 56] with respect to the energy efficiency of mobile apps. They analyzed 59
Android apps and found that some refactorings have a positive effect on the
energy efficiency of mobile apps, while applying others has a negative effect.
Similarly, Gjoshevski and Schweighofer [57] analyzed 30 Android apps using
140 Lint rules showing that the size of the apps does not have an impact on
technical debt. A more detailed overview about code smells and refactoring can
be found in [58] and [59].

As for the Android-specific code smells defined by Reimann et al. [9], there is
little knowledge about them. Indeed, while the authors of the catalog assumed
the existence of a relationship between the presence of code smells and non-
functional attributes of source code, they never empirically assessed it [9]. The
unique investigation on the impact of three code smells on the performance of
Android applications has been carried out by Hetch et al. [36], who found some
positive correlations between the studied smells and the decreasing performance
in term of delayed frames and CPU usage. Finally, Morales et al. [60] proposed
EARMO, a refactoring tool that, besides code quality, takes into account the
energy consumption when refactoring code smells detected in mobile apps. It is
important to note that the authors mostly considered the code smells proposed
by Fowler [10], while our work aims at understanding the impact of a large
variety of Android-specific code smells on energy efficiency as well as the role of
refactoring on the performance improvement of mobile apps.
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5.2. About Energy Consumption
Themes related to energy consumption are becoming ever more relevant for

the research community due to the large diffusion of smartphones. In recent
years several hardware and software tools to estimate the energy consumption
have been proposed, such as GreenMiner [21] or eLens [3]. Unfortunately, these
tools are not publicly available. Our solution has been the construction of
PETrA, a new software-based energy estimator based on reliable Android tools,
having high accuracy in power estimations.

On top of estimation tools, researchers have studied ways to predict the
energy consumption using empirical data [37, 38] or dynamic analysis [39, 40],
to study how changes across software versions affect energy consumption [1] or
to estimate the energy consumed by single lines of code [61]. At the same time,
several empirical investigations have been carried out. Procaccianti et al. [41]
provided evidence on the beneficial effect of using green practices such as query
optimization in MySQL Server and the usage of the sleep instruction in the
Apache web server. Sahin et al. [8] studied the influence of code obfuscation
on energy consumption, finding that the magnitude of such impacts is unlikely
to impact end users. Sahin et al. [4] also studied the role of design patterns,
highlighting that some patterns (e.g., the Decorator pattern) negatively impact
the energy efficiency of an application. Similar results have been found by
Noureddine et al. [62].

Sahin et al. [6] studied the effect of the refactoring operations defined by
Fowler [10] on energy consumption. Specifically, they evaluated the behavior
of six types of refactoring, finding that some of them, such as Extract Local
Variable and Introduce Parameter Object, can both increase or decrease the
amount of energy used by an application [6]. On the other hand, Park et al.
[63] experimented with 63 different refactorings and propose a set of 33 energy-
efficient refactorings. It is worth noticing that these papers analyzed the effect
of refactoring independently from the presence of design flaws. In contrast,
our study analyzes the impact of code smells specifically defined for Mobile
applications [9] on energy consumption as well as the influence of refactoring
operations aimed at removing them from the source code.

Hasan et al. [7] investigated the impact of the Collections type used by
developers, demonstrating how the application of the wrong type of data struc-
ture can increase the energy consumption by up to 300%. Along the same lines,
other researchers focused their attention on the behavior of sorting algorithms
[64], lock-free data structures [65], GUI optimizations [66], API usage of An-
droid apps [5], providing findings on how to efficiently use different programming
structures and algorithms.

Cruz et al. [67] performed an analysis of eight best practices for improving
the energy consumed by Android apps. Through their empirical study on six
popular apps, they observed that it is possible to extend the battery life of
the device applying energy-aware practices. Our work is complementary to the
one by Cruz et al. [67]: rather than analyzing the effect of energy-aware best
practices, we studied the effect of refactoring code smells on energy consumption
of methods.
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Kim [68] introduced a complementary set of performance-enhancing best
practices for Android programming with respect to those proposed by Reimann
et al. [9]. He evaluated these practices on the CPU time of the apps showing
that applying them it is possible to develop cpu-efficient mobile apps.

Li et al. [35] conducted a small-scale empirical investigation—involving four
code snippets—into some programming practices believed to be energy-saving,
such as the strategies for invoking methods, accessing fields, and setting the
length of arrays. The results of this study confirmed the expectations, showing
that such practices help in reducing the energy consumption of mobile apps.
While some of the practices considered by Li et al. [35] are similar to the code
smells we considered (e.g., the way developers access fields), it is worth noting
the set of analyzed programming practices is quite small. Moreover, their study
did not quantify how much energy can be saved by removing the analyzed poor
programming practices. Furthermore, they focused their attention only on a
few code snippets, rather than considering a large variety of mobile apps.

Finally, the studies proposed by Hecht et al. [69] and Carette et al. [11]
have the same purpose as the one proposed in this paper, since both are aimed
at investigating the impact of three Android-specific code smells on the energy
consumption of mobile apps. Specifically, Carette et al. [11] considered the
behavior of the Internal Getter/Setter, Inefficient Data Structure, and Member
Ignoring Method smells on a set of five mobile applications, and measured the
energy consumption before and after their removal. Their results are strongly
different from those reported by us. Indeed, the authors found that the removal
of single code smells increase the energy efficiency up to 3.86%, while the cor-
rection of all the code smells can reduce the energy consumption of mobile apps
by up to 4.83%. On the one hand, this is due to the fact that their results
are affected by the presence of the Inefficient Data Structure smell, that in this
paper we show to be poorly diffused in mobile apps. On the other hand, we
exploited a much larger set of apps, being able to better characterize the be-
havior of the Internal Setter and Member Ignoring Method smells. Moreover,
the voltmeter used in their experimentation to measure the energy consumption
works at a frequency of only 10Hz; as demonstrated by Saborido et al. [70], such
a frequency is too low to observe the actual consumption of methods, thus pos-
sibly producing unreliable results. In other words, our work is complementary
with this work, considering that the former performs an analysis at app level
granularity, while our analysis is at method level granularity. For this reason,
it is possible that some effects of code smells on energy consumption are not
visible in their evaluation, but are visible in ours, and vice versa.

Afterward, Habci et al. [71] extended the Paprika tool proposed by Hecht
et al. [69] for analyzing the effect of code smells on iOS apps developed in
Objective-C or Swift. The result of their empirical study shows that both the
apps developed in Objective-C and Swift tend to contain the same proportions
of code smells. However, iOS apps seem to be less code smells prone with respect
to Android apps.
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6. Conclusion

This paper presented a large-scale empirical investigation taking into account
the role of nine Android-specific code smells [9] on the energy consumption of
mobile apps. Starting from an analysis aimed at studying the relevance of each
code smell type in the context of mobile apps (RQ1), we then further investi-
gated the relation between code smells and energy consumption (RQ2). Finally,
we evaluated whether refactoring operations applied to remove code smells help
in substantially improving the efficiency of mobile applications (RQ3). The
achieved results provide valuable findings and insights for the research commu-
nity. Summarizing, the paper provided the following contributions:

1. A large-scale empirical study involving 60 Android apps aimed at assessing
the extent to which nine method-level code smells impact energy efficiency
and whether refactoring operations are able to fix energy leaks.

2. A comprehensive replication package [15], including all the raw data and
scripts used for the empirical study.

The results achieved provide two main lessons for both the research commu-
nity and tool vendors:

Lesson 1. Some code smells have a strong impact on the energy efficiency
of source code methods. Specifically, methods affected by four particular smell
types that frequently co-occur, i.e., Leaking Thread, Member Ignoring Method,
Slow Loop, and Internal Setter, have an energy consumption up to 87 times
higher than other smelly methods. This result highlights the importance of
investing (1) in studying more in-depth the dynamics behind Android-specific
code smells and (2) in developing tools that prevent their introduction.

Lesson 2. Refactoring code smells is a key activity to improve energy efficiency.
We found that refactoring represents a powerful technique to reduce the energy
consumption of methods. Approaches and tools able to support mobile devel-
opers in automatically refactoring the source code represent a must for future
research in the field.

These lessons represent the main input for our future research agenda on
this topic, mainly focused on designing and developing a new generation of code
quality-checkers and refactoring tools, other than corroborating our results by
studying the impact of other smells, (e.g., Fowler’s smells [10]) as well as code
smell co-occurrences on energy efficiency of methods or apps. Furthermore, we
plan to investigate whether certain smells have an effect on energy consumption
when this is computed at a higher granularity (e.g., overall app consumption).
Finally, we plan to test the effect of refactoring in an in-vivo experiment with
end-users, with the aim of assessing whether they can actually perceive the
energy optimization of used apps after refactoring.
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